
SLAC-PUB-2508 
May 1980 
@f) 

DIRECT FRAGMENTATION AND HARD-SCATTERING PROCESSES 

IN RELATIVISTIC HEAVY-ION REACTIONS* 

Cheuk-Yin Wong 
Oak Ridge National Laboratory 

Oak Ridge, Tennessee 37830 

and 

R. Blankenbecler 
Stanford Linear Accelerator Center 

Stanford University, Stanford, California 94305 

Submitted to Physical Review C 

* Work supported in part by the Department of Energy under contract 
DE-AC03-76SF00515, and by the Division of Basic Energy Science, under 
the Department of Energy, contract W-7405-ENG-26 with the Union Carbide 
Corporation. 



-2- 

ABSTRACT 

1n"a relativistic heavy-ion reaction, there are many processes 

which contribute to fragmentation phenomenon. Here we examine two: 

the direct fragmentation process in which the detected proton is emitted 

from a parent nucleus without additional scattering, and the hard 

scattering process in which a nucleon from one nucleus makes a collision 

with a nucleon from the other nucleus. In terms of a combination of these 

two processes, the proton inclusive data of Anderson et al., for the 

reaction a+ 12 C -t p+X at different bombarding energies can be success- 

fully analyzed. We find that the direct fragmentation process dominates 

the cross section at 0' and 180'. On the other hand, the hard scattering 

process dominates the cross section at the quasi-elastic peak when the 

transverse momentum far exceeds 0.1 GeV/c. Our model leads naturally to 

a new scaling variable which is the generalization of the Feynman scaling 

variable for situations when the rest masses are not negligible. As the 

nuclear momentum distribution enters into the model in a very important 

way, our analysis constitutes in essence a semi-empirical determination 

of the nuclear momentum distribution. Furthermore, since a single nucleon 

can carry a large fraction of the momentum of the parent nucleus in a 

cooperative manner, relativistic heavy-ion reaction may be utilized to 

provide valuable information on the high momentum tail of the nuclear 

momentum distribution when the effects of final state interactions are 

better understood. 



-3- 

1. INTRODUCTION 

Recent experiments using very energetic heavy ion beams have 

created considerable theoretical interest.l Along with several other 

models, a simple relativistic hard-scattering (RUS) model was put forth 

for this type of reaction,2 based on the constituent interchange model 

originally proposed for high energy hadron scattering.3 In this model, 

the constituent structure of the scattering systems and the forces due to 

the interchange of the constituents are taken into account. The theory 

can be applied to meson production as well as to the yields of light 

nuclei. Counting rules involving the Feynman scaling variable xF were 

derived to characterize the behavior of the reaction cross section in 

terms of the short range behavior of the nucleon-nucleon force. This 

remarkably simple model was found to work quite well in explaining 

certain experimental data. A similar model using a different kinematic 

representation4 was also proposed and found to be useful in analyzing 

the meson and proton production cross sections in heavy-ion reactions. 

In deriving the counting rules for heavy-ion reactions, one 

considered2 the case in which the energies of the colliding systems are 

so large that the rest masses of the nuclei can be neglected. Great 

simplification of the structure function, the basic reaction cross 

section and the six-dimensional hard-scattering integral then follows. 

Counting rules are obtained as the index function of the power of 

b - xF> . While these counting rules are useful results for very 

energetic heavy-ion collisions, their application directly to heavy-ion 

collisions at an energy of only 1 to 2 GeV per nucleon may be subject to 

question. It is perhaps not surprising that after the initial success 



-4- 

of these counting rules for forward pion production some discrepancies 

for backward pion production5p6y7 were then found. In the face of such - 

discrepancies, it is important to analyze carefully any error arising 

from the use of asymptotic functional behavior so as to separate out true 

physical effects such as constituent clustering6 and shadowing from simple 

errors of kinematics. For this reason, one may wish to study the RHS 

model using exact relativistic kinematics and direct Monte-Carlo 

integration of the six-fold integral. Indeed,when this was carried out 

for the pion production case,* the experimental p+ 12 C -t rr++X data of 

Baldin et a1.,g at the backward angle of 180' can be explained well by 

the RHS model. Furthermore, the results of a direct numerical integration 

indicate that the RHS cross section as a function of the Feynman scaling 

variable behaves differently for the forward and the backward directions. 

For pion production at 8 = O", 
._ 

the RHS cross section is insensitive to the 

bombarding energy and scales well with respect to xF. It obeys approxi- 

mately the counting rule of Schmidt and Blankenbecler.2 However, for 

0 = 180°, the kinematics is such that the RHS cross sections obtained 

from the six-fold RHS integral depend on the energy of the projectile 

and do not scale well with respect to the Feynman scaling variable xF. 

In view of these results, the discrepancies between the data and the 

counting rules arise simply from using an asymptotic result in a 

kinematic situation where the conditions for asymptotic behavior are 

not met. The success of simple scaling for the forward angles may be 

due to a kinematic effect as was discussed previously.6 

We undertake to examine another application of the relativistic 

hard scattering model for the analysis of the proton inclusive datalo 
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in the collision of a + 12C . Previously, these data were analyzed by 

Chemtob' using the RHS model. It was concluded that the RHS model could 

not explain the experimental data. In particular, the decrease in the 

theoretical cross section in the transverse direction was far too slow. 

One knows, however, that in the discussion of proton production the hard 

scattering process is not the only one present. Since the proton is 

already a constituent of the projectile and the target, there is a very 

important peripheral process in which the detected proton is fragmented 

from the parent nucleus without suffering further scattering while the 

complimentary remnant of the parent nucleus interact with the other 

nucleus [Fig. l(a)]. This process, which we callthe direct fragmentation 

process, is in fact the dominating process for the very forward and the 

very backward angles. One expects therefore from the width of the 

longitudinal momentum distribution1 that the direct fragmentation peak 

also has a transverse momentum width of about 0.1 GeV/c,roughly character- 

istic of the nuclear size. To analyze the experimental data at Co, 180' 

and pT > 0.1 GeV/c, it is necessary to consider a combination of both 

processes. We shall see later that when both the direct fragmentation 

and the hard scattering processes are taken into account, theoretical 

results agree well with the experimental data of Anderson et al.,l" for 

the reaction c1 + 12C -t p + X. 

