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ERRATUM: 

Please note the following changes: 

The term in the integrand for W('=')(k;M) which reads 

should read 

ADDENDUM: 

If one defines c1 : Il/mal, the following relation can be shown to 
hold for the number of bound states N: 

NsL 
a2 J/ 

dk dk' R(k,k';M) 

where 

R(k,k';M) = 4~r dw+s+e'-M 

d 
-2 m +(k-k')2+s+e'-M 

and the variables k and k' range from 0 to (M2-m2)/2M. Thus N is finite 
for all M < 3m and a # 0. 
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We show that a relativistic, 3-particle equation with minimal 2-body input 
has unique solutions for bound states, and exhibits the Efimov effect (that there 
is an infinite accumulation of 3-particle bound states as the scattering length 
between the pairs increases without bound). The theory is Lorentz invariant and 
unitary. The physical input (for the three equal mass case) is in one para- 
meter p, the mass of the 2-body bound (or virtual) states. The Efimov effect for 
the nonrelativistic theory occurs for (la//R) -t 00, where a is the scattering 
length and R an effective range parameter, whereas in this theory the behavior is 
for p + 2m, where m is the mass of any one of the three particles. 

When attempting to obtain bound state solutions to zero range on-shell 
Faddeev equationsEll using nonrelativistic kinematics one encounters divergent 
integral equations due to the infinite limit of integration. However, relati- 
vistic kinematics in a theory which preserves the clustering properties gives 
finite, well-defined results which reduce to the nonrelativistic equations, only 
with finite integral cutoffs. This momentum cutoff results from the kinematic 
condition that in the pair center of mass system the spectator can have any 
momentum 0 5 lkul I m, which transforms into a finite range of spectator mo- 
mentum in the CMS of the total system[2]. Since the Faddeev.equations involve 
a finite (fixed number) particle theory, we do not encounter infinite self 
energies, and have a unitary theory if 2-body unitarity is preserved. 

The results given below involve the assumptions that there are three equal 
mass distinct particles which point interact only via s-waves, and which form 
2-body bound states of mass n via a separable unitary t matrix. The homo- 
geneous equation for the J=O-bound state energies M is 

M2-m2 

J 

2M 
#J=O) (k;M) = -HIT dk' k' &? JIZ 

o 7-k #J=o)(k';M) ~2:;~,;2;::~~;~ 

i 

E=b&7 , El = ,&m, s' = M2+m2-2Me' 

where the scattering length can be obtained from l/a2 = lm2-(p2/4)1 with a < 0 
for p > 2m. The solutions were obtained by Gaussian quadratures using Jacobi 
polynomials as weight functions. The lowest energy eigensolutions to the equa- 
tion given above are represented by the solid curves on the graph below. The 
dashed curves represent the lowest energy solutions to the equations when only 
two of the pairs interact. This corresponds to replacing -41-r by -28 in the 
equation. The boundaries of the graph are defined by the kinematic limits for 
the existence of bound states. For M z 3m there is 3-particle elastic scat- 
tering if p > 2m and breakup if p < 2m. For M ? m + v there is 2-particle 
(bound state 1-1 + m) elastic scattering and rearrangement. One feature of the 
curves is the behavior for 1-1 'L 2m. As n decreases through 2m, the bound state 
energy begins to drop sharply (more tightly bound system) until the relativistic 
kinematic cutoff levels the curve. 
* Work supported by the Department of Energy, contract, DE-ACO3-76SFOO515. 
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We conclude that the results presented are well defined and reasonable, 
with minimal input. The kinematic regions for elastic scattering and breakup 
will be examined. It should be noted that more physical input will be needed to 
include-crossing, 
ference. 

as is discussed by Noyes[3] in a contribution to this con- 

* 
Work supported by the Department of Energy, contract number DE-AC03-76SF00515. 

1. H. P. Noyes, SLAC-PUB-2358, January 1980 (Rev.). 
2. D. D. Brayshaw, Phys. Rev. D18, 2638 (1978). 
3. H. P. Noyes, contribution tzhis conference. 
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ON UNITARITY, CROSSING, AND UNIQUENESS in a Lorentz-invariant 3-particle context* 

H. Pierre NOYES, Stanford Linear Accelerator Center, Stanford, CA 94305 

Renormalizable quantum field theories in the weak coupling limit are mani- 
festly esvariant, crossing invariant, and preserve unitarity order by order. The 
resulting perturbation series is not uniformly convergent; general non-perturba- 
tive solutions have not been constructed. S-matrix theories, although both 
Lorentz and crossing invariant, introduce a non-linear dynamics which implies an 
infinite number of degrees of freedom ; unique solutions have not been proved to 
exist. Brayshaw's[l] finite range and separable models, which are exactly unitary 
and preserve the cluster property, imply a non-unique phenomenology; no attempt 
is made to include crossing. Here we attempt an alternative approach which re- 
tains these advantages with the ultimate aim, not yet achieved, of incorporating 
the same parameter content as field theory and reducing to the renormalized per- 
turbation series in the weak coupling limit. 

