
SLAC-PUB-2511
May 1980
(Ml

LIMS - THE LINK INTER-TASK MESSAGE SYSTEM FOR

- THE PEP MODCOMP COMPUTER NETWORK*

Anthony Gromme and Alex Hunter
Stanford Linear Accelerator Center

Stanford University, Stanford, California 94305

LIMS, written for the Modcomp Max IV and Max III operating

systems, provides inter-task transmission of messages, that is,

physical movement of information, as opposed to information occupying

memory shared among tasks. Source and destination tasks may be in the

same cpu or in different CPU'S, LIMS was written entirely in

assembler language, and consists of the following: 1) code running at

task level to service the LIMS rex calls and remote I/O rex calls;

2) code running at I/O service interrupt level to handle the 4821 link

hardware and to step through the link protocol; 3) a resident link

support task to perform certain functions that cannot be done at

interrupt level; 4) a non-resident task to fill remote CPU'S; and

5) numerous changes to Max IV and Max III source modules and additions

to sysgen data structures. In this description, wherever Max IV and

Max III differ, the information for Max III is in square brackets.

In general, LIMS was designed for speed and efficiency, though

the resulting code may be hard to modify.

No attempt was made to make LIMS compatible with other existing

link software, e.g., Maxnet or LBL KTSG software. Conversion will be

in one step rather than gradual.

* Work supported by the Department of Energy under contract number
DE-AC03-76SFOO515.

(Submitted for Publication)

- 2 -

To see just what LIMS does, the reader should at this point refer

to the atTached description of the LIMS rex call parameters.

Each complete message transmission requires the sending task to

issue a "send" rex and the receiving task to issue a “get” rex. Of

. course, the "get" may occur before or after the "send".

The concept of "virtual circuit" is absent, and there is no

"open" rex. No attempt was made to allow abstract coding of the

destination.

For each "send" rex, the caller specifies, as part of the rex

parameters, the destination cpu number (16 bits), the destination task

name (32 bits), and the destination subqueue number (16 bits). For

each r'get,t rex, the caller may select messages by specifying, as part

of the rex parameters, the source cpu number (-1 me.ans "any"), the

source task name (-1 means "any"), and the subqueue number (-1 means

"any").

The subqueue number is any arbitrary 16-bit quantity, whose

meaning is established merely by "agreement" between the source and

destination tasks. Using a variety of subqueue numbers requires no

additional node space or buffer space.

Cpu number 0 always means intra-cpu transmission (same cpu). In

all other respects except speed, intra-cpu transmission and inter-cpu

transmission appear identical to the user.

‘No specific provision is made for transmission more than one cpu

away from the source. The necessary buffering mechanism already

partly exists, however, and the 16-bit cpu number would provide a

natural carrier for additional routing information.

- 3 -

If insufficient node space or buffer space is available to

service a-LIMS rex, or if the parameters are bad, then the request is

not satisfied or queued, and completion is posted with bits

identifying the error. At present, there is no fixed limit enforced

on the number of requests a single task may queue. A limitation could

be based on task priority, such that for a given priority (set at

sysgen time) tasks running at or below that priority would always

leave a certain minimum amount of space available for use by tasks

running at higher priorities.

Multiple "send's" may be queued as well as multiple "get's".

Each "send" and "get" requires an array in the callers operand space,

into which the completion information will be asynchronously posted.

Completion information for the "get" rex always includes source

identification sufficient for sending a reply.

"Get" and "send" may each be queued or not queued. If the caller

selects the "test" option in a "get" rex, and at that instant no

matching incoming message is queued, the "get" rex does nothing at all

except post the completion information by which the caller can tell

that there was no message. If the "get" rex does not specify "test",

and no matching incoming message is queued, a node representing the

" g e t " will be queued, and the "get" will not complete.until a matching

message arrives. Similarly, if a "send" specifies "test", and at that

instant the destination task has no matching (non-test) "get" node

queued, the "send" will do nothing at all except post its completion

information.