Another related objective of the present investigation is to study 

the scaling phenomena in proton production. Our understanding of the 

scaling phenomena here may shed some light on the analysis of scaling 

phenomena in other reactions such as in pion production and may supple- 

ment other studies of different parametrizations of the cross section.ll 
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We shall see later that our model leads naturally to a new scaling 

variable which is in essence a generalization of the Feynman scaling 

variable to an energy region where the rest masses of the interacting 

systems are not small compared to the colliding energies. Along with 

the success of finding a new scaling variable for proton production, 

a corresponding scaling variable for pion production has also been 

uncovered.12 

In the present analysis (as well as elsewhere in nuclear physics) 

a very important quantity is the momentum distribution or the related 

structure function of a nucleon in a nucleus. Although the nuclear 

momentum distribution is a basic nuclear property which is important 

in understanding the correlation between nucleons and the behavior of 

many intermediate energy phenomena involving large momentum trans- 

fers 2$13,14 , not much is known experimentally about the general 

features of this momentum distribution. In the relativistic direct 

fragmentation process, since the detected proton is emitted by one of 

the colliding nuclei without additional collision with the other 

nucleus, it carries much information about the nuclear momentum 

distribution. Additional final state interactions may distort this 

distribution but the momentum distribution obtained thereby still 

provides valuable information which may not be obtained by other means. 

For example, because the detected proton can carry a large fraction of 

the momentum of the parent nucleus, it may provide information on the 

high momentum tail of the nuclear momentum distribution. Indeed, as 

was emphasized not the least by Anderson et al.,lO and Schmidt and 

Blankenbecler,2 relativistic heavy-ion reaction may prove to be a 
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useful tool for the extraction of some basic nuclear parameters which are 

still -known. 

This paper is organized as follows. In Section II, we review the 

hard scattering model and pave the way for the introduction, of the 

direct fragmentation process in Section III. An intrinsic scaling 

variable is then introduced and utilized to correlate different sets 

of experimental data. In Section IV, we study the form of the structure 

function and parametrize it as a sum of a single-particle part and a 

correlated part. Detail analysis of the proton inclusive data of 

Anderson et al., for the c1 +. 12 C -t p + X reaction at various energies 

and transverse momenta was carried out in Section V. The nuclear 

momentum distribution obtained thereby is compared with the theoretical 

results of Zabolitzky and Ey13 in Section VI. Section VII concludes 

the present discussion. 

II. RELATIVISTIC HARD-SCATTERING (RHS) MODEL 

We shall briefly sumarize the main results of the relativistic 

hard scattering model, both to introduce the notation and also to pave 

a way for subsequent discussions of the direct fragmentation process. 

We consider a target nucleus A with a mass mA and a projectile nucleus B 

(B stands for Beam) with a mass mB. Using the infinite momentum frame, 

we write the target four-momenta A and the projectile four-momenta B 

as:2~ 15 

A2 Pl+r,d, A2 
-pl +4p1 , 

1 

B2 
2 -4p2 

i 
, 

(2.1) 

(2.2) 
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where the letter labels also denote the corresponding momentum four- 

vectors.,and the quantities P 1 and P 2 depend on the frame of reference. 

In particular, in the center of mass frame, we have 

and 

where 

Pi= s+A2- C B2 + h(s,A2,B2)]/4J; , (2.3) 

P2 = s + B2 - A2 + h(s,A2,B2)]/4& , (2.4) 

s=(A+B)~ , 

and 

A2 ; =m f 

B2= 2 
% ’ 

(2.5) 

(2.6) 

(2.7) 

h2(xl,x2,x3) = x; + x2' + x; - 2(x1x2 + x2x3 + x3x1 
> _ (2.8) 

The hard-scattering contribution to the inclusive process 

A+B+C+X is represented by the diagram in Fig. l(b). The nuclei A 

and B interact through the emission of a virtual subsystem a from A and 

a subsystem b from B. The subsystems are the ones to scatter through the 

basic process a + b + C + d where C is the detected particle. They have 

off-shell momenta given by: 

i 

k2+k; k2+< 
a= XP -I- 1 4xP1 3 & 3 -xJQ + 4xp1 , (2.9) 

c2+ -ef 
b = , IT S Yp2 - 4YP2 

(2.10) 

where 

k2 
2 2 -xa -k 

T II (1-x) , (2.11) 
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$ = Y(l-y)B2 - yB2 - .L; II (1-y) , (2.12) 

and a2?or 13~) is the square of the invariant on-shell mass complementary 

to a (or b) in nucleus A (or B). If nuclear binding energies are 

neglected, they become simply 

a2 = (mA - m )' a , 

and 

B2 = (mg - %)2 , 

(2.13) 

(2.14) 

where m a and mb are the rest masses of a and b respectively. With this 

parametrization of the off-shell momenta, we get the "momentum fraction 

x" of the subsystem a in the nucleus A given from Eq. (2.9) by 

ao+a 

X=AO+A; ' (2.15) 

and the momentum fraction y of the subsystem b in the nucleus B as 

follows 

bo- bZ 
Y= 

Bo- BZ 
. (2.16) 

The relativistic hard scattering (RHS) contribution to the inclusive 

process A + B + C + X represented in Fig. l(b) can be shown to lead to 

an invariant cross section given by 

EC d3a =c / dxd2kTdyd2!LTGa,A(x,$)Gb,B(y,xT)r(s',s,x,y) 
dC3 RI-IS a,b 

(ab + Cd;s't'u') . (2.17) 

Here, r= A(s',k2,R2)/xy A(s,A2,B2) with s' = (a+b)2. The structure 

function G a/A(Xy%) is the probability of finding a constituent of type 
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a in nucleus A with fractional momentum x and transverse momentum %* 

It is &fined in terms of the Bethe-Salpeter bound state wave function 

$(sa) with one leg (a) on-shell by 

G a,A(X,G) = 
I I 

+(;A) 2 l (2.18) 

The quantity Ecd30/d c3(ab+Cd;s't'u') is the invariant cross section 

for the basic process a + b + C + d written in terms of the basic 

Mandelstam variables s', t',and u'. The above result, which has simple 

probabilistic interpretation, was derived by using the Feynman rules and 

by integrating over the final state phase space.3 

To carry out the integration of Eq. (2.17), one selects the 

dominant channel of subsystems a and b, which in the case of pion and 

proton productions are the nucleons. The six-dimensional-integral can 

be performed with properly parametrized structure functions and the 

knowledge of experimental basic cross section, the only complication 

being the relativistic kinematics. We summarize the necessary 

procedures in Appendix I for the evaluation of the RHS integral. 

III. DIRECT FRAGMENTATION PROCESS 

In a relativistic heavy-ion reaction, there are many different 

processes which contribute to "fragmentation" phenomenon, the 

experimental characteristics of which are quite well known. One such 

process is the hard scattering process represented by Fig. l(b) and 

discussed in the last section. We can envisage another peripheral 

process in which a subsystem C (proton, in this case) comes out of the 

nucleus without additional scattering while its complementary remnants 
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interact with the other nucleus. This process, which we call the direct 

fragmen-+ation process,16 is representedby the diagram in Fig. l(a). Since 

the proton does not suffer additional scattering, they are likely to 

emerge near 0' and 180°. All the evidence1 points to the fact that direct 

fragmentation dominates the cross section at the very forward and back- 

ward angles with a characteristic momentum width of about 0.1 GeV/c. 

