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ABSTRACT 

We discuss an unusual effect of triple gluon coupling and the 

Adler-Bell-Jackiw anomaly on the flavor singlet part of the polarized 

deep inelastic scattering structure function vGl(Q2,x). Namely, the 

x-integral Is(Q2) of this function is Q2 -independent both in parton 

model and leading logarithm calculations, but the first order non- 

leading logarithm calculation produces a term growing like (-En$nQ2), 

dominating over the parton model contributions at large Q2. The 

detection of this unusual term will amount to an experimental confirma- 

tion of the existence of triple gluon coupling and the Adler-Bell-Jackiw 

anomaljr. Technically, this term comes from a new axial vector gluon 

operator which we introduce in the Wilson expansion. Other results of 

this paper include a discussion of mass-sensitive and mass-insensitive 

structure functions and the derivation of the expression for, and the 

relations between, some of these structure functions. 
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1. INTRODUCTION 

Much is known1 about deep inelastic inclusive lepton nucleon 

scattering processes when the beam and the target are unpolarized. 

When both of them are polarized, experimental information2 is as yet 

very scanty and theoretical consideration becomes much more complicated. 

Instead of only three (two) structure functions for neutrino (electron) 

scattering as is the case in the unpolarized case, we have now nine 

(four) structure functions. Is there any interesting physics that can 

be fished out from this complicated mess? 

We shall show that there is.3 Specifically, the x-integral Is(Q2) 

of the flavor-singlet part of the structure function vGl(QZ,x) behaves 

in an abnormal and unexpected manner, because of the existence of triple 

gluon coupling and the Adler-Bell-Jackiw (ABJ) anomaly.4 If we can 

detect this peculiar Q2-variation, 
. 

then we will have an experimental 

way of confirming not only the existence of triple gluon coupling, so 

central in showing the non-Abelian nature of the theory, but also in 

confirming experimentally the existence of such a highly theoretical 

object as the ABJ anomaly. For that reason we think that it is 

worthwhile to try to measure Is(Q2) experimentally. 

The peculiar effect mentioned above is the following. Both in the 

parton model and in the leading log approximation (LLA) calculation in 

quantum chromodynamics (QCD), Is(Q2) is independent of Q2; viz., it 

scales. In the first non-leading log order (NLLA), one would normally 

expect an order Gs(Q 
2 

) (running coupling constant) correction which 

vanishes at large momentum transfer Q2. Instead, one finds a correction 

term of order (-BnRn Q2), r?ominating over the parton or LLA contributions 
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for large Q2. Moreover, the sign of this term is opposite to the sign 

of the parton or LLA terms. This makes it hopeful for this special 

effect to be detectable and recognizable. 

The detailed explanation of the origin of this effect is contained 

in Section 4. Briefly, it is as follows. Is (Q2) actually measures the 

total helicity carried by the quarks and anti-quarks. This helicity 

turns out to be Q2 -independent in LLA because of chirality conservation 

and charge conjugation invariance. In the meantime, the total gluon 

helicity grows like Rn Q2 as a consequence of the triple gluon coupling, 

though chirality conservation prevents the pair-created quarks to inherit 

any of this growing helicity, thus making it undetectable by the photon 

in LLA calculations. But on account of the ABJ anomaly, chirality 

conservation is broken in NLLA, and this growing helicity of the gluons 

can be passed, in a diluted form, to the quarks. Thus we see in NLLA 
. 

a RnIlnQ2 growth of quark helicity. Koreover, it is 9 special signature 

of the anomaly that the helicity is flipped when it is passed from the 

gluon to the quark. This accounts for the minus sign associated with 

the RnRn Q2 term. 

The final formula for Is(Q2) containing this -Rn&nQ2 term appears 

in Eq. (71). It is obtained by the Wilson expansion and renormalization 

group techniques. To carry out such a calculation, we find it necessary 

to introduce a gluon axial vector operator up(x) hitherto ignored. 

This operator is the same one used in discussions of topological 

solutions of Yang-Mills fields." It mixes with the normal quark axial 

vector operator on account of the ABJ anomaly and triple gluon coupling. 

The property of this operator and the calculation of XS(QL) will be 

discussed in Section 4. 
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In Section 3, we obtain results for all the structure functions in 

terms of the Wilson coefficients and parton distribution coefficients. 

From tcs we are able to derive some relations for these other structure 

functions. 

The calculations in Section 4 will be carried out by putting the 

quark masses equal to zero. It turns out to be a non-trivial question 

whether such may be done even in the leading twist, or even parton model, 

calculations. This problem together with the definition of the structure 

functions and their parton model expressions are given in Section 2. 

Finally, the mathematical evaluation of an ordered exponential 

is given in Appendix A and graphical discussions of the ABJ anomaly for 

QCD is contained in Appendix B. 

2. STRUCTURE FUNCTIONS AND PARTOX MODEL RESULTS 

The inclusive cross section for a neutrino to scatter from a 

polarized nucleon of momentum P', mass M, and polarization direction 

S', is determined by the current-current correlation function 

W 1 =- 
4Mn I- 

a4x eiq*x 
YV <P,S 1 cJ:(x),Jv(o)] / Pi 

= --g$$ + IPPW i 
M2 pv2 - -gq EpvPa qPPUW3 

. 
+lS . 

M uvpcr qPSuG1 +1 E M3 UvPo 
q'(q*PSo- q*SP")G2 . 