- 4 -

“Get” and "send" may each include one free wait or include no

wait; IF”yuick” is specified, no wait is included with the rex, and

control is returned immediately to the caller. If “quick” is not

specified, one wait is automatically done before control is returned

. to the caller, unless the request is already completed or any other

resumption has occurred. Other events besides message transaction

completion may resume the calling task, and the caller must in all

cases test the completion information to determine why he was resumed,

and execute additional wait's as needed. At the beginning of

processing each rex, word 0 of the caller's completion information is

set to “busy” (#0001). The caller should regard the request as

completed only when the low-order bit of this word is reset to 0. The

meanings of the bits in this word are listed in the-attached

description of the LIPIS rex parameters.

Completion is posted to the non-test sender when his buffer has

been vacated; if the sender specifies no buffering, posting of

completion to the sender tells him that reception is complete at the

other end; if the sender specifies (allows) buffering, the sender has

no automatic way of knowing that reception is complete, short of a

reply programmed explicitly as a separate message.

Buffering is an option selected by the sender. For each "send"

rex, the data will be buffered if and only if the sender specifically

allows buffering and does not specify "test", and the destination task

does not at that instant have a matching "get" already queued;

otherwise, the data will be transmitted directly. Inter7cpu buffering

is always done in the destination CPU.

-5-

For an unbuffered "send", data transmission is delayed until the

destinati; task has issued a matching "get". This is true in the

inter-cpu case as well as in the intra-cpu case.

In order to allow unbuffered variable-length data transmission,

- the inter-cpu link protocol always includes sending a fixed-length

header separately from any data. For each inter-cpu message, all

routing and descriptive information is transmitted in the header,

which may or may not be followed by the message contents.

A more complete description of the link protocol is attached.

The protocol steps are coded in assembler language in a handler edited

into the resident system at sysgen time. Service interrupts are

routed through the PDT directly to the handler, as with standard

Modcomp handlers. Everything necessary for proceedi-ng from each

protocol step to the next (if any) is done directly at service

interrupt level, including acquisition and release of buffer memory.

The message "write" protocol sequence also takes care of node

purge requests from dying tasks, and remote I/O (that is, I/O to or

from a device attached to a cpu other than that in which the

requesting task is running).

Remote I/O always consists of two complete link message

transactions, between which the link is available for any use. The

first message transmits the I/O parameters, and, if the operation is a

write, the data is buffered. If the operation is a read, buffer

memory for the data is acquired at this time. After the actual I/O is

done, the second message transmits UFT completion information, and

transmits the data if the operation was a read.

-6-

As in the RTSG system, in order to get I/O done remotely, the

user must-assign (in the cpu where the request is originating) the

logical file to the link device. Then the logical file name

(specifically, the last in any file-to-file assign chain), say XYZ, is

transmitted as part of the I/O parameters, and, in the cpu servicing

the request, a dummy file through which the actual I/O will be done is

internally (automatically) assigned to XYZ. It may be necessary for

the user to globally assign XYZ in the servicing CPU.

The main I/O module (IO.IV) CM3IOS] was modified so that I/O to

the link device is not queued by the standard Modcomp routines, but

instead the request is diverted to the link handler.

Load modules can be fetched via remote I/O across a link into a

Max III system, but not into a Max IV system. This limitation may be

corrected in the future.

Separate protocol sequences are included for clearing the line

upon timeout, and for filling remote CPU'S; see the attached protocol

description.

Link PDT's must be in the untimed PDT chain. A timeout routine,

driven every 250 milliseconds by the "low clock” interrupt (level #E),

scans the link PDT's as well as the activation request queue. The

timeout routine decrements the timer word in each active link PDT, and

initiates the timeout sequence if the timer runs out.

The message node size is 25 [21] words. A fixed-size pool of

message nodes is assembled in map 0 [resident SYSbLOCK] at sysgen

time. Standard Modcornp I/O nodes are never used for messages. The

Modcornp ROLLER [checkpoint task] knows nothing about message nodes,

-7-

and therefore the ROLLER [checkpoint task] and LIMS are incompatible.

This incozpatibility will probably be corrected in the future.

Message nodes contain only pointers and routing and descriptive

information, no message data. For buffering data, pages are acquired

as needed from the system's free page chain [foreground dynamic memory

pool]. These buffer pages remain unmapped except by the IOP, and the

program addresses them by LDAM/STAM instructions. All Modcomp source

rnodules that refer to the free page chain [foreground memory pool]

were altered to allow manipulation of the chain at service interrupt

level. Each buffer page contains at most one message. This

inefficiency will probably be alleviated later.