When the transverse mementum of the proton increase much beyond this 

value, the importance of the direct fragmentation is expected to decrease 

and other processes will become important. In any case, to understand 

the proton inclusive data for small values of pT and to determine the 

relative importance of the processes, we need a quantitative investigation 

of the direct fragmentation process. 

Following the same steps as in deriving the RHS integral,3 we can 

write down (see Appendix II) the direct fragmentation (DF) cross section 

represented by Fig. l(b) as follows: 

EC 
d3cs 

dC3 DF 
NxDGC/B (XD,ET)Z $ @ Ei 5 (B+A + i+X') . (3.1) 

i i 

Here, instead of the momentum variables Cz, we used the momentum fraction 

?I.l introduced in the last section. For projectile fragmentation, xD is 

the momentum fraction of the particle C out of the parent nucleus B 

(of the beam). It is related to Cz by 

cO+ cZ 
% = BofBZ (3.2) 

The momentum fraction xD is a longitudinally invariant quantity. It 

does not depend on the coordinate frame of reference. The structure 
,. - 

function Gc,B(xD,??T) is the probability of finding a constituent of type 



-12- 

C in the nucleus B with fractional momentum xB and transverse momentum 

E+. ITis defined in terms of the Bethe-Salpeter bound state wave 

function with the leg C on shell. The bar symbol on top of c C/B 

indicates that they are in principle different from the structure 

function Gc,B given in Eq. (2.18): the latter quantity being 

calculated with particle C off shell. The basic invariant cross section 

Eid30/di3 is for the reaction B+A+i+X'. As the measurement of C is 

inclusive, it is necessary to sum over all distinct channels i and for 

each channel integrate over all the phase space. 

With B representing the beam particles, the expressions in Eq. (3.1) 

and (3.2) are the direct fragmentation cross section for the projectile 

direct fragmentation process. We can write down a similar expression 

for the target fragmentation process: 

EC 
d30 
2 DF- szc/A (xD,EJ C / $ Ei $f (a+ B + i+X') 3 (3.3) 

i i 

where the momentum fraction % is given by 

co- cz 
XD=A~~A~ l 

(3.4) 

The differences in the signs in Eqs. (3.2) and (3.4) arise from the 

differences in the definition of x and y [see Eqs. (2.15) and (2.16)l. 

Since projectile fragmentation is mainly associated with CZ,BZ > 0 

and target fragmentation with CZ,AZ > 0, we can often use a common 

definition for events in this restricted kinematic regime: 

xD= co + Pzl 
No + NZ I I 

(3.5) 
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where N stands for the parent nucleus out of which the particle C is 

extraced. The less likely events, with Cz < 0 when BZ > 0 for 

projectile fragmentation and Cz > 0 when AZ < 0 for target fragmentation, 

require the more general definitions of Eqs. (3.2) and (3.4). 

One expects that the sum of all the total cross section 

for all possible channels F I (d3i/Ei)Ei(d30/di3)(BA+iX') depends 

mostly on the geometrical dimensions of the colliding systems and is 

therefore rather insensitive to the collision conditions when the collision 

energy is high enough (above 1 or 2 GeV per nucleon). When this happens, 

it is reasonable to approximate it by a constant to obtain the result: 

EC d30 

di3 DF 

projectile fragmentation (3.6) 

target fragmentation (3.7) 

In this case, in terms of xD, the cross section should be a universal 

function, depending only very weakly on s. Thus, when the direct fragmen- 

tation process is the dominant process, the fractional momentum xD can 

serve as a scaling variable. The subscript D is introduced to denote this 

direct fragmentation scaling variable, to differentiate it from the 

Feynman scaling variable xF given byl7 

C Z 
XF = ??----- , (3.8) 

max 

evaluated in the center-of-mass system. 

How good a scaling variable is xD? We can plot the experimental 

invariant cross section as a function of xD for various values of 

PT(- CT). We show in Fig. 2 the data of Anderson et al., for 

a + l2 c+p+x. For each value of the transverse momentum of the 
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proton pT, the data points appear to fit in the same curve for different 

bombardfig momentum p, There are however some deviations for large 

values of xD for the data points of p, = 0.93 GeV/c which may be too 

small for scaling. Data points at higher energies do not seem to suffer 

this defect. We note also that the data points for small values of 

s("n 2 o*2) at pT = 0 depend on projectile momentum. This region of the 

proton spectrum contains important contributions from the hard scattering 

process and from multiple scattering. It should not be given much weight 

in assessing the direct fragmentation process. Figure 2 indicates that 

scaling with respect to the intrinsic scaling variable x 
D occurs for 

a + 12c + p +X at. xD 2 0.2 and p, 2 1.74 GeV/c/N. 

We note in passing that although we were led to the introduction of 

x.,, as a scaling variable by considering the direct fragmentation process, 

the results in Figures 2, 3 and 5 below indicate that xD scaling persists 

even for pT = 0.3 GeV/c for which the hard scattering process becomes 

important. We can now understand this phenomena as due to the fact that 

xD is also approximately equal to the proper scaling variable for the 

hard scattering process.12 Thus, scaling with respect to xD persists 

even though there has been a change of the underlying mechanism. 

The scaling variable xD provides a natural way to link the forward 

projectile fragmentation data with the target fragmentation data 

pertinent to the same nucleus. For example, we can consider the 

reaction c1 (projectile) + 12 C (target) + p + X. The target fragmentation 

proton spectrum provides information about E 12 (x p, c D,CT>a Next we 

consider the inverse reaction 12 C (projectile) + (Y (target) 3 p + X. 

The projectile fragmentation proton spectrum provides information about 
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the same'structure function z P/'~C(~D,+T C ) but at a different region of 

The structure function extracted from forward and backward direction 
x?’ h 
in the two reactions should join on smoothly with respect to each other, 

Indeed, using the data of 
12c + 12 C -t p+X to approximate the reaction 

12 
C l/3 (projectile) + c1 (target) + p + X (allowing for AT arget 

dependence); 

it appears possible to link the forward data of Papp et al.,l' with the 

180' data of Geaga et al.l* One notes furthermore that the 180' data 

of Geaga et al., per&ins more to the structure function at large values 

of xD and hence is very valuable in extracting information on the high 

momentum tail of the momentum distribution. 