+ ; gpvq*SG3 - i (p& + PvSp)G4 

(1) 

Epvpo PPSoG6 
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Here Ju is the charged weak current operator, and qu is the momentum 

transferred from the initial neutrino. We use metric gO0 = t-1, 

'0123 z-l-1, and normalize S so that S2 = -1, S*P = 0. Terms proportional 

to 9 P 
or qv have been dropped from the above expression and will continue 

to be dropped below. 

The tensor in Eq. (1) is related to the discontinuity of the time 

ordered product matrix element 

iY * . 
=& d4x el' x 

lJV <P,SjT(J;(dJvb)) IV> 

1 PIIPIj:2 + ,.. = - T OMIT pv 

w = -i Disc c 
lJV ( > I.lV 

(2) 

(3) 

In Eq. (21, we have written out explicitly only two out of the nine 

structure functions. The rest is as in (l), except that.we will. put 

a tilde on top of the structure functions appearing in Eq. (2). 

For antineutrino scattering, Eqs. (1) and (2) are still valid if 

we interchange J f and J. Consequently, 

and 

y-)LP) = q&u9 

w;vw9 = -w$-q,P) , 

iqQ2,x) = +i?(Q2,-x) (i= 1,2,3) 

qtQ2,x) - = K;(Q2,-x) (i= 1,4) (4) 

q(Q2,x) = -?(Q2,-x) (i= 2,3,5,6) , 
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where Q2=-q2, x= Q2/2q*P. The relations for the untilde structure 

functions are as in (4) except with all the signs reversed. 

Foyelectroproduction, one simply replaces the weak current by the 

electromagnetic current. Because of parity conservation and current 

conservation, the correlation functions W TV (and c,J contain in this 

case only four structure functions: Wl, W2, Gl and G2. All the other 

terms should be dropped from Eqs. (1) and (2). The crossing symmetry 

properties are the same as in (4) if we replace both the neutrino and 

the antineutrino interactions by electromagnetic interactions. 

It is straightforward to calculate the neutrino scattering structure 

functions in the naive parton model. If s is the polarization vector 

and p= CP is the momentum of the incoming quark, and if q is the 

momentum of the'incoming virtual boson, then Fig. 1 yields 

(5) 

with 

_. 

and 

= 2 
i 
im Cp,v,q+-p,sl - m<p,s,v,q+p> + <L~,P9v,q+P> 

- i[v,v,q,PJ w 
m2-(q+p)2- iC) 

Tb(%P),,, = T,h-d,,, , 

where 

(6) 

<~,V,3,B> = gpvgap&)a- g,,q@ 



. 

Here i sums over all flavors of quarks and antiquarks that contribute 

to the corresponding diagrams (only d and s quarks contribute to (a), 

and on17 c and s quarks contribute to (b) in the four quark model). If 

we take the discontinuities of (5) in x and use (l)-(3), then we get the 

parton formulas for the neutrino structure functions: 

vw2 = =4(x) 

VW3 = q'(x) 

vG1 
2 

+G2=0 

vG3 

vG4 = + xAq'(x). 
2 

+G5=0 

vG6 = $ xAq(x) 

where 

9, (x) = 2(d,(d + sfW + :,(x) + I+ 

q;(x) = 2(d$d + s+(x) - +4 - qx)) . 

(7) 

(8) 

Aq (xl = q+(x) - q-(x) , q(x) = Qt-(xl + q,(x) 

4 (x> = q;(x) - q’-(x) , 9’ (x) = qp + 4; cd , 
. 

v=P*q/M and qt is the positive/negative helicity distribution function 

of the ith quark. For antineutrino scattering, these formulas are 

still valid ff interchange d and u, c and s, and their corresponding 

antiparticles. For electron scattering, Eq. (7) is again valid for 
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WI’ wp Gl and G2, provided we interpret the distribution functions to be 

q,(X) = z ez q:(x) 
i=l 

(9) 

summed over f flavors of quarks and f flavors of antiquarks with 

charges e.. 1 

These parton formulas are of course well known. The point of all 

of these though is that the Gi's in Eq. (7) involve the quark mass m, 

which suggests that we will have trouble if we insist on putting m= 0 

in our calculations from the outset. As has been pointed out by other 

authors,6'7 this trouble has its origin in the difficulty of polarizing 

a zero mass quark in a direction perpendicular to its direction of motion. 

In fact, if we parametrize the momentum p of a particle with mass m by 

its rapidity y, 

PP = m(chy, 0, 0, shy) , (10) 

then the polarization vector along the direction of motion is 

51-I = 
II +(shy, 0, 0, thy) (11) 

and that in the perpendicular direction is 

.sp = +(O, 1, 0, 0) or t(0, 0, 1, 0) 1 (12) 

When y + ~0 and/or m -t 0, the components in (11) become infinitely 

larger than those in (12), thus making it virtually impossible to 

polarize it transversely. 

It would be very inconvenient if we could not calculate any Gi by 

setting m= 0. After all, QCD calculations are usually carried out by 

ignoring higher twist effects and by setting m= 0. Actually, since we 

may still polarize a zero mass quark along its direction of motion, 
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we expec; that those structure functions Gi related to longitudinal 

polarizations may still be calculated directly by setting m= 0. In h 

contrast, the structure functions Gi related to transverse polarizations 

must be calculated with finite m. For simplicity, we shall call the 

former Gi the mass-insensitive structure functions and the latter 

the mass-sensitive structure functions. 

