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ABSTRACT 

We show that a way to detect experimentally the existence of triple 

gluon coupling and the Adler-Bell-Jackiw anomaly is to measure the Q2- 

dependence of polarized deep inelastic scattering. These effects lead 

to a Rn Rn Q2 term which we calculate by introducing a new gluon operator 

in the Wilson expansion. 
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We haye calculated the Q2-dependence of the flavor-singlet part 

In of / 
-7 vGl(Q2,x)dx = INs(Q2) +e Is(Q2) to be 

-0 

I,(Q*) = i Aq 
as (Q*) 2a f a 

71 - -$- Rn s2 + nfv a - is (Q2)) 
0 is(Q > 

( 3TBo s 
I " 

+ AG + 5f is as 
3 

, (1) 

where vG1 is one of the structure functions in deep inelastic scattering 

defined in (3) and Q2 is the squared momentum transfer. 2 is the 

average charge squared of all the quarks, - 
2 as(Q ) is the running coupling 

constant in QCD and as = -s 2 a (u ) is its value at some renormalization 

point p2. f is the number of flavors of quarks and B. = 11-2f/3. Aq/2 

and AG are parameters which may be interpreted to be the amount of 
. 

helicities carried by the quarks and antiquarks, and respectively by 

the gluons, at Q2=u2. Finally, we will let M and P to be the mass and 

momentum of the nucleon, q to be the momentum of the photon, v = q*P/M, 

Q* = -q2, and x = Q2/2Mv. 

The Qn (a,/;, (Q2)) - QnRnQ* term comes from the triple gluon 

coupling (TGC) and'the Adler-Bell-Jackiw Cl1 anomaly (ABJA). If either 

one of them were absent, this term will disappear. The detection of 

this term amounts to a confirmation of the existence of the triple gluon 

coupling and the existence oL F the highly theoretical object: the ABJ 

anomaly. It is therefore very interesting and important to find it. 

This term has an opposite sign than the usual parton term Aq/2 and it 

dominates over' the latter at large Q2. These signatures shouid make 

such a term relatively distinct. As a matter of fact, this term may be 
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isolated'by plotting [Is(Q2) -I,(Q~)I/[~,(Q*) -'s(Qi)l versus 

[hGs(z2) - ~n~s(Q~)]/[~s(Q2) -Gs(Qi)] a This plot yields a straight 

line whose slope and intercept are related to Aq and AG. Finally, we 

present in Fig. 1 an.illustration for the amount of Q2-variation of the 

coefficients of the Aq/2 term (Fig. l(a)) and of the AG terms (Fig. l(b)). 

In parton model, Is = Aq/2. In the leading log approximation (LLA) 

of QCD, I,(Q*) = AG(Q2)/2, where Aq(Q2) (AE(Q2)) is the Q2-dependent 

helicity carried by all the quarks and antiquarks (gluons). It turns 

out that Ac(Q2) = Aq in LLA. Thus, Is(Q2) scales and it behaves very 

differently than the non-leading logarithm result (NLLA) of (1). But 

then, as we shall see, TGC and/or ABJA efEects are absent in LLA. These 

effects are also absent in the integral of the non-singlet part of 

vGl(Q2,x) and indeed the Q2-dependence of this IN,(Q*) differs from the 
. . 

parton result only by a small amount c21, 

I,,(Q*) = + AqNS (l- &s/p2)) , (2) 

Again its Q2-variation nowhere resembles that of (1). This sholcs that 

the Rn¶nQ* term is indeed a characteristic feature o-f TGC and ABJA. 

The rest of this Letter contains an expose on the physical mechanism 

of how the MIlnQ2 term arises from the presence of TGC and ABJA. It 

also coutains a brief sketch of how these terms are calculated. In the 

course of the calculation we will find it necessary to introduce a new 

gluon operator in the Wilson expansion which carries these effects but 

is hitherto ignored. 

First, a word on the definition of Gl and how it is measured. It 

is defined via the relation 
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W 1 =- 
W - 4M7T s 

eiqmxd4x<P,S1 [J;(X) , J~(C)]~P,S> 

PP 
= -gJJ1 + - L2' W2 i- + ~~~~~~~ SaG1 

+L 
M3 I.lVP~ 

qPISo(q*P)-P"(q*S)]G2 , (3) 

and it can be determined from the asymmetry in cross sections from 

longitudinally polarized electrons and nucleons. Here S is the nucleon 

polarization vector normalized to S2= -1, S*P=O. Terms proportional to - 

qu or q, have been dropped. 

We now turn to a physical explanation of the unusual Q2-behavior 

in Eq. (1). The term 2nRnQ2 can be traced back to a term which says 

that the gluon helicity AE(Q*) grows like 2nQ2in LLA. This is a 

consequence of TGC. When a gluon with positive helicity-decays into 

two gluons, the final gluons may carry helicities ++, +-, -+ and --. 