The scaling variable as defined by Eqs. (3.2),(3.4) or (3.5) is just 

the generalization of the Feynman scaling variable for situations where 

the rest masses of the colliding systems are not negligible. Consider 

for example the projectile fragmentation case. In the very high energy 

limit, we have 
2c C 

% - %f - Cmix = XF ’ 

since B and C Z max both approach G/2. Thus xD approaches xF in the very 

high energy limit. In the other extreme, for the non-relativistic case, 

mc(l + v,/c> 

“D- % (1+v,/c) 
- z (1 +y,> 

We have 

(3.10) 

(3.11) 

(3.12) 
where “c . xo =mg 
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Hence, % - x0 is just the velocity difference (from the beam velocity). 

It'is a%easure of the intrinsic velocity when the nucleus is at rest 

and is therefore a good scaling variable for fragmentation. 

IV. PARAMETRIZATION OF THE STRUCTURE FUNCTION 

We shall consider first the structure function G a,A(~,kT) and 

examine the limiting case of x approaching unity for which simple vertex 

functions have been written down.2 For a renormalizable interaction 

between the constitutents, including vector exchange, the falloff of the 

vertex function arises solely from the constituent propagators. One 

finds2 

Y (4.1) 

where a 1 is a function of the masses of the exchanged mesons and 

constitutent form factors and is chosen to be a constant for simplicity. 

The quantity T depends on the interaction2 and is about three. The 

members NA and Na are the nucleon numbers of nucleus A and a, 

respectively. From Eqs. (4.1)-and (2.18), the structure function can 

be written in the form 

G a,A(X’$) = & 
1 

Y (4.2) 

where the counting index appearing in the counting rules is given by 

g = 2T NA-Na) - 1 ( 

and 

D2 = (a: - E2)/mt . 

(4.3) 

(4.4) 
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In Eq. (4.2), k2 is a function of x and kT as given by Eq. (2.11): 

- k2 = 
C x(1-x)mi - xmz - (1 -x> (2.11) 

which has an extremum at 

xO a/mA =m (4.5) 

and 

$=O . 

The quantity x2 in Eq. (4.2) is the value of k2 at the extremum. 

It is given by the constant 

x2 = mi (1-m,/mA)2 -5 mf 

Around the extremum, we can expand k2 in the form 

k2 = x2 - (mA/mc,)-[miz-z-xo)2 + 

. 

2 %I 

(4.7) 

(4.8) 

Therefore, the square-bracketed factor in the denominator of 

Eq. (4.2) near the extremum is given by 

[ l+g.k.k]g+L [ l+(zh) (---%$+w.]g+l . (4.9) 

As mA/ma is not far from unity, the parameter D is a good measure of 

the width of the fall-off, in units of x and in the direction of x 

and %* 

Near the region of x - 1, the denominator in Eq. (4.2) controls the 

behavior of G and we haue 

lim G(x,i;r>- (l-~)~ , 
x+1 

(4.10) 
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while its large kT behavior is 

- 
;ym G(x,G) - (I<)-,-~ . 

T 
(4.11) 

These are the desired properties of the structure function as discussed 

previously.2 

Since the experimental data cover a large region of x values, we 

are interested in the structure function not only in the region of large 

momentum x - 1 but also in the region of zero intrinsic momentum x0. 

In order to avoid the introduction of additional parameters2,8 so that 

the structure function peaks at the desired location of x0, we find it 

more convenient to work with the form (4.2) instead of extracting a 

factor of (l-~)~ explicitly as was done previously.2,8 We note that 

the extremum of the probability distribution 1$12 (=(l-x).G(x,kT)/x) is 

located at the same point as the extremum of k2; that is, at xO=ma/mA 

and kT= 0. 

The structure function given in Eq. (4.2) with a relatively large 

width parameter D (of the order of 0.5) is the structure function for 

the high-momentum tail. It corresponds to the component of the structure 

function resulting from the correlation of all of the constituent 

nucleons. The large value of D also implies a large mass parameter or 

equivalently a small correlation length. Although the structure function 

so obtained shows a peak at the point x - x0, it cannot represent well 

the structure function near that region of small intrinsic momentum. 

We know as a matter of fact that near the region of small intrinsic 

momentum the nucleon motion is governed by independent particle model 

where the nucleons are completely uncorrelated and the length parameter 
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is about the size of the nucleus. There is an additional component of 

the strircture function which arises from the single-particle motion of 

nucleons. We can parametrize this component with a different index p and 

a small width parameter 6 where 6 K-C D. The total structure function is 

then the sum of these two components which we write in the form 

G 
a/A xy ( 

where the first term inside the square bracket represents the single- 

particle contribution while the second term the multiparticle correlation. 

Since there is a range of values of p and 6 which fits the data, we choose 

p to have the value six (corresponding to the counting index for the 

constituent in a two-body system). The parameters gl, g2, 6 and D are 

then determined by comparing with experiment. Of course, more complicated 

wave functions based on the above type of reasoning can be written down 

and more accurate data may require their use. 

The above discussion deals with the structure function Galn(x,zT) 

which appears in the six-fold relativistic hard-scattering integral. 

The structure function c a,A(X,iS,) which enters in the direct fragmentation 

process is in principle different from G a,A(x,?!T). We have chosen to 

define E a,A(x.'T) ( see Appendix II) in such a way that c a/A 
and G 

a/A 

differ only by the vertex function 4. In fact, the vertex function 

SaGA) for G a,A(X"~) and +,(sA) have the same structure but differ only 

in the on-shell or off-shell properties of the external connecting lines. 

To the extent that it does not matter which external line is off-shell 

(this is rigorously correct in the nonrelativistic limit), the vertex 
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functions $ and T can be set (approximately) equal. Hence the structure 

function-& and c can be taken to be the same. 

Combining both the direct fragmentation and the hard scattering 

contributions, we can write down the total invariant cross section for 

v. ANALYSIS OF THE a + 12 C + p + X data 

the inclusive A + B + C + X process as 

3 

EC 2 = ~G&$,ET) + wEc 2 ' (5.1) 
RHS 

where the subscript N in the structure function stands for the beam 

nucleus B in the case of projectile fragmentation and nucleus A in the 

case of target fragmentation. The quantity Ecd30/d3C RHs 
I 

is the 

relativistic hard scattering cross section given by Eq. (2.17). As our 

theory cannot (yet) predict'absolute cross sections, the constant w is 

introduced to adjust the relative importance of the two different 

processes. It will be determined by comparing with experimental data at 

different pT values. 