To be more specific, let us remark that as long as y >> 1, it 

would be a good approximation to set: 

,p = 
II +-p'/m + O(eeY) (13) 

A similar relation would be true when the symbols in Eq. (13) refer to 

the nucleon rather than the quark: 

Si = rtP'/M -k O(emY) (14) 

Substituting (14) into (l), we obtain, for S= S,,, 

W lJV 

with 

w; = w1 T i G3 

wh = W2 T 2G4 

w; = W3 7 2G1 

(15) 

(16) 

By polarizing both parallel and antiparallel to P, we have sufficient 

information to obtain from (15) and (16) the structure functions W1, 

W2, W3' G1' G3 and G4. These are then the mass-insensitive structure __I 

functions. The mass-sensitive structure functions are those that 

disappear from W 
PV 

when (14) is used, and they are G2, G5 and G6. 
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The& mass-insensitive structure functions may be computed directly 

in the zero mass naive parton model. To do this, we note that in the 

zero mass limit, spin projection operator becomes chirality projection 

operator, where all references to masses disappear. In other words, 

when (13) is used, 

y5 = Cm+ yp) (1 7 y5) (17) 

After substituting (17) in Eq. (5), we may now set m = 0 to obtain 

directly 

.+ (Ta),,v = U+Y~)Y,YP(~ ~y5)(l+y5hUy(p+4) 
)i[ 

-(q+p)2-iC 1 
0 upper sign 

= (18) 

4<u,p,v,q+p> - 4iCU,v,q,Pl lower sign 

Setting p = XP and comparing Eqs. (18) and (15), we see that we can 

indeed obtain the relations in Eq. (7) for the mass-insensitive 

structure functions. The results for electromagnetic interactions 

are identical. 

It is convenient for subsequent QCD calculations to identify 

.flavor-singlet and flavor-non-singlet parts of the structure functions. 

From Eqs. (7) and (8), we see that W3, G3, G4 for neutrino or anti- 

neutrino scatterings are always flavor non-singlets; the rest will 

in general contain singlet and non-singlet components. The relevant 

flavor combinations are listed in Table I for f=3 and f= 4, and for 

neutrino, antineutrino, and electron scatterings on proton (p) and 

neutron (n) targets. If N= (p+n)/2, then for the structure function 
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vGl, for example, we have 

iN + vGl = + 1 2 Aqi Z $ Aq, , (f=4) ; 
i=l 

eN gVG1 - 3 vN 

2 c0s2ec 

vG1 1 = + E Aqi Z + Aqs , (f=3) . 
i=l 

3. OPERATOR PRODUCT EXPANSION AND SUM RULES 

We use Wilson expansion and the renormalization group method to 

calculate the moments of the structure functions in (1). To that end, 

we make the following expansion of G 
pV: 

c 
a=q,G,... 

-ni-2 1 +c - to 
l-wl”‘lJn 

> 
. I-iv -- 

2a MQ2 a 4:M % a . 

1 MVul 
+ 4nM g '6a <R 

l-Q..+, 
>- l p+2 <R 

l-wl.**lJn 
> sa MQ2(n+2) 7a sa 

-- . 4iQ2 ‘8a -n+2 <RAa 
lJlylJ2”‘“n + Rwlw2”‘~n> 

Aa 

i -- s.lV 7l+2 <RPoul**"n> 
4M,Q2 PO 9a Aa (19) 

Here ?? ia(Q2/p2,g2) are the Wilson coefficients, g2 is the strong 

2 coupling constant determined at the renormalization point v . Three 

kinds of operators are used in the expansion. The operators 0 are a 
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tensor operators symmetric and traceless in all their indices; the 

operators R sa are pseudotensor operators symmetric and traceless in 
-cI 

all their indices; and the operators RAa are pseudotensor operators 

antisymmetric in the first two indices and symmetric and traceless in 

the remaining indices. The subscript a runs over q (quark) and G 

gluon) in Oa and Rsa, and it runs also over other degenerate indices 6 

for RAa. The angular brackets around the operators indicate diagonal 

nucleon matrix elements for the nucleon state /P,S>. These symmetry 

properties for the operators imply that their nucleon matrix elements 

must be of the following forms: 

n 
to ul""n> f 2Fn 

T-I 
pUi - Traces a a i=l 

l-y.. 4, 
<R sa I-l ppj - Traces 

j#i > 

<R'1u2"'Vn> 3 4MGFn 
Aa a 

P 'i - Traces 
> 

From (2), (19) and (20), we deduce that 

2~$ = $ f (;)" c ElaFz 
n=O a 

(20) 



2, = i E ( $7 C ?:‘AF$~ 
n=l a 

where terms down by O(M2/Q2) are ignored. For definiteness, we shall 

2n F+lAFn+l -- 
n+2 7a a 1 

(21) 

always normalize the operators so that their lowest order matrix elements 

are 
. 

F: 
= A$ =: 1 7 

(22) 

AF; = $ 

Here, Fi etc., are defined in (20) with the states in <...> being taken 

to be the corresponding parton states. For zero mass partons, MS' 

should be interpreted as rtP'. See Eq, (14). 