A pool of 200 rnessage nodes occupies 5K of map 0 space. Moving

the pool out of map 0, and addressing the nodes by mmeans of LDAM/STAM

instructions, would require a laborious rewrite of the entire LIMS

system. Another alternative is to permanently claim a hardware map

(other than map 0) for exclusive use by LIMS, and address rnessage

nodes and buffers through this map. This approach would in fact speed

up memory-to-rnemory data transfer.

The process of moving data memory-to-memory is driven sometimes

by the source task and sometimes by the destination task. During each

such move, the taskmaster is kept blocked continuously: This delay

will probably be alleviated in the future.

If an inter-cpu buffered message is being transmitted but

transmission is not yet completed when the destination task issues a

matching "get" rex specifying "quick", then there is no direct way the

destination task's rex can move the data from the system buffer into

- 8 -

the task's memory. Moving the data at service interrupt level would

hold up tfiat interrupt too long. To solve this problem, we modified

the taskmaster (and all other Max IV source modules that refer to

TCBRIF) to allow a software interrupt (an "asynchronous processing

- element"). This approach allows the data to be moved at task level

with the destination task's map image loaded into hardware registers.

Attached to each TCB are five queues of message nodes: 1)

unsatisfied "get" requests; 2) pending unbuffered inter-cpu "send"

requests; 3) incoming messages for which the task has not yet issued

a "get"; 4) messages requiring memory-to-memory data transfer to be

done by software interrupt; 5) I/O requests being serviced by a

remote cpu. In Max IV, eleven words starting at LOXITE in the TCB's

loader extension contain the roots of these queues, plus a count of

message nodes which the task has queued on link PDT's.

In certain steps of the link protocol, it is necessary at service

interrupt level to locate a task, which may or may not exist at that

instant. To avoid running the TCB chain [RCB list] at interrupt

level, we added a separate list of task names and TCB [TWA] addresses,

which can be searched at interrupt level. When a task is "born", but

before it receives control, its name and TCB [TWA] address are added

to this list, effectively making the task eligible to receive

messages. Also at this time any nodes destined for that task are

moved from the activation queue to the task's queue of incoming

messages, and each such node's activation request bit is reset. When

a task is "dying", its name and TCB [TWA] address are removed from the

list. Also at this time message nodes related to the dying task are

-9-

purged throughout the network. Any still unprocessed incoming message

nodes tha? still have the activation request bit set are moved to the

activation request queue to cause reactivation of the task.

Functions that cannot be done at interrupt level but rather must

be done by a task are done by LK, the resident link support task.

Several special queues belong to LK: the activation request queue,

the remote I/O request queue, and the fill request flags. Whenever LK

is resumed, LK services as rnany requests as it can. LK scans the

activation request queue, and, for each node whose activation request

bit is still set, LK issues an activate rex, resets the request bit in

the node, and sets a timeout counter in the node. Nodes in the

activation request queue which time out will be purged from the queue.

LK has a pool of UFT's for servicing remote I/Q requests. LK

searches this pool for any requests whose actual I/O has completed,

and, for each, sends the reply back to the requesting CPU. LK then

initiates the actual I/O for as many requests from the remote I/O

request queue as there are available UFT's.

If any cpu needs to be filled, LK sends the fill request flags as

a message to LKN, the non-resident fill task. LKN will service as

many fill requests independently and concurrently as it can.

If an event freezing a trace table has occurred,.LK sends the

contents of the trace table as a message to LKTCP CLKT], the

non-resident trace outputting task.

As a sysgen option, a trace routine and table may be included

which will trace each link service interrupt. This trace is turned on

or off for each link by a bit in the PDT. oc commands to turn the

trace on or off have not yet been coded.

- 10 -

4821 Inter-cpu Link Protocol

The link protocol design was based on the following

considerations: 1) Each hardware link is half-duplex bidirectional,

and is symmetrical with respect to its two ends. 2) The maximum

amount of unsolicited information that can be sent across a 4821 link

is six bits, namely, the five more-or-less programmable 4821 input

status bits, plus the bit that causes the external service interrupt.