To apply the present model to a concrete example, we focus our 

attention on the projectile fragmentation data of Anderson et a1.,12 

for the reaction c1 + 12 c-+p+x. Since the direct fragmentation term 

dominates for pT - 0, one can attempt to fit the data at pTy 0 with just 

the first term and obtain an approximate structure function. Final 

adjustments of the parameters are then made by comparing the experimental 

data and Eq. (5.1) after evaluating the relativistic hard-scattering 

integral of Eq. (2.17). We find the following final best set of 
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parameters for the structure function G p,abJT) : 

h 

g1 = 0.288x lo6 (mb c3/sr (GeV)2) 

g2 = 0.234~ lo4 (mb c3/sr (GeV)2) 
I 

.D .= 0.38 

and 6 = 0.062 . I (5.2) 

Here, to make the analysis of the experimental data simple, we shall 

not attempt to normalize the structure function but shall let it be 

calibrated with the experimental cross sections so that the structure 

function gives directly the invariant cross section. Hence, the 

coefficients gl and g 2 acquires the units as given above. As G is 

undetermined up to a constant, future use of our structure function 

should take into account other possible ways of normalizing. 

We note in passing that the tail of the structure function 

G pIa(XD'PT) at XD N 0.3 to 0.4 can be approximated by a function of the 

form (1-x~)~~~ The index of 26 is greater than the value of g= 6x 4- 7 

= 17 predicted by the counting rule. This is as it should be, because 

we are quite far from the asymptotic region of "o;'il. Nevertheless, 

the counting rule index g gives an order of magnitude guide to the 

falloff power index of the structure function, when the proper variable 

xD is used instead of x F' In this intermediate x region, one achieves 

very good fits by changing the parameter from the value T= 3 in Ref. 2 

to the value T 'v 4. 

We need also the structure function of a proton out of the 12C 

nucleus, in order to evaluate the hard-scattering integral (2.17). For 

this purpose, we examine the projectile fragmentation data of Papp et al.ig 
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in the reaction 12C + 12 C + p + X and the target fragmentation data of 

Geaga elral.,l' in the reaction c1 (projectile)+ 12 C (target) -t p + X. 

To make the comparison quantitative, we need to convert the data of 

12C + 12 C into an approximate set of data for 12 C (projectile) + 

~1 (target). This conversion can be done by noting that as a function of 

target mass AT, proton inclusive cross section for x N x0 is approximately 

proportionallO to A1'3. We therefore multiply the 12C + 12C cross 

sections of Papp et al., by a factor of (4/12) 113 so that we can treat 

them as the cross section for the 12 
C f a system. The data of Papp et al., 

is given for a laboratory angle of 2.5', while the data of Geaga et a1.,15 

is given for a laboratory angle of 180'. For these angles, the hard- 

scattering contribution to the cross section is negligibly small 

compared to the direct fragmentation process. These data can be analyzed 

using only the first direct fragmentation term in Eq. (5.1). After 

properly transforming the relevant momentum variables into the 

scaling variable xD, taking special care that the transformation for 

projectile fragmentation is different from target fragmentation (Eqs. 

(3.2) and (3.5)), we can represent the different sets of experimental 

data in terms of a single structure function. We find the following 

set of parameters for the structure function which give a good fit to 

the 2.5' data of Papp et al.,lg and the 180' data of Geaga et al.:l* 

81 = 0.50x lo7 (mb c3/sr (GeV12) 

82 = 0.12~10~ (mb c3/sr (GeV12) 

D= 0.30 

6 = 0.024 (5.3) 
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In this case, the tail of the structure function can be represented by 

107 &XD)" . This index of 107 is greater than the counting index of 

g=6x12-7= 65 from the counting rule with T= 3, indicating that we are 

still quite far from the asymptotic region of x N 1. The value T=4-5 

yields a better value for the index in this region. 

Finally, to evaluate the hard-scattering integral, we need the 

basic cross section for the process p + p + p + X. We note that the 

elastic cross section can adequately represent this cross section. 

We therefore parametrize the basic cross section as20 

EC df!sL (PP + PP) = 
dC3 

S eBt' 8[(a+b-C)2 - d2 1 (5.4) 

where B is the slope parameter, S is a constant and t' is the Mandelstam 

variable in the basic system ._ 

t' = (b- C)2 . (5.5) 

In terms of the other Mandelstam variable for the basic system 

S’ = (a+b>2 , (5.6) 

we parametrized slope parameter B for pp elastic cross section in the 

following form 

(1) B= 0 for s' r4 (GeV/c) 
2 , 

(2) B = 5(s'- 4) + 0.36(~-4)~ (GeV/c)-2 

for 4(GeV/c)2 < s' 5 5.45(GeV/c)2 , 

and (3) B = 8(GeV/c)-2 for 5.45(GeV/c)2 5 s' . 

> (5.7) 

The above parametrization is based on the tabulation of the slope 

parameter of Benary et al. 2o 
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The magnitude of the coefficient w which determines the relative 

importa;fce of the direct fragmentation term and the hard-scattering term 

is obtained by fitting the experimental data at ~~1.74 GeV/c for 

pT= 0.3 GeV/c. There, as the two different terms become dominant at 

different regions of xD, the shape of the total contribution depends 

sensitively on this coefficient. The best value of the product SW is 

SW = 0.318~ lo-l1 (mb C3/sr (GeV)2) (MeV/c)-4 . (5.8) 

Figure 3 gives the comparison of the experimental data with the 

theoretical results for the reaction c1 (projectile) + "C (target) + 

p -t- X at a projectile momentum of 1.74 GeV/c per projectile nucleon. 

This momentum corresponds to a kinetic energy of 1.04 GeV per nucleon. 

The invariant cross section is plotted as a function of % for various 

values of the transverse momenta of the detected proton PT. Figure 3(a) 

shows the results for pT= 0 and Fig. 3(b) for pT= 0.3 GeV/c. As one can 

see, the data points for x~ 2 0.20 can be well fitted by the theoretical 

calculations. To study the results in more detail, we can decompose the 

sum of the theoretical cross sections in terms of the direct fragmentation 

component and the hard-scattering component. We consider first the case 

Of PT =O at 9=O". We find that the direct fragmentation dominates for 

xD 2 0.25 but the hard-scattering cross section becomes greater than the 

direct fragmentation cross section for xD 5 0.18. It is worth noting that 

the tail of the hard-scattering component is similar in shape to that of 

the structure function represented by the direct fragmentation component, 

as pointed out previously in Ref. 2. In the region of small xD, the sum 

of the direct fragmentation and hard-scattering cross section is still 
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substantially lower than the experimental cross section, indicating 

that otli%r processes need to be further included to provide a good fit 

for this region. We note that the hard-scattering cross section 

includes a sum over all channels. What we have taken into account so 

far is only the elastic p,p channel. This is good enough in the region 

of x D 2 0.20. However, for the production of lower energy protons, the 

inelastic channels need to be included. Indeed, it is observed that when 

the inelastic p,p cross section is taken into account, the hard-scattering 

cross section for small xD values is enhanced substantially.* It is 

expected that the hard-scattering process (including both elastic and 

inelastic pp reactions) dominates over the direct fragmentation process 

for small values of %. 