We can read out the moments of the untilde structure functions 

from Eq. (21). Specifically, N 2 if H(Q ,x) is an even/odd function of x, 

and if 

ii(Q2,x) = (23) 
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Then H(Q2,x) : -i Disc E(Q2,x) is odd/even in x and 

1 

I- H(Q2,x) x 
n-l dx = hn , n= even/odd (24) 

0 

Applying this to the electron or the (vk 3) structure functions, and 

using (5), we can read off directly from (21) the appropriate nth 

(even or odd, whichever is appropriate) moment of the untilde structure 

functions. In particular, for v2G2 and v2G5, we have 

1 1 

0 = 
J 

v2G2(Q2,x) dx = J v2G5(Q2,x) dx 
0 0 

(25) 

The sum rules in Eq. (25) had previously been obtained in Ref. 8. 

Our treatments here differ from those in Ref. 8 by having an extra 

structure function G 6 in Eq. (11, and also in having three terms 

containing RAa in the Wilson expansion rather than just one term as 
. 

in Ref. 8. However, as we saw, the sum rules of (25) are not affected. 

More relations can be derived in the leading log approximation 

(LW l In the parton level, Fi, AF: and 6Fi are given by Eq. (22). 

q, are Q2- independent constants that can be obtained by comparing (21) 

with the parton result (4) and (5) after we expand (m2-(q+p)2-iC)-1 -N 

.[Q2(1-S/x)1-1 in powers of l/x. In LLA, qt, becomes Q2-dependent in a 

way determined by the renormalization group equation and its anomalous 

dimension. Since the latter depends only on the operator type involved, 

there are all together three types of Q2-dependences: those involving 

?a for i=1,2,3; those for i=4,6,7; and those for i= 5,8,9. Thus the 

parton relations [see (7)l 

x(2Mw1) = VW2 
(26) 

x(vG3) = vGL, 
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remain valid in LAA because their Q*-dependences are the same. On the 

other hand, the parton relations 

x(vG1) = vG6 

2 v G2 = 0 (27) 

v2G 5 = 0 

are no longer valid in UA. 

1 

4. Q2-DEPENDENCES OF 
J- vGi(Q2,x) dx FOR i= 1,3,4 
0 

We shall now concentrate on the mass-insensitive polarized 

structure functions vG 1' VG3 and vG4 and shall carry out all subsequent 

calculations by putting the quark masses equal to zero. Moreover, we 

shall concentrate on their n= 1 moments for these lead to interesting 

and unusual results. The parton model expressions for th.em are given 

in (7), and we see that vG3 and vG4 contain only flavor non-singlet 

parts whereas vG1 in general contains both singlet and non-singlet 

parts. See Table I and the discussion at the end of Section 2. 

Divide the integral of vG, into non-singlet and singlet parts: 1. 
1 

P vG;(Q2,x) dx = 
0" A 

Then a3= a4 = 0 and we will choose 

a1 = 

. 
I&(Q2) f aiIS (Q2) 

Z-1 2f 2f c e’i - 
i=l 

for electromagnetic interaction. Thus in the parton model, 

E Aqi 
i=l 

(28) 

(29) 

represents the helicity carried by all the quarks. 



-16- 

Much is known about I NS (Q2). Its Q2-variation, up to the first 

non-leading logarithm order (NLLA), is given by6 

I,,(Q2) = Const(l- Gs(Q2)/a) (30) 

The constant in (30) is even known for a particular non-singlet part. 

This is the Bjorken sum rule, 

- vG;(Q2 ,x> 1 dx = $- (GA/GV) (l-as(Q2)/8), (31) 

where GA/GV is the weak interaction axial vector to vector coupling 

constant ratio for the nucleon. 

We now concentrate on the singlet part, normalized according to 

(29) l According to (21) and (24) it is of the form 

Is (Q2) = AF*E (32) 

where 

AF = AF 
9' FG 1 

E= ~q(Q2h2.g2) 

! I EG(Q2h2,g2 ) 
All subscripts 4 and superscripts n= 1 in (21) have been‘dropped for 

convenience. 

The Q2-dependence of the Ca(Q 2 2 2 /P ,g ) satisfy the renormalization 

group equations. Consequently 

E = WC(i2) (33) 

where 

C(i2) - (34) 
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and W is given by the g' -ordered exponential matrix 

i 

g 

w= exp dg' Yk'> 
B(g') 

= 1 -I- e Wk 
k=l , 

i(Q2) 
-t 

(35) 

g 
J 

y(gk-l) g2 
Wk = dgk-l 6(gk-l)/ *** / 

y(g1) 
dgl Bo) (36) 

g g g 

in terms of the coupling constant B-function and the anomalous 

dimension matrix y(g) for the operators REa. 

Using (33), we can rewrite (32) as 

I,(Q2) = A&C(g2) = AF*W*C(i2) 

where 

A? = AF*W = [BFq,AFG] .. 

(37) 

(38) 

The evaluation of W and A? can be done by expanding y, f3, and C in 

power series of g: 

y(g) = 2- y(O) + 
2 

16n2 
y(l) -I- . . . 

3 
B(g) =--6 - g5 

lBa2 0 (1682)2 9 - l .* (39) 

c(l) + . . . 