3) The protocol sequences should allow unbuffered variable-length data

transmission. 4) There should be a "write" sequence and a "read"

sequence, each of which can be initiated from either end of the link.

In the following description, what is referred to as the "sending ._
CPU" may be at either end of the link, depending on rnomentary context.

Say the CPU'S at each end of a link are called A and B. Then the

"write" sequence, as well as the "read" sequence, looks like the

following:

First approximation:

Cpu A sends cpu B a fixed-length header describing the message to

follow.

The data is transmitted, either directly into the destination

task's memory or into system buffer memory, or else this step is

skipped.

An acknowledgement is transmitted describing the outcome.

- 11 -

Second approximation:

1. %pu A sends an interrupt (called "request") to cpu B wi

status bits that say, "I want to send you a header."

2. B prepares to input the header, and sends an interrupt

th

. (called "grant*') back to A with status bits that say the header may

now be sent.

3. A sends the header.

4. B decodes the header and decides whether or not the

associated data should be transmitted now, and notifies A of that

decision via status bits.

5. "Grant" is sent and the data is transmitted, unless B decided

to skip this step.

6. "Grant" is sent and the acknowledgement, consisting of a

count of words actually received plus other completion status bits, is

transmitted.

7. Another sequence begins, or else an interrupt is sent saying,

"I got the acknowledgement."

The "read" and "write" data transmission sequences differ mainly

as follows: in the "write" sequence, header and data are transmitted

in the same direction; in the "read" sequence, header and data are

transmitted in opposite directions.

Transmission of a message always begins with the "write"

sequence. If (at step 4 above) there is a matching "get" queued by

I
- 12 -

the destination task in cpu B, then the data is transmitted without

buffering, "and the acknowledgement goes from B to A, completing the

transaction. If there is no matching "get" queued, then there are two

cases: If the sender requested buffering, B acquires buffer memory,

. the data is transmitted into the buffer, and the acknowledgement goes

from B to A, just as in the preceding case. As far as the source task

in c.pu A is concerned, the transaction is complete at this time. If,

however, the sender did not request buffering, then data transmission

is delayed until a later time, but a node is created and attached to

the destination TCB in cpu B, and an acknowledgement goes from B to A.

The message is now represented by two nodes: one in A (source) and one

in B (destination). Later, when the destination task in cpu I3 issues

a "get" rex that matches the latter node, the "read" sequence takes

place: B sends a header to A, the data is transmitted from A to B,

the acknowledgement goes from B to A, and only now is the transaction

complete (for the source task as well as the destination task). If

the source task has disappeared in the meantime, then no data is

transmitted, and the acknowledgement goes frorn A to B. Between the

write and read sequences, the link is available for any use.

When either end of a link times out, the timeout recovery

sequence is initiated. In this sequence, each end sends the other a

summary description of the state it was in when the timeout occurred.

If the timeout recovery sequence completes successfully, each end

knows whether the interrupted (timed-out) sequence appeared complete

or incomplete at the other end.

- 13 -

The fill sequence can be initiated by a task in the sending CPU,

or by’ pusKing halt, master clear, fill, and run on the control panel

of the cpu to be filled. If the cpu to be filled is a Modcomp IV,

then only the latter method may be used. If the fill sequence is

initiated by a task in the sending cpu, then the sending cpu will

issue a rnode command to force an automatic master clear, fill, run

sequence in the Modcomp II being filled. In any case, the fill

operation will be overseen by LKN, the non-resident fill task. LKN

requires, as input, a file containing the verbatirn memory image of the

system to be loaded. A separate processor, named IMAGE, has been

written to convert any sysgen link-edit output (normally read by SAL)

into a memory image readable by LKN. In this image, word location 0

must contain the initial execution entry address, and word location

#20 must contain the highest address to be loaded (size - 1). Further

restrictions must also be followed; see the modified version of Max IV

module CS.INI [Max III module M3CLD]. For use by the startup code in

the cpu being filled, LKN will patch the cpu number into word location

#2E of the image.

In the first step of the fill protocol, after the “fill me”

interrupt has been received from the cpu being filled, the sending cpu

issues a mode command to slow the transmission rate, and sends the

first stage of the bootstrap program, constructed by LKN. As part of

the rex completion information, the settings of the sense switches on

the control panel of the cpu being filled are returned to LKN.