The separation of the forward proton spectrum into a direct . 

fragmentation region (xD 2 0.20) and a hard scattering region (xl., 5 0.20) 

is consistent with other pieces of experimental data. It is known 

that the cross section in the region xD 2 0.2 increases with the target 

mass as AT 
l/3 , indicating a peripheral nature of the encounter, as would 

be expected of a direct fragmentation process. On the other hand, the 

cross section in the region of xD - 0.10 increases with the target mass 

as AT2'3, indicating a geometrically more central nature of the encounter, 

as would be expected of a hard-scattering process. Also, in a hard- 

scattering event, since the angular distribution of the basic process 

becomes more and more isotropic as energy decreases, it is easier for 

slow protons to come out in the forward direction, even though the 

constituent particles a and b may not be initially aligned in that 

direction. Therefore, the hard-scattering cross section for small values 
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of xD should increase with decreasing energy. Experimentally, the cross 

section-or xD N 0.10 indeed increases when the bombarding energy decreases. 

We examine now the forward proton inclusive spectrum for the reaction 

of c1 + l2 C + p + X at the same projectile momentum (1.74 GeV/c/N) and a 

transverse momentum of 0.3 GeV/c for the detected proton. Figure 3(b) 

shows that the experimental data points can be well fitted by the 

theoretical calculations. We can study the two different components in 

some detail. One finds that the direct fragmentation dominates when 

% 2 0.32 whereas hard-scattering dominates for xD 2 0.28. It is clear 

from the shape of the experimental spectra that a combination of the two 

processes is necessary to explain the experimental data. 

We note that in the case of pT =0.3 GeV/c, the peak of the cross 

section is given mainly by the hard-scattering process. This is in 

contrast to the pT = 0 case where the peak of the cross section is given 

mainly by the direct fragmentation process. Such a change in roles may 

not be surprising because the direct fragmentation peak has a momentum 

width ap of the order of 0.10 GeV/c.l so, at pT = 3 ap the direct 

fragmentation peak drops down much below the hard-scattering peak. 

The increasing importance of the hard-scattering component also explains 

the peculiar phenomenonlO that the observed momentum width is different 

in the transverse and in the longitudinal direction. In the transverse 

direction, the additional contribution and later the dominance of the 

hard-scattering process give a larger width to the transverse momentum 

distribution, as compared to the width of the longitudinal momentum 

distribution at pT= 0. 
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The interplay between the direct fragmentation and hard-scattering 

processes can be further displayed by considering the proton transverse 

momentum distribution for a fixed value of momentum 1.75 GeV/c in the 

bombardment of 12 C with alpha particles at po=1.74 GeV/c per nucleon. 

The experimental data and the theoretical results are shown in Fig. 4. 

As one observes, the experimental data are quite well reproduced. One 

can further compare the contributions from the direct fragmentation 

process and the hard-scattering process. For this momentum, the direct 

fragmentation process dominates the cross section at pT= 0 whereas 

the hard-scattering process dominates the cross section at pT >> 0.1 GeV/c. 

The cross over of the two processes occurs at pT N 0.2 GeV/c. It is clear 

that the direct fragmentation process by itself or the hard-scattering 

process by itself cannot explain the data. A combination of these two 

different processes is necessary. 

Figure 5 gives the comparison of the experimental data with 

theoretical results for the reaction of c1 + 12 C + p + X at a momentum 

of 2.88 GeV/c/N per projectile nucleon. This momentum corresponds to a 

kinetic energy of 2.09 GeV per nucleon. Figure 5(a) shows the results 

for pT= 0 and Fig. 5(b) for pT= 0.3 GeV/c. Again, the experimental 

data points, with the exception of the low momentum region xD 5 0.20, 

can be well accounted for. The region of small xD, as we mentioned 

before, may involve more complex processes and is not expected to be 

given just by the direct fragmentation process and a hard-scattering 

process involving only the elastic pp channel. The decomposition of 

the theoretical cross section into the two underlying components gives 

features which are the same as in the case of 1.74 GeV/c. They need not 

be discussed again. 
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It is worth noting that the theoretical hard-scattering cross 

section-at 2.88 GeV/c is smaller than that at 1.74 GeV/c for small values 

of "D. As we explained previously, this is due to the fact that the 

basic p,p cross section becomes more forward peak as energy increases. 

So, in order to come out in the forward direction, the colliding 

constituent nucleons need to align well in the forward direction and 

hence only a more restricted region of phase space leads to a slow 

proton in the forward direction as compared to the case of a lower energy 

collision. This decrease of cross section in this region of small xD 

with increasing energy cannot go on without limit. We know that the 

slope parameter for the basic cross section, which determines the angular 

anisotropy of the basic reaction, becomes a constant when s' exceeds 

about 5.5 (GeV/c)2. One therefore expects that as a function of 

bombarding energy of the heavy ion, the hard-scattering cross section 

due to the p,p elastic channel in the region of small xF reaches an 

approximately constant value when the bombarding energy goes beyond 

3 to 4 GeV/nucleon. 

Figure 5(b) shows the inclusive proton spectra for p,= 2.88 GeV/c/N 

and ??T = 0.3 GeV/c. As one can see, the theoretical results agree well 

with experiment for xI, 2 0.2. Again, the region of small values of xD 

may have contributions from other processes and has therefore a larger 

cross section than the calculated results. The peak cross section is 

due to the hard-scattering process. The cross section at large values 

of x D comes mainly from the direct fragmentation process, the hard- 

scattering process nevertheless gives a substantial contribution to the 

sum. 
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In Figure 6, we show the transverse momentum distribution for the 

case o&p o= 2.88 GeV/c/N for a proton momentum of 2.88 GeV/c. The 

direct fragmentation component again dominates at pT= 0 while the 

hard-scattering process dominates at pT >> 0.1 GeV/c. 

VI. NUCLEAR MOMENTUM DISTRIBUTION 

In the model we have presented, the nuclear structure function 

enters in a very important way. It arises in the direct fragmentation 

term and also in the hard-scatteing term. The structure function 

obtained thereby may have already been subject to distortion due to 

additional final state interactions. It may also need other corrections 

because of the various approximations introduced to lead to the simplified 

result of Eq. (5.1). Nevertheless, an analysis of the experimental 

data in terms of these structure functions is in essence a semiempirical 

determination of the structure function as defined in the present model. 

A comparison of the semiempirical and theoretical results will reveal 

much information about the underlying physics of the structure function 

and/or final state intera'ctions. 