The coefficients B. and Bl are knotrn~,~ 

BO = 11-2f/3 , % = 102- 38f/3 , (40) 

but the anomalous dimensions and the Wilson coefficients have to be 

calculated. 
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The running coupling constants in LLA and NLLA are1 

as (Q2) = i2(Q2) _ 
41T 

1 2 

161~~ Bo9nL 
A2 

(LW (41) 

and 2 

zs (42) 1 
B1 Rn Rn %j 

A 
4a = 

2 Q2 
n2 

A2 = p2 exp (NLLA) (42) . 

To proceed further, we need the specific forms of the singlet 

operator Rsa. This is given in Ref. 8 to be 

.-~~**'u~ = in-' 
w 

~-yu1-y5DP2...Dunq + permutations - Traces) 

(43) 

v 
R1 

. . .p n .n-1 
sG =1 G~BDU2...DPn-iG~n + Permutations 1 Traces) 

with g,G being the quark and gluon fields, D the covariant derivative, 

and a the color index. Note that the gluon operator in (43) is not 

defined for n= 1. To do this, we note that only diagonal matrix elements 

are required in inclusive reactions, and for the diagonal matrix elements 
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for n= 1, 'we can take the gluon operator to be 

$x) = --E: FiaBy G~%)B;(x) - 5 cab,&; (X> BE (X> B; (x) I 
with 

a8 
Ga 

= aaBB 
a - a'B; + gCab&3~ 

It follows from (44) and (45) that the divergence of a.,is given 
IJ 

simply by 
. 

apall = -3 E~~~~G~~(~)G~*(x) 

Note that the operator all(x) is the familiar one used in the 

discussion of topological solutions of the Yang-Mills fields.5 

Note also that its diagonal matrix elements are gauge invariant. 

The quark operator for n=l is just the familiar singlet axial 

vector current operator 

A’ (x) I Riq (xl = 4(x) -&59(x) 

(44) 

(45) 

(46) 

whose divergence is given by the Adler-Bell-Jackiw (.ABJ) anomaly 

relation to be (See Appendix A) 

2,A’W = $ (-2T(R)) apay 

(47) 

(48) 

'Here a= g2/4r and T(R)= f/2. This relation is also reflected in the 

result of the calculation of the triangle diagrams of Fig. -2. These 

diagrams are calculated in Appendix A, and the results are indicated 

in Figs. 2 and 3. We see that these results are consistent with 

Eq. (48). 
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The operators Apand a 
P 

are respectively the quark and the gluon 

helicity operators in the sense that their lowest order matrix elements, 

for'massr‘ess free quarks and free gluons with momentum p and helicity 

kl, are 

<p-ta 

<p+a 

Ip'b) = ~,&bh&u+(p> = + + 4ppsab 
( > 

jptb) = 6ab(f1)4pp 
(49) 

The relation (48) therefore states that gluon helicities may be converted 

into quark helicities whenever the ABJ anomaly exist. Moreover, because 

of (13), this also shows that the normalization conditions (22) are 

satisfied. Combining this with (29), we may now interpret 

and 
AF = [+ ,,,A,] 

A? = [+ A;i,AE] ._ 
(50) 

as the helicity carried by the quarks and the gluons. 

Now we turn to the computation of the anomalous dimensions. In 

LLA, the anomalous dimensions are calculated from the O(g2) matrix 

elements of the operators A and a 
P P' 

Because of Ward's identity for 

A (0) = 0 
P’ yclcl l 

The gluon matrix element of Ap is shobm in,Fig. 2(a) and 

it is finite. (0) Hence also yGq = 0. Next, Fig. 4 yields a divergent 

term given by (as=g2/4n, A'= cutoff) 

a 

2 (12C2 CR)) Rn 

so that 

(0) 47r ,a- p) 
'qG = "s u 2~ qG = -12C2(R) = -16 (52) 

(51) 
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(0) Finally,1 yGG is given by Fig. 5. Fig. S(a) yields the divergent 

terms (as/48)(10C2(G)) !Jn(A'/p) zi, where E' 
P 

is defined in Fig. 3(b). 

Fig. 5G) yields the divergent term (a,/4r) (-6C2(G)) &n(A'/u) "i, and 

Fig. 5(c) yields (as/4n)(10C2(G)/3 - 8T(R)/3) an(A'/u) "i. Adding 

up these contributions, we get 

thereby yielding 

(0) 
'GG = -2Bo 

To summarize, the anomalous dimension matrix in LLA is 

. 

The property 

y(O) = 0 
iq , (i= q,G) 

(53) 

(54) 

(55) 

(56) 

is very useful in the evaluation of ordered exponential W in (36) 

because neither matrix index of any y in the middle of (36) may be a 

quark index. In terms of the LLA running coupling constant, we can 

express the result as 

ww = exP 

g 
J dg’ g’ = 

ii(Q2> + 
8 

Tl 

a 
S 

Gs (Q2) 

(57) 
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Substituting (57) into (38), and using (41) and (50), we conclude 

that in LLA, the total quark and gluon helicities are given by 

$ A;(Q2) = +A q 

8 1 &$(Q2)=-.-- 2 Aq + 
$0 

(58) 

Thus the total quark helicity remains Q2 -independent but the total gluon 

helicity grows linearly with RnQ2/A2. This result agrees with the 
12 

result of Altarelli and Parisi obtained by a completely different 

method, thus confirming the correctness and the relevance of the 

operator ao defined in (44). 