The cases 4-- and -+ do not contribute to the total helcity and may be 

ignored. The case -- actually does not occur because the TGC for this 

case is zero. We are thus left with -I+ only. This implies that after 

..N levels of such gluon decays, the total helicity is amplified by a 

factor gN, which grows with Q2 like (EnQ2jn 
Qn Q2 

because N 0~ 
/ 

as(t)dt N 

RnRnQ2 as can be seen for example from the Altarelli-Parisi equation 131. 

By calculation it turns out that a=l. This RnQ2 dependence is rather 

remarkable because very few moments in QCD grow with RnQ2. But un- 

fortunately, it can be shown that chirality conservation (we take our 

quark masses to be zero) and charg e conjugation invariance prevent any 

pair-created quarks from inheritin, 9 any of these growing helicities from 
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the gluon, and hence this growing Az(Q*) is unobservable in electron 

scattering (calculated to LLA). As far as the total quark helicity 

G(Q*)-is concerned, it is Q* -independent because chirality conservation 

preserves the quark helicity no matter how many gluons it emits. 

If chirality were strictly conserved, the quarks will never inherit 

any gluon helicity, no matter how high a perturbational order we go to. 

The dramatic growth of Ac(Q*) and the TGC would then be unobservable and 

wasted. Fortunately, because of ABJA, chirality conservation is violated 

in O(crs). This enables quarks to inherit gluon helicity in NLLA. We 

would therefore expect a correction term of O(Gs(Q2))* AE(Q*> N O(1) to 

I,(Q*) . Actually a mathematical accident turns this term into a RnRnQ* 

term. We see therefore how the presence of such a term relies crucially 

on the existence of both TGC and ABJA. 

Now we will sketch the actual calculations leading to Eq. (1). For . 

that, we perform a Wilson expansion on the time ordered product matrix 

element C41 

i w” =- 
pv - 4M~r s 

,iq*x d4x <P,S/T(J;(x) J:(O)) IP,S > 

. 
=-- ; Evvpo,qP s” El + . . . 

li 1 -- 
= IT M Epvpu 8 - 

*Q* 
<P,?+*(O) \P,S> 

+CG& ( ) s <P,Sla"(O) IP,S> + . . . 
lJ 1 , 

in which, we have ignored terms that do not contribute to I,(Q*). cq 

and EG are the Wilson coefficients and A', U" are the corresponding 

quark and gluon axial vector operators. If we introduce AFq and AFG 



-6- 

through t,he matrix elements 

<P,S/A'(O) IP,S> = 4MAFqSu 

<P,Sl&O)lP,S> = 4MAFGSu 

then Eq. (4) implies the relation 

I,(Q*) = Eq AFq + EGAFG = [AF q , AFG]*W* 

(5) 

C 
4 [I . (6) 

cG 

Renormalization group arguments [41 have been used to obtain the second 

expression in Eq. (6), where Ci 2 ci(l,zs(Q2)) and W is the g'-ordered 

exponential matrix (g * f 47ras) 

g 

# dg’ (7) 
+ 

involving the anomalous dimension matrix y(g) and the coupiing constant 

B-function B(g). The evaluation of W and I,(Q*) will be carried out 

perturbatively by expanding y, B, C in power series of as: 

y(g) = Y(O) bJ4lT) + Y(l) (a,/4n)* + . . . ; B(g) /g = -Bo~as147r) - B1 (aJ4d; 

ci = ci (O) + (cts141T)Ci (1) + . . . 

To proceed further, we need the explicit forms for A u and u . The u 
quark operator Au is known C51 and it is just the familiar singlet axial 

vector current operator 

Au(x) = ‘q(x) Y, y5 q(x) . (8) 

On the other hand, the gluon operator in Ref. 151 does not exist for 

.n=l and is then taken to be zero in Ref. C61. This is where we differ 

from the previous treatments. A gluon axial vector operator actually 
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exists. ,We only need the diagonal matrix element of the gluon axial 

vector operator <P,S]a'iP,S>, and for this purpose, it can be taken' to 

be the following operator well known in discussions of topological 

solutions 171 of the Yang-Mill fields: 

au(x) = -& uaBy 
E 
G”aB (x> B;(x) - 5 CabcJ@d B; (x> B; (x> 1 

G;fi(x) = a,+d - QBZ(x) + gcabcB~(x)B;(x) . (9) 

The subscript a is the color index and the diagonal matrix element of 

a0 is gauge invariant. The operators Au and acr are the helicity operators 

for free quarks and gluons respectively, i.e., AFq=1/2 and AFG=l in 

Eq. (5) for free particle states. Moreover, their divergences are related: 

a"Au(x) = ;$- (-~T(R))(-+E~~~,G~~(x)G;~(x)) = 2. (-2T(R))a"C$,(x) . 
. 