Rather than comparing the structure function, it is more convenient 

to compare the momentum distribution P 
( > 
x,z a/A T which is related to 

G a/A ( ) X,E T by 

P ( > X,E a/A T l 

(6.1) 

Recently, momentum distribution for the ground state of 4 He has been 

calculated using various two-body interactions. It was pointed out that 

a measurement of the momentum distribution, particularly the region at 

high momentum, will be of great value in understanding the correlation 
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of nuclebns in nuclei. This is in line with the suggestion of Ref. 2 that 

experimental data of large values of x reveals the degree of many-particle 
-cI 

correlations of a composite system. The momentum distribution has been 

calculated by Zabolitzky and Ey13 in a non-relativistic coupled-duster 

form of the many-body theory. To make the comparison possible, we go 

to the projectile frame in which the center of mass of the projectile is 

at rest. (PI This is achieved by transforming xD to pz in the projectile 

frame by 

,(P) = 
Z mB(%-~)(l+&)~ , 

where 

mC1 = (rn: + Ci) . 

(6.2) 

(6.3) 

When the momentum distribution of a nucleon in 4 He obtained in the 

present model is compared directly with theoretical calculations of 

Zabolitzky et al., one observes that the semiempirical distribution 

obtained is too narrow compared with the theoretical momentum distribution. 

The general shape is however similar. In particular, there is a discontinu- 

ity in slope at p, - 1 (+i.fm -1) which mimics the change in slope at 

p-2 (hfm-1) in the theoretical calculation. The theoretical calculation 

demonstrates that the abrupt change in the slope of the momentum distribu- 

tion originates from the presence of correlations between nucleons. Final 

state interactions may distort the momentum distribution but are not 

expected to introduce such abrupt slope changes. Thus, the observed dis- 

continuity in slope may be tentatively taken as a possible evidence for the 

presence of nuclear correlation of nucleons in the ground state of 4 He. 

More definite conclusions must await further studies of the effects of 

final state interactions. 
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VII. CONCLUSIONS AND DISCUSSIONS 

Witch the introduction of the direct fragmentation process to 

supplement the hard-scattering process, the experimental data of 

Anderson et al.,l" can be well explained. We find that direct 

fragmentation dominates the cross section at 8 = 0' and 180' and also 

the production of very energetic protons for 0 # 0. On the other hand, 

the hard-scattering process dominates near the quasi-elastic peak when 

pT >> 0.1 GeV/c. 

Our model leads naturally to a new scaling variable xD which 

measures the fractional momentum of the detected fragment relative to 

the parent nucleus. When plotted in terms of this scaling variable, 

the invariant cross sections show little energy dependence, except 

for region of small xD. Such a scaling behavior can be understood 

within the context of our present model. In the region where direct 

fragmentation dominates, only one structure function is necessary to 

describe the behavior of the cross section at all energies when the 

energy is high enough. As the structure function depends only on xD 

and -% T, we have scaling in terms of XD for different values of ET. 

In the quasi-elastic peak when pT # 0, the hard-scattering model has 

a scaling variable which is approximately equal to xD even for moderate 

values of pT.12 

The analysis of this experimental data provides us with some insight 

into the momentum distribution of a nucleon in a nucleus. Heavy-ion 

reactions thus may be a unique tool in probing the high momentum tail 

of the nuclear momentum distribution. This is possible because a single 

nucleon can be emitted in a cooperative manner with a large fraction of 



-32- 

the total momentum of the nucleus. Our analysis indicates the possible 

presencCof nuclear correlations in 
4 

He and/or final state interactions. 

Similar conclusion was also reached by Geaga et a1.,21 from their work in 

backward proton productions. 

Since knowledge of the nuclear momentum distribution can be very 

useful in nuclear structure and nuclear reaction studies, it is important 

to develop further both theoretical and also experimental tools for its 

exploitation. As far as experimental investigations are concerned, 

what is desirable is a systematic inclusive proton and composite parti- 

cle production for various nuclei at 0' and 180' where only the direct 

fragmentation is important. The 0' data give the structure function 

close to the region of zero intrinsic momentum while the 180' data give 

the structure function in the region of large intrinsic momentum. TO 

allow the two structure functions to join on smoothly, one wishes to 

push the 0' measurement to as large a momentum as possible and to push 

the 180' measurement to as low a momentum as possible. To subtract away 

the contributions due to the hard-scattering process, it is desirable 

to have measurements around PT f 0 so that the hard-scattering contribu- 

tions can be well identified. Furthermore, it is desirable to perform 

experiments at different energies to check whether or not scaling is 

achieved. Once scaling is achieved, the use of different projectile 

and target nuclei will aid in determining the counting rules for the 

dependence of the cross section on the constituent numbers. These scal- 

ing laws are the minimal systematics against which new degrees of free- 

dom may appear as peculiar deviations, 
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Theoretically, much more work remains to be done to examine the 

correcttins to the presence model and the energy dependence of the 

neglected factor in the direct fragmentation term. Future work should 

also be directed towards a more careful examination of the structure 

function and its momentum dependence. It is particularly important to 

study the effects of final state interactions.22 By improving both 

the theoretical and experimental tools we can expect to enlarge our 

knowledge of some basic and important properties of the nucleus which 

up to now is still very rudimentary. 
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APPENDIX I 

EVALUATION OF THE HARD-SCATTERING INTEGRAL 

We present here the detail steps and relativistic kinematics which 

allows one to evaluate the hard-scattering integral. For a given 

projectile kinetic energy per nucleon s we have the invariant scaler 

variable s= (A + B)2 given by 
I 

s = A2 + B2 + 2mA(NBe + mB.) . (1.1) 

The maximum value of 1E1 can be determined by assuming a minimum missing 

mass D min 

C 
max 

, (I.3 

where 

X2(x1,x2,X3) = X: + Xi + Xi - 2(xlx2 + x2x3 + x3xl) 
l 

(1.3) 

The knowledge of Cmax allows one to convert the proton momentum into 

Feynman's scaling variable and vice versa. In terms of the momentum 

Co and Cz of the detected proton in the center-of-mass frame, the other 

invariant variables t= (B- C)2 and u = (A- C)2 are 

t = -2 Co(P2+B2/4P2)-CZ(P2-B2/4P2) 1 + 4 + rni , 

and 

U” Co(Pl+A2/4Pl)- C,(Pl-A2/4P1) + rni + rni 1 , 

0.4) 

(I-5) 

where Pl and P2 are given by Eq. (2.3) and (2.4). 

Our task is to evaluate the six-dimensional integral for a given 

set of values of s, t and u. The integration variables are x, y, % 

and IT, but they are restricted in the elastic channel by the'delta 
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function 6 C (a + b + c)2 d2-j. We can convert this energy conservation 

conditim into an equation for y: 

(a + b - C)2 - d2 = (Aly2 + A2y + A3)/0 -y)=O . 