The conclusion of Eq. (58) is very strange. Quarks can be pair 

created from gluons, yet quarks do not seem to inherit any of the 

growing helicity of AE(Q2). This non-coupling is expressed mathemati- 

cally as y:i) = 0. Physically, this is because of a combination of 

chirality conservation and charge conjugation invariance. The former 

asserts that the quark helicity must be opposite to the antiquark 

helicity, and the latter assures us that there must be a charge conjuga- 

ted configuration where the quark also carry this opposite helicity. 

Thus . . 

from 

the total quark helicity is zero whatever the gluon helicity is. 

Since quarks cannot inherit helicity from gluons, they must get it 

quarks. But chirality conservation again asserts that the quark 

helicity is unchanged no matter how many gluons it emits, or, no matter 

what Q2 is. Rence A<(Q2)= Aq. 

Finally, gluon helicity grows with Q2 because of the triple gluon 

coupling. This can be seen in the following way. There are three 

terms in the triple gluon vertex, each with a metric tensor g aB between 

the space time indices a,B of a pair of gluons. For A+B+C, these 
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* * 
three terms then contain respectively ei l eA, e:. eA, B e ce C, where eA 

is the spin wave function of gluon A, etc. A11 the three terms are zero 
-cI 

if A has positive helicity but B ant C both have negative helicities. 

Moreover, 'as far as total gluon helicity is concerned, the two cases 

when the B, C helicities are one positive and the other one negative do 

not count, because they both give zero total helicity. The only case 

that counts then is when both B and C also carry positive helicity. 

Thus if the total helicity (that of A) is +l before the three gluon 

interaction, the total helicity after the interaction is 2 (that of 

B+C). After N such triple gluon splits, the helicity factor is 

amplified by a 2N. Thus Ac(Q2) grows with Q2. The rate of growth 

with Q2 can also be estimated. N should be proportional to the strong 

coupling constant cLs, and should increase with increasing Q2. From 

the Altarelli-Parisi equation,12 for example, one sees that 

LnQ2 

NCZ .I- as(t) dt - 9,nRn Q2 

Thus 2N grows like (EnQ2)a for some a. We saw from (58) that 

calculation shows a= 1. 

The phenomena of the growing helicity is remarkable because very 

few moments in QCD grows with !LnQ2. Moreover, the origin of the growth 

is the triple gluon coupling. Thus we can hope to have a good way of 

detecting experimentally the existence of such a coupling so-vital for 

correctness of non-abelian theories. But alas, gluon helicities cannot 

be seen directly by the photon, and the physical argument given before 

seems to show that if gluons convert themselves into quarks so as to 

interact with the photon, the quarks will inherit none of this growing 

helicity. It would therefore seem that this remarkable growth of gluon 
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helicity cannot be seen in lepton scattering experiments after all. 

Fortunately, this is not the case. Quarks do not inherit gluon 

helicitiss only when chirality is conserved, which is the case in LLA. 

When O(as) effects are taken into account in NLLA, chirality is no 

longer conserved because of the existence of the Adler-Bell-Jackiw (ABJ) 

anomaly.4 Quarks can therefore inherit gluon helicities of amount of 

order of a s * A%Q2) - O(1). Calculation below shows that this is indeed 

the case, and actually because the coupling constant runs, a more care- 

ful argument shows that this nominally O(1) term actually behaves like 

I (dzs/as) Gs- AC(Q2) N Rnas - RnQnQ2. 

Now we shall carry out the h%LA calculation to obtain this effect 

quantitatively. The first task is to calculate the ordered exponential 

of (35) and (36), making the expansion (39) and keeping only terms in 

Is(Q2) that give at least an O(as) or o(crs(Q2)) contribution. Once again 
. 

because of (56), the evaluation of W is greatly simplified. This we 

shall carry out in detail in Appendix B. The result is 

W =1+1 8 (1) (1) as 
99 87$ 5 ‘Gq - ‘qq ( as - Gs(Q2)) - - 1 '1'0 Qn 

TB 2 'Gq s 
0 cs (Q2) 

.WqG = ;;(-qi;Q2) - ‘) 
1 (1) 

a 

'Gq = 
-- 

8nB0 'Gq aSQn ; (12) 
S 

a 
w= s 

GG 
Gs (92> 

(59) 
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When we substitute (50) and (59) into (37), and keep only terms at least 

as large as O(as) and O(Gs(Q2)), we get 

8 (1) (a> 
a 

s -- fSoYGq -'qq ( i (Q2)) 's- s 
wan as 

- gyGq 
0 zs (Q2> I 

(1) a- 
S 

cis(Q2)) cG 

(60) 

The (-QnQnQ2) term discussed above now appears as the -Qn(as/zs(Q21) 

term. To obtain the numerical details, we must now compute the first 

order anomalous dimensions and Wilson coefficients. 

Let us first consider y (1) 
44 . 