Subsequent protocol steps merely transfer data blocks, though in fact

the first of these is the second stage of the bootstrap program,

- 14 -

constructed by LKN. LKN transmits the image in blocks of 4096 words,

repeating me "fill-write" rex for each block, and accumulates a

checksum of the entire image. The bootstrap program also accumulates

a checksum as it reads the blocks, and this checksum is returned to

. LKN after the last block as part of the rex completion information.

If the checksums do not match, LKN will complain. Since the link

handler does not return to a quiescent state between servicing

"fill-write" rex's, a timeout failure will occur if LKN is delayed

excessively.

It may happen that A and B each initiate a transmission or

timeout sequence at the same instant. If the link protocol were

completely symmetrical with respect to the two ends, there would be a

deadlock. I chose the following asymmetry: When simultaneous
._

requests occur, one end (called “slave”) will always back down and

defer its own request, and the other end (called "master") never backs

down. Master and slave are indicated for each link by bits in the

PDT's at each end.

The behavior of the 4821 input status bits can be inferred only

frorn direct experimentation with the link hardware. In particular,

input status bits 5, 11, and 15 are latched at the receiving end of

the link. Once set to 1, they remain set until the receiving

(sensing) cpu issues a transfer initiate or mode command; they cannot

be reset by the sending CPU. Input status bits 12 and 13, on the

other hand, are latched at the sending end, and can be reset only by

the sending CPU, not by the receiving (sensing) CPU. Input status bit

13, indicating "other end is or was busy“, goes to 0 only when the

sending cpu issues a mode command after becoming not busy.

- 15 -

After issuing a mode command, the program must delay at least 8

microseconds before issuing a transfer initiate or another mode

command; otherwise, the input status bits sensed at the other end may

be garbled.

Simultaneous occurrence of internal and external service

interrupts will often be followed by a vacuous service interrupt with

neither the external nor the internal flag set (i.e., neither of input

status bits 9 and 10).

We modified the 4821 hardware as follows:

If bit 15 (previously unused) in the transfer initiate command is

set to 1 and bit 10 is reset to 0, then the other end's input status

bit 15 (usually indicating "fill me") will not be set; bit 15 in the

transfer initiate command has no effect if bit 10 is a 1. This
._

modification allows sending the "grant" and initiating input

simultaneously, with just one command.

If bit 13 (previously unused) in the mode command is set to 1,

then the mode command will not reset any of the input status bits that

that end senses. If bit 13 in the mode command is reset to 0, then

the mode command behaves as in the unmodified controller, namely it

will reset that end's input status bits 1, 2, 4, 5, 6, 11, and 15, as

will a transfer initiate. Transfer initiate, mode, and no-op commands

have no effect whatever if issued when the controller is in the busy

state.

- 16 -

The link protocol assigns the following meanings to the 4821

input starus bits:

bits meaning

5 9 11 12 13 15

110 0 0 0

X 11010

X 10 010

010 0 0 0

request to send header

grant

grant with exception

ack-ack if no request follows; error

flag if in place of grant; ready flag

if immediately after completion of

fill

x1x011 " fill me" .

x1x10x "I timed out"

xl1110 grant during timeout recovery sequence

The link protocol never uses input status bits 0, 6, or 14.

- 17 -

LIMS Rex Parameters

"Get message" rex

(rex code #60; service entry MSLKRD)

R2 (if R8 bit 1 is set to 1) points to an array containing a list

of address/wordcount pairs describing the scatter-read input

buffer segments as follows:

word 0:

word 1:

word 2:

etc.

number of segments (1 <= number of segments <= 4)

address of 1st segment of buffer

wordcount of 1st segment (1 <= wordcount <= 8192)

[Max III: 1 <= wordcount <= 163841

R3 points to an array containing message selection information as

follows:

word 0: source cpu number (0 means intra-cpu;

-1 means "anyt')

words l-2: source task name (radix 40) (binary -1 means "any")

word 3: subqueue number (-1 means "any")

R4 points to an array to receive completion information as follows:

- 18 -

word 0: completion/error bits (listed below)

woFd 1: actual number of data words transmitted

word 2: (reserved)

word 3: actual source cpu number

words 475: actual source task name (radix 40) if a message

word 6: actual subqueue number was received

R8 contains "get" rex code and option bits as follows:

bit 0: 1 means "quick" (no wait);

0 means give me one automatic wait

bit 1: 1 means R2 points to buffer segment list;

0 means R14-R15 contain unsegmented buffer address

and wordcount ._

bit 2: 1 means "test" (treat as no-op if no matching

incoming rnessage is already queued);

0 means queue this "get" request if no matching

incoming message is already queued

bits 3-8: reserved

bits 9-15: #60 (rex code)

R14 (if R8 bit 1 is reset to 0) contains address of b.uffer

R15 (if R8 bit 1 is reset to 0) contains maximum buffer size in

words (1 <= wordcount <= 8192) [Max III: 1 <= wordcount <= 163841

- 19 -

Notes for the “get” rex:

Wordaunt (segment or total) must never be zero. The actual

number of words transmitted into the callers buffer will never exceed

the specified wordcount. Each buffer segment will be filled before

the next segment is begun. Buffer segments must not overlap. [For

Max III, the user must reserve two additional words for system use at

the end of each chained buffer segment except the last; only

privileged tasks may specify more than one buffer segment.] All

parameters and buffers must be in the callers operand map [unprotected

memory] . Arrays pointed to by R2 and H3 (segment list and selection

information) are available for any use as soon as control is returned

from the rex.

At the beginning of servicing the rex, word 0 of the completion

information is unconditionally set to “busy“ (#0001). The user should

regard the request as completed when and only when the low-order bit

of this word is reset to 0.

The non-quick option merely implies that the equivalent of one

wait rex will be included with the “get” rex (saving some overhead) .

Since resumption can be caused by other events than message arrival,

the user must always explicitly test the completion information and

issue additional wait rex’s as needed. In cases where completion is

posted but no rnessage was received, the input data buffer may have

been altered nonetheless.

- 20 -

"Send message" rex

(rex code #61; service entry M$LKWR)

R2 (if K8 bit 1 is set to 1) points to an array containing a list

of address/wordcount pairs describing the gather-write output

message segments as follows:

word 0: number of segments (1 <= number of segments <= 4)

word 1: address of 1st segment of message

word 2: wordcount of 1st segment (1 <= wordcount <= 8192)

[Max III: 1 <= wordcount <= 163841

etc.

R3 points to an array containing routing information as follows:

word 0: destination cpu nurnber (0 means intra-cpu)

words l-2: destination task name (radix 40)

word 3: destination subqueue number

R4 points to an array to receive completion information as follows:

word 0: completion/error bits (listed below)

word 1: actual number of words received at destination

H8 contains " send" rex code and option bits as follows:

bit 0: 1 means "quick" (no wait);

0 means give me one automatic wait

- 21 -

bit 1: 1 means R2 points to message segrnent list;

-ci 0 means R14-R15 contain unsegmented message address

and wordcount

bit 2: 1 means "test" (treat as no-op (except for possibly

activating the destination task) if no matching

" g e t " is already queued by the destination task);

0 means queue this "send" request or buffer the data

if no matching "get' is already queued by the

destination task

bit 3: 1 means activate the destination task if needed;

0 means let this "send" fail if the destination task

bit 4:

bit 5:

is not active

1 means put this message ahead of all other messages .

already waiting in the destination task’s queue;

0 means let this message follow all other messages

already waiting in the destination task's queue

1 means buffer the data if needed (ignored if bit 2

is set);

0 means delay data transmission until the

destination task is ready to receive the data

bits 6-8: reserved

bits 9-15: #61 (rex code)

R14 (if R8 bit 1 is reset to 0) points to message

R15 (if R8 bit 1 is reset to 0) contains message wordcount

(see below)

- 22 -

Notes for the "send" rex:

WordcBunt (segment or total) must never be zero. Segment

wordcount must not exceed 8192 [16384]. Total wordcount must not

exceed 32768 words. If the message is unsegmented, then its length

must not exceed 8192 Cl63841 words. If the message may be buffered,

its total length must not exceed 2036 [2018] words. Message segments

must not overlap. The message and all parameters must be in the

callers operand map. Arrays pointed to by R2 and R3 (segment list and

routing information) are available for any use as soon as control is

returned from the rex.