Here the coefficients Al, A2 and A3 are 

0.6) 

.A1 f - 
C 

xs - - qco- CZ’pd , (1.7) 

A2 = -Al + 4 - m2 - mi 
8 

2(Co+cz /4P2 - x ) 1 , (1.8) 

A3 = 2(CC+CZ)/4P2 1 -g+x , (1.9) 
and 

x = -~(c~+c~)P~x - 2(Co+CZ)m~L/4Pl~ + k2 + c2 - mi 

-2z& + 21T4 -I- 2cf ET , (1.10) 

where 

and 

2 - B2 + h(s,A2,B2) 1 , (1.31) 

2 
maL =k2+< . (1.12) 

Therefore, the delta function in the basic cross section becomes 

(a+b-C)2-mi I = 6(Y-Y1) -I- Al;y-;;2, "(Y-J2) > (I-13) 

where yl and y2 are the two solutions of y for Eq. (1.6). An integration 

over y reduces the six-fold integral into a five-fold integral, In each 

of the five-dimensional points, there are two contributions from two 

values of y. Because of the rapid fall-off of the structure function 
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the point closest to yo=mb /m gives the greatest contribution to the B 

integra&. 

The knowledge of x, y, $I and 'jiT now allow us to evaluate the 

Mandelstam variables s' = (a + b) 2, t'= (b-C)2, u' = (a - C)2 in the 

basic system. They are given by 

s’ = xyS +m zL &jxy; - 2%. IT + k2 + R2 m , (I.14) 

t’ = 
- 2(Co-Cz)P2y - ( 0 2 C +Cz)mil/4P2y + 2XT.F + R2 -I- c2 , (1.15) 

and 

u’ = -2(Co+ Cz)P1x - 2(Co- Cz)miL/4Plx + 2% l ET + k2 + C2 , (1.16) 

where 

(1.17) 

The function X(s,s',x,y) and da/dt'(pp) which are given in terms of s' 

and t', can now be determined. With the structure functions already 

given in the variables of x, y, %c and XT, the complete integrand can 

now be evaluated. The hard scattering integral can be evaluated by a 

Monte Carlo sampling of the five dimensional integration points in x, 

%c and IT, with convenient changes of variables to put more weights to 

the regions of large contributions. 
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APPENDIX 

- DIRECT FRAGMENTATION 

Following Ref. 3, we write down the differential cross section 

for the process AB + CiX' depicted in Fig. l(a) as 

do(ABKiX') = c 
2EA2EBlvA-vB/ i 

with the assumed decomposition 

and 

II 

CROSS SECTION 

dp = 5 6(+)(C2-mE)$ ,(+)(i2-m:) . 
._ 

(11.1) 

(11.2) 

(11.3) 

Here, the function 5, is the covariant vertex function for the particle 

C on-shell and S off-shell. We have therefore 

2EA2EB;VA-vB/ MBA+iXr 2 e l I I . 
(11.4) 

We assume that the off-shell continuation of the matrix element 

is smooth so that we can identify 

(11.5) 

where x is the fractional momentum of C out of B. The inclusive cross 

section for AB-tCX is obtained from (11.4) by integrating over (d3i/Ei): 

2 

% d3a (AB+CX) 
dC3 

$ $ Ei$ (fiA+iX') . (11.6) 
i 
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Noting that the baryon propagations of b and8 (when they are off-shell) 

are related by 

pi-< x =- 
2 2 l-x ' 

pt3 - mB 

we can rewrite the following factor in (11.6) as 

a; (P,) a; (P,) 

(l - x, (p;-m;y = x * (p;-3> 

. 

The result of (I.8) suggests the usefulness of introducing 

(11.7) 

(11.8) 

(11.9) 

which differs with GC,B (x,ET) only in the vertex functiorif the vertex 

function is evaluated when the particle C is on-shell for GC,B(~,if,) 

and is evaluated when C is off-shell for G C,B(x,'T) ' In terms of G, 

the invariant cross section for AB-tCX is 

d30 

EC dC3 
- = xEc/B(X,CT) c / + E& (flA+iX') . 

i i 
(11.10) 
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FIGURE CAPTIONS 

Fig. 1. (a) Diagrams for the direct fragmentation process 
- 

leading to A + B + C + X. 

(b) Diagrams for the hard-scattering process leading 

toA+B+C+X. 

Fig. 2. Experimental invariant cross section of Anderson et al.,l' 

for the c1 + 12 C + p + X reaction plotted as a function of the 

scaling variable xD. Different types of data points are used 

for different projectile momentum per nucleon, as indicated. 

Figure 2(a) is for a proton transverse momentum pT= 0, 2(b) is 

for PT = 0.15 GeV/c, and 2(c) is for pT= 0.3 GeV/c. 

Fig. 3. Comparison of experimental data of Anderson et al.,l" with the 

theoretical results for the reaction c1 + 12C -f p.-+ X at a 

projectile momentum of 1.74 GeV/c per nucleon. Figure 3(a) is 

for proton transverse momentum pT=O and 3(b) is for pT=0.3 GeV/c. 

The solid curve is the theoretical cross section which is the sum 

of the direct fragmentation component represented by the dashed 

curve, and the hard-scattering component represented by the 

dashed-dot curve. 

Fig. 4. Comparison of the transverse momentum distribution of Anderson 

et al.,lO with the theoretical results for c1 + 12C.+ p + X at 

a projectile momentum of 1.74 GeV/c per nucleon and the detected 

proton at a momentum of 1.75 GeV/c. The solid curve is the 

theoretical cross section which is the sum of the direct 

fragmentation cross section (the dashed curve) and the hard- 

scattering cross section (the dashed-dot curve). 
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Fig. 5. Comparison of experimental data of Anderson et al.,l" with the 

- theoretical results for CL + 12 C -f p + X at a projectile momentum 

of 2.88 GeV/c per nucleon. Figure 5(a) is for pT= 0, and 5(b) 

is for pT = 0.3 GeV/c. The solid curve is the theoretical 

cross section which is the sum of the direct fragmentation 

component (the dashed curve) and the hard scattering component 

(the dashed-dot curve). 

Fig. 6. Same as in Fig. 4, but for a projectile momentum of 2.88 GeV/c/N. 

Fig. 7. The semi-emperical momentum distribution of a nucleon in the 

4 He nucleus as determined by the present analysis (solid curve) 

is compared with theoretical distributions (labeled curves) 

calculated by Zabolitzky and Ey.13 The labeled curves are the 

theoretical momentum distributions obtained by using different 

interactions: SSCB for de Tourreil-Sprung super soft core 

potential, RSC for Reid soft core potential, and HJ for 

Hamada-Johnston potential. All are obtained by including 

nucleon correlations. The uncorrelated result is given by the 

curve labeled UNC. 
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