Again because of axial vector current 

Ward's identity, only diagrams involving the anomalous triangle diagrams 

survive. This of course agrees with the physical argument discussed . 

above that any new effect must go through the ABJ anomaly. The relevant 

diagram is shown in Fig. 6. The divergent term of Fig. 6 can be read 

out from Figs. 2 and 4 and Eq. (51) to be 

(zii'- l)Xo = 2 (-2T(R)) (Z;;) - I)$ 

Thus 

= (-2T(R))y;;)= 16f . (61) 

(1) Next consider yGq . Again we need to go through the triangle 

anomaly diagrams of Fig. 2 to obtain any contribution. This means 

only diagrams in Fig. 4 contribute (c.f., Appendix A). The result 
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can similarly be read out from Figs. 2 and 5, and Eq. (53) to be 

Z;;'- 1 = 2 (-2T(R)) (Z;;)- 1) 

so that 

Z;;' = (-2T(R)) y$' = 2fB, l (62) 

Now we turn to the Wilson coefficients. If we apply (37) to a 

flavor singlet quark target and note the normalizations in (29) and (22), 

we see that C (0) = 1 
4 l 

Similarly applying (37) to a gluon target shows 

cG - 

(0) = 0 The next order Wilson coefficient C (1) has been calculated6'g 
q 

and Ctl) = -4. The remaining .Wilson coefficient that we must calculate 

is CL1) . For this we consider photon-gluon scattering with gluon 

carrying helicity 51. The scattering amplitude is depicted by the six 

diagrams of Fig. 8. We shall compute only the part of the amplitude 

T 
PV 

antisymmetric in u and v and independent of q*P, and shall use a 

number of dots to indicate the left out parts. Then 

a 
Tpv(a+c) = g T(R) 

+ . . . (63) 

+ . . . (64) 

Adding up all six diagrams, we have 

T PV 
= 2[T,&a+c)+Tliv(b)] = +i 2 kT(R) $ y spvhpq'pp 

+ . . . (65) 
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This is td be compared with ( See Eq. (15)) 

T UV 
- (4mr) W 

2 
= +,4ni e E (66) 

PV 

We thus obtain 

2a 
VE, =: 4 1 g T(R)3 ;+. . . (67) 

On comparing this with (28), (29) and (37), we get 

where 

AFa = AF(') + 2 AF;l) + . . . a 

But C;')= 1, and from Fig. 1, AFill=-2T(R). Moreover, AFG (0) = 1 

from (22). Thus . 

cw = +f T(R) = 5f/3 (69) 
G 

To summarize, we have 

(1) 
yw 

= 16f 

(1) 
‘Gq = 2fBo 

(70) 
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Substituting these quantities into (60), we obtain 

Is (Q2) 
a 

Rn ' 
Gs (Q2> 

+ 10f 
3sq as ( - zs(Q2)) 

+ AG f 5f a 12n s (71) 

Substituting (71) and (30) into (28), we obtain finally the 

Q2-variation of the integral of vGi to NLLA. 

For a numerical estimate of the contribution of (71), See Ref. 3. 
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APPENDIX A 

We d?scuss the Adler-Bell-Jackiw anomaly for QCD in this Appendix. 

We shall perform a Pauli-Villars regularization by introducing a heavy 

fermion with mass M. The regulated amplitude is obtained by subtracting 

this amplitude with mass M from the original zero mass amplitude. 

Eventually we will let M + ~0, 

We shall use naive Ward's identity for the regularized amplitude, 

on the grounds that a shift in the internal momentum space is allowed 

if the integral is less than linearly divergent. If there are internal 

gluons attached to the sides of the triangle, as in Fig. 9(c), then 

we shall first hold all the gluon momenta fixed, do the fermion loop 

integration and apply the Ward's identity whenever this is allowed by 

the degree of divergence of the fermion loop. In this way, diagram . 

9(b) is logarithmically divergent before applying the 'differential 

operator' iq =ik - i(k- q) but will become linearly divergent after 
P P P’ 

doing so. But then the Pauli-Villars regularization reduces the 

divergence once again to logarithmic and we may therefore use the naive 

Ward's identity on the regulated amplitude. This argument also shows 

that we may apply naive Ward's identity to any diagram with more than 

three gluons attached to the fermion loop, for then we have more 

fermion propagators and the fermion loop integration bec0me.s more 

convergent. 

The only suspect, as far as the application of the naive Ward's 

identity on the regulated amplitude is concerned, is Fig. 9(a). Here, 

by power counting, the regulated and differentiated amplitude still 

seems to diverge linearly. But then the top vertex is an axial vector 
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and the whole amplitude must contain a factor 

E ClBp xqppA (A.11 

The remaining Feynman integral is then at most logarithmically divergent 

and naive Ward's identity may still be used. 

Because,the original diagram contains zero mass quarks, the right 

hand side of the naive Ward's identity contains only diagrams involving 

the heavy quark. Thus, 

ap<AP> = - 2iM<j5>M (A. 2) 

where <A'> refers to any regulated diagram with an axial vector vertex 

ypy5 and <j,>M refers to the heavy quark component of the same diagram 

with the vertex ypy5 replaced by y5. The minus sign on the right hand 

sfde comes in because the heavy quark diagrams have a minus sign in 

front. 

We shall now calculate the anomaly by calculating the right hand 

side of (A.2) and by letting M -k 00, If <j,>, = 0(1/M), then anomaly 

exists. If Ci,>, = 0(1/M), then anomaly is absent. Remembering that 

the factors in (A.l) are always present, we can use power counting to 

show that any fermion loop with four or more gluon lines.attached to it 

is 0(1/M) and thus anomaly free. Thus only Figs. 9(a) and 9(b), and 

their permuted diagrams, may contain an anomaly. 