The program started with the observation[2,3] that the zero range or "on 
shell" limit of the Faddeev equations implies only free particle scattering wave 
functions, and hence can be made Lorentz invariant simply by using relativistic 
kinematics. The Faddeev summation convention in the multiple scattering series 
excludes "self-energy diagrams," and guarantees unitarity as was shown by 
Freedman, Lovelace and Namyslowski[4]. The zero range limit of the Karlsson- 
Zeiger equations[5] defines unique solutions in terms of two particle phase 
shifts, binding energies, and reduced widths[6]. The equations can be derived 
directly from a zero range boundary condition on the three particle asymptotic 
wave function[7] and the same technique yields four particle equationsC81 which 
Vanzani finds equivalent to one of the standard forms[9]. However, the unitarity 
of the zero range KZ equations has been proved only if the two particle ampli- 
tudes t(z-p2) when continued to negative energies have no singularities other than 
bound state poles. Under the same restriction, the zero range KZ and Faddeev 
equations are equivalent, and the FLN unitarity proof also holds. The scattering 
length approximation q ctn 6 = -l/a meets the restriction, but Lindesay[lO] has 
shown that the non-relativistic equations then diverge, an example of the well 
known Thomas[ll] singularity. Introduction of a Castillejo-Dalitz-Dyson re- 
sonance in the physical region makes the equations convergent, but non-unique. 
Further, Bugg[l2] has shown that the analytic continuation of the empirical 
nucleon-nucleon amplitudes exhibit the expected negative energy singularities 
arising from meson exchanges. Hence, even as a phenomenology, the non-relativis- 
tic zero range theory is not applicable to nuclear physics. 

Fortunately for our program, requiring the cluster property restricts the 
spectator momentum k in the three particle zero momentum system to the range[l] 
0 5 k 9 (M2-m2)/2M where M is the invariant four-momentum and m the mass of the 
spectator. Hence the relativistic theory converges even in the scattering length 
case. Physically, the theory is finite because we use particle functions as a 
basis. These functions can be obtained from the field functions-by a non-local 
operator which smears them out over a region of size h/me. Since the particle 
functions, rather than the field functions , go over to the Schroedinger particle 
functions in the non-relativistic limit, this is consistent with our approach. 
At a deeper level, we note that the same restriction arises from requiring that 
the invariant two-particle subsystem four-momentum squared s = 4(q2+m2) be non- 
negative, an obvious requirement from the point of view of general relativity. 

In a contribution to this Conference, Lindesay[l3] presents the three par- 
ticle bound state spectrum for the minimal theory of three equal mass particles 
in which either two or three bind to make a "meson" of mass 1-1. If, in the first 
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case, we call the distinguished particle which binds to either of the others an 
"antiparticle," this amounts to a Fermi-Yang[l4] model for the meson. One itera- 
tion gives the term Tab taGotb which at the double bound state pole in tatb gives 
the "crossed" diagram for meson-particle scattering, since Go is simply the par- 
ticle-antiparticle-particle propagator. To get the direct diagram, we must in- 
sert a unitary three particle scattering amplitudeasa new channel, and require 
it to have a pole at M=m, i.e. require the meson and particle to bind making a 
three particle bound state with the mass m. An obvious choice is t = 
((-M2)%-m)-1. It is easy to show that with this added channel the FLN unitarity 
proof still holds. Two iterations then yield t,G,t,G,tb, which at the double 
pole is the direct diagram. Whether this is precisely equivalent to the lowest 
order of some field theory is still under investigation. 

In the special case that v=m, if we also insist on a three body bound state 
at M=m, the upper limit on the spectator momentum (M2-m2)/2M vanishes, and there 
is no integral equation! Examining the double pole, we find that the kinematics 
requires s=O; in this case the direct and the crossed diagrams coincide. We can 
then claim that if particle and antiparticle bind to make mass m, and this meson 
again binds with a particle to make mass m, we have "bootstrapped" the particle 
as a bound state of particle antiparticle and particle[l5]. If this argument is 
accepted, we have found in our theory an analogy to the lowest level of the com- 
binatorial hierarchy[l6]. 

It should be noted that, so far, our one parameter model does not have the 
same content as field theory, since the latter allows both g2 and 1-1 to be picked 
arbitrarily. To insure two-particle unitarity we have had to choose eissinb/q = 
(-l/a -is)-1. If we introduce a second parameter by multiplying this by g2, then 
unitarity is lost unless we interpret the formula as an elastic amplitude 
(ne2i6-1)/2iq with an open inelastic channel. 
we must require g2 5 1. 

It is easy to show that for n I 1 
But such an amplitude makes sense for us only is a four 

particle theory, e.g. wiLh m If: m -f m + m + (< = n), or a five particle theory, 
e.g.withm+~+m+(mm+mm=2~). So we must-go to such theories before we 
can reach our initial objective. To approach QED we must first show that a u + 0 
limit makes sense, and introduce spin. Nevertheless, we believe that the results 
presented at this Conference are encouraging enough to continue with this dif- 
ficult task. 
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