If activation is requested, and the destination task is already

active, the destination task’s secondary activate bit (ACR in TCBOST)

will be set. Furthermore, if the destination task exits before

accepting the incoming message, the node representing the message will

be moved to the resident link support task's activate queue, and the

destination task will thus be reactivated.

At the beginning of servicing the rex, word 0 of the completion

information is unconditionally set to "busy" (#0001). The user should

regard the request as completed when and only when the low-order bit

of this word is reset to 0.

The non-quick option merely implies that the equivalent of one

wait rex will be included with the "send" rex (saving some overhead).

Since resumption can be caused by other events than "send" completion,

the user must always explicitly test the completion information and

issue additional wait rex's as needed.

- 23 -

"Initial fill" rex

-ci (rex code #62; service entry M$LKFF)

R2 (if R8 bit 1 is set to 1) points to an array containing a list

of address/wordcount pairs describing segments of the

bootstrap program, just as for the "send" rex

R3 contains the number of the cpu to be filled (not an address

in memory)

R4 points to an array to receive completion information as follows:

word 0: completion/error bits (listed below)

word 1: sense switches from cpu being filled .

R8 contains "initial fill" rex code and option bits as follows:

bit 0:

bit 1:

bits 2-8: reserved

1 means "quick" (no wait);

0 means give me one automatic wait

1 means R2 points to segment list;

0 means R14-R15 have address and wordcount of

bootstrap program

bits 9-15: #62 (rex code)

R14 (if R8 bit 1 is reset to 0) points to bootstrap program

R15 (if R8 bit 1 is reset to 0) contains number of words in

bootstrap program

- 24 -

"Fill-write" rex

H2 same as for "send" rex

R3 contains the number of the cpu being filled (not an address

in memory)

R4 points to an array to receive completion information as follows:

word 0: completion/error bits (listed below)

word 1: overall checksum, if last block

R8 contains "fill-write" rex code and option bits.as follows:

bit 0: 1 means "quick" (no wait);

0 means give me one automatic wait

bit 1: 1 means R2 points to segment list;

0 means R14-R15 contain the address and wordcount of

the block to be sent

bit 2: 1 means this is the last block;

0 means this is not the last block

bits 3-8: reserved

bits 9715: #63 (rex code)

(rex code 863; service entry M$LKFW)

Rl4 same as for "send" rex

R15 same as for "send" rex

- 25 -

bit

0

5

6

7

8

9

10

11

12

Sifts returned in word 0 of the completion information

name

AENO

AENT

. .

AEDE

AEWE

AEPE

AEME

AEOL

AENV

AEBV

AETO

. .

AETI

13 . .

14 . .

15 AEBY

meaninq

no matching node was found

destination task was not found

unused

some kind of transmission error

'I g e t " wordcount was too short; some data was lost

bad parameters

memory protection violation

this link is offline

insufficient nodes are available

insufficient buffer memory is available

timeout failure

unused

transfer initiate was done for data input (this

is not an error)

unused

unused

busy

- 26 -

"Set R:IO" rex

(rex code #72; service entry M$SRIO)

R8 contains "set R:IO" rex code and option bit as follows:

bit 0: 1 means set the R:IO bit to 1 in word TCBOST in the

caller's TCB;

0 means reset the R:IO bit to 0

bits l-8: unused

bits 9-15: #72 (rex code)

Note for the "set R:IO" rex:

When the R:IO bit in the TCB is set to 1, then any I/O completion

will cause the task to be "resumed" (independently of clearing the I/O

hold condition). By default, R:IO = 0, and non-link I/O completion

does not cause the task to be "resumed".

- 27 -

"Specify activation file name" rex

(rex code #64; service entry M$LKAN)

R8 contains rex code as follows:

bits 0-8: unused

bits 9-15: #64 (rex code)

R12 contains logical file name (radix 40) for use by LIMS when

activating the named task

R14-R15 contain task name (radix 40)

Note on "specify activation file name" rex:

This rex merely adds the given task name and logical file name to

a list. Whenever the LK task activates a task, LK searches this list.

If the name of the task to be activated is present, the given logical

file name is used; otherwise, a fixed default logical file name is

used.