The <j5>M contribution of Fig. 9(a) is (up to 0(1/M)) 

<j5>M= 82 (-1) 'I'(R) 6ab 1 

16~r~ 
. 4iMCclBpql . - 

2M2 
(A-3) 
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Because of the existence of a charge conjugated diagram, the total 

anomaly of diagrams of the type Fig. 9(a) (2 diagrams) is 

2 
ap CAP> = iqp<AP> = 2(-2iM) 5 (- 

16~ 
TWab) +- CclBpql 

AL 
16~~ 

(-2TW) 4CaBpql 6ab 

where 

(A.4) 

is the elementary vertex of Fig. 3(b). 

The first diagram in Fig. 2(a) is identical to Fig. 9(a), except 

with q= 0. Since the top vertex is y y P 5' 
This amplitude must be . 

. x proportional to epCIBXp . The coefficient can be read out from (A.4) 

and (A.5) and the result is indicated in Fig. 2(a). 

We now come to Fig. 9(b). A straightforward calculation shows 

that (up to 0(1/M)) 

(A. 6) 

Now we have six distinct diagrams of the type 9(b) obtained by 
I 

permuting the gluon lines. In particular, add :p (A.6) and .the one 

with the pl,p3 gluon lines interchanged, we get 

1 
- g3Eixy~~ (pl'p3~Tr(tatctb-tc',tb) = 2 g3cayBx (Pl+p3$ CacbT(R) 4Tr2 

(A-7) 
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Adding in' the other two sets of diagrams, we obtain the total anomaly 

for the (six) diagrams of type 9(b) to be 
h 

aP<Ap > = iqp<;ip>=-+- g3 E 
2Ti ayBpqP CacbT(R) 

(A-8) 

= iq ' g2 (-2T(R)) ;; 
16~r~ 

where 

-?I a = P - 4 g 'abc Epa$y (A. 9) 

is the elementary vertex in Fig. 3(c). Finally, Eqs. (A.8) and (A.9) 

also lead to the rules depicted in Fig. 2(b). '_ 
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APPENDIX B 

This Appendix contains a derivation of Eq. (59). The matrix W is 

given iri?Eqs. (35) and (36), and W will be calculated only to an order 

so that Is(Q2) contains nothing smaller than O(as> and O(as(Q2)). From 

Eq. (37) and the fact that CG(i2)= O(i2), the WiG matrix elements 

(i=q,G) may be calculated to O(1) although the W. matrix'elements must 
19 

be calculated to O(crs> and O(Gs). 

Employing Eq. (39), we can expand y(g)/B(g) in powers of g: 

+g2dl]+... (B.l) 

In calculating W. 
14 

using (36), we should keep terms linear in dl, 

although in the calculation for W. 

with WC'; 

, we may keep only terms without dla 

This means that WiG=Wlz) .' given by (57). 

Because of the special properties of (56), we have 

('n)iq = (-l)n(do)iG(do);;2(di)Gq Jn (nr2) 

where 

g dgl 
= 

f- 
ii 

g1 

2 g dg2 
g1 /- g2 

g1 

g dg3 
J-- g3 
g2 

1 . . . 
g dg n 

/- gn 
8 n-l 

g 

= (n-ll,! f 
gl dgl En 

03.2) 

(B.3) 
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Therefore, 

wiq = 1 + ~ (‘n’iq 
n=l 

(dO)iG = 1 - ~ (dl)iq(S2 - g2) ’ (a ) 
0 GG 

(dljGq + k2 - i2) 

F: 
-(do)GG 

i 

=1+; (dO)iG (d ) 
(dO)GG 1 Gq 

- (dl)iq 1 (S2- g2) 

(do)iG (dl)Gq g2 
- 

-- [l -($do'GG+2 ] 
(do) GG [(d(j) GG + 23 

(J3.4) 

Now from (B.l) and (55), (do)GG= -2, (do)qG= -16/f30. Moreover, 

(dl)iq= y~;)/16r2t3,. Thus . 

W 
44 I 

03.5) 

and this result is reproduced in Eq. (59). 
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TABLE I 

Flavor combinations of neutrino (v), antineutrino (v), and electron 
- 

(e) scatterings on proton (p) and neutron (n) targets for three and four 

flavors. These flavor contents are valid for W1, W2, G1 and G6. Here 

u, etc., stand for u(x), xu(x), Au(x) or xAu(x), etc.; whatever the 

situation dictates. 

f=4 f=3 

ep $(u+;-kc+:) +$(d+a+,+,) $ (u+ii) +$(d+;i+&) 

en $(d+;i+c+:) +$(u+;+s+;) $ (d+d) +$(u+:+s+;) 

VP 2(d+s+&;) 2(d+;> cos26e 
. 

vn 2(u+s+Z+Z) 2 2(u+X) cos e 
C 

3P 

3n 

2(utc+a+s) 

2(d+ci-;;+;) 

2(u+a) cos2ec 

2(d-t-;) cos20 
C 



-37- 

FIGURE CAPTIONS 

Fig. 1. Parton model diagrams for neutrino scattering. 

Fig. 2. The gluon matrix elements of A . P 

Fig. 3. Elementary vertices of A and ap. P 

Fig. 4. Diagram for (0) y 
qG - 

Fig. 5. (0) Diagram for yGG . 

Fig. 6. (1) Diagram for yqq l 

Fig. 7. (1) Diagram for yGq . 

Fig. 8. Second order photon (dashed line) gluon (wiggle..line) 

scattering diagrams. 

Fig. 9. (a) and (b), diagrams containing anomaly; 

(cl, a diagram with no anomaly. 
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