Here T(R) = f/2 and the non-Abelian generalization of ABJA relation Cl1 

has been used. A corollary of (10) which can be verified by direct 

computation states that the triangle graphs in Fig. 3 are proportional 

to the lowest order vertices for au (Fig. 2) in the manner shown in 

Fig. 3. The minus sign in Fig. 3 is eventually responsible for the 

minus sign in the (-llnanQ*) term in Eq. (1) l 

With these operators, the anomalous dimensions can be c-alculated 

in the usual way [41. (0) 
'qG 

and yd:) are calculated from Figs. 4 and 5 

respectively. The result is y (0) 
qG 

=-16 and yGG (0) = -*Q Moreover, 

(0) (0) 
bq 

= 0 because of the axial vector current Ward's identity, and y- = 0 'Lrq 

becasue Fig. 3(a) is finite. These results agree with those in Ref. c31 



-8- 

obtained,by a completely different method. 
* 

The minus sign in front of 

(0) 
‘GG is responsible for the growth of AE(Q") with Q2; ~6:) = 0 asserts 

the imp;ssibility of quarks inheriting helicities from the'gluons; and 

(0) _ 
yw 

-0 leads to scaling results for Az(Q2). The property ylj)q) =0 

(i = q,G) is useful 

evaluation of W in 

this evaluation of 

mathematically in that it greatly simplifies the 

(7). If we keep I,(Q*) to O(ccs) and O(&s(Q2)), then 

W will lead to 

I,(q*) = AFq ',il + &-(; Y;;) -Y;;))(+$Q~)) 

a 
s (1) Rn as 

&. ‘Gq 
0 1 c(o) + cr,(Q2) c(1)+ 

a,(Q*) ' 47r 4 

. (11) 
. 

The anomalous dimension y (1) 
49 

in Eq. (11) receives non-zero contri- 

bution (because of the Ward's identity again) only from Fig. 6, and 

(1) 
'Gq 

receives non-zero contribution also only from the anomaly-related 

diagrams of Fig. 7.. Using the results for Figs. 3-5, we can easily 

read off the answer y (1) 
qq 

= (-2T(R))(-16) = 16f and y,!&) = (-2T(R))(-2BO) = 

2fBo* As to the Wilson coefficients, it follows from the parton 

result that C (0) 
4 

= 1 and Cd') = 0. Also, C(l) = -4 as is already 
9 

given in 

Refs. c21 and 161. Finally, Chl) can be obtained by comparing the 

* This incidentally confirms the existence and relevence of a Our 
(Oi 

P' 

'qG 
is actually twice'that in Ref. c33 b ecause of different normali- 

zations. For free particles, we have AF =1/2 but OF 
q 

G=l in Eq. (5). 
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** 
amplitude T for the six graphs in Fig. 8 with Eq. (6). We obtain 

T = bs/4~)T(W32/3Q2) * E,,,,~~ qx sEBy py, (1) which yields CG = 5f/3. 

SubstiQting all these anomalous dimensions and Wilson coefficients 

into Eq. (ll), we obtain the final result of Eq. (1). 

A more detailed discussion and other related results will be 

published elsewhere. 

We thank Professor S. D. Drell for discussions and hospitality at 

SAC. We would also like to thank Professors W. A. Bardeen, S. Brodsky, 

N. P. Chang, Yuan Ben Dai, F. Gilman, J. Gunion, Ting Chang Hsien, 

V. W. Hughes, T. D. Lee, A. H. Mueller, H. T. Nieh, H. Quinn, H. S. Tsao, 

Hung Yuan Tsu, W. K. Tung and C. N. Yang for useful discussions. This 

research is supported in part by the Department of Energy under contract 

DE-AC03-76SF00515. *One of us (B.A.L.) is supported by the People's 

Republic of China, and the other (C.S.L.) is supported &i-part also by 

the Natural Science and Engineering Council of Canada and the Qugbec 

Department of Education. 

** This differs from the result of Ref. C61 by a factor 2/3. However, 

the qualitative dependence of Eqs. (1) and (11) on Q 2 is of course 

insensitive to the exact coefficients involved. 
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FIGURE CAPTIONS 

Fig. L 

Fig. 2. 

Fig. 3. 

Fig. 4. 

Fig. 5. 

Fig. 6. 

Fig. 7. 

Fig. 8. 

The dependence of Is(Q2) on Q2 or Gs(Q2) from Eq. (l), 

lJ2 =10(GeV/c)2, f= 4 and A= .5(GeV/c) are taken. In Cd, 

AG=O and $-Aq=l; in (b), Aq=O and AG=l. 

Feynman rules for the lowest order vertices of the axial 

vector operators Ap (d ia ram a) and up (diagram b and c). g 

The total momentum of the three gluons in (c) is zero. 

Triangle diagrams and their relation with the gluon vertices 

of Fig. 2. The total momentum of the three gluons in (b) is 

zero. 

Graph for the calculation of y (0) 
qG ' 

Graphs for the calculation of yh:). 

Graph for the calculation of y (1) 
qq l 

Graphs for the calculation of y (1) 
Gq ' 

. 

Gluon-photon scattering diagrams. The dotted and wiggler 

lines are photons and giuons respectively. There are six 

distinct diagrams of this type obtained by permutating the 

photon and. gluon lines in the diagram shown. 
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