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ABSTRACT 

We describe an adaptive procedure that approximates a function of many . 

variables by a sum of (univariate) spline functions sm of selected linear 

combinations am-x of the coordinates 

y(x) = c 
l~~;rrts;M 

smbm4 

The procedure is nonlinear in that not only the spline coefficients but 

also the linear combinations are optimized for the particular problem. 

The sample need not lie on a regular grid, and the approximation is affine 

ion invariant, smooth, and lends itself to graph 

values, derivatives, and integrals are cheap 

ical interpretation. Funct 

to evaluate. 
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1. Introdktion 

Mu&dimensional surface approximation is recognized as an important prob- 
lem for which several methodologies have been developed. The aim is to con- 
struct an approximation 4(x) to a p-dimensional surface y = f(x) on the basis 
of (possibly noisy) observations { (yi, xi)}l<icn. Most existing methods, such as -- 
tensor product splines, kernels, and thin plate splines (for a survey, see Schumaker 
[1976]), are linear in that. 

4(x) = c wyi, 
l<i<n 

where the weights ( wi} depend only on x and { xi}l<i< n, but not on { yi},< i< ,.,: -- 
These methods have the advantage that they are straightforward to compute and 
their theory is tractable. In pract.ice, however, they are limited because they 
cannot take advantage of special properties of the surface. Due to the inherent 
sparsity of high-dimensional sampling, procedures successful in high dimensions 
must be adaptive and thus nominear. 

In this paper we describe an adaptive procedure that approximates f(x) by a 
sum of (univariate) spline functions sm of selected linear combinations a, * x of 
the coordinates 

4(x) = C Sm(am s 4. 
l<m<M 

51) 

The ‘procedure is nonlinear in that not only the spline coefficients but also the 
linear combinations are optimized for the particular problem. * 

2. The algorithm 

The spline function sm along am s x is represented as a sum of j,,, B-splines 
[de Boor, 1979) of order q 

St-Jam ' X) = C PmjBmj(am ' X). (2) 
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The approximation 4(x) (g’ iven by equations (1) and (2)) is specified by the direc- 

tions tam)l<m<M, the knot sequences along am s x for 1 5 m 5 M, and the 
B-spline^coefficients (Pmj}lCmCM,l<j<j,. ’ For particular {a, ), the knots are 
placed heuristically and then-the{ Pmj } are determined by (linear) least squares. 
The residual sum of squares from this fit is taken to be the inverse figure of merit 

for (Bmll<m<M* - - 
Following Friedman, Jacobson, and Stuetzle [1980], the approximation is con- 

structed in a stepwise manner: given ( a, }1< m< M--l, find aM to optimize the 
figure of merit of ( am >I< m< M. Terminate when the figure of merit is not - - 
significantly improved. 

3. Imp’lementation 

The most difficult part of the algorithm is finding each direction am. We per- 
form a numerical search using a Rosenbrock’method [Rosenbrock, 1966) modified 
for the unit sphere, starting at the best coordinate direction. On any given search, 
there is no guarantee that the global optimum will be found. If the local optimum 
is insignificant, the search is restarted at random dire.ctions. This guards against 

premature termination, If the local optimum is significant but not identical to 
the global optimum, no great harm is done because a new search is performed 
in the next iteration on an object function for which the previous optima have 
been deflated. Each iteration of the optimizer requires 3.5 p function evaluations, 
on the average, where p is the dimension of x. Two iterations are nearly always 
sufficient. 

For high dimensionality, the computation is dominated by the evaluations 
of the object fu.nction. Since it is not crucial to find the precise optimum, con- 
siderable savings can be achieved by substituting a similar;but much less ex- 
pensive figure of merit during the search for a new direction. For this figure of 
merit not only the previously foun’d directions but also the corresponding spline 
coefficients are held fixed. The new direction can thus be found by considering 
the residuals from the model of the previous iteration. For a given direction, the 
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residuals are modelled by a smooth based on local linear fits [Cleveland, 19791, 
[Friedman, Jacobson, and Stuetzle, 19SOJ. The characteristic bandwidth (that is, 
the aver^age fraction of observations used in each local fit) is taken to be inversely 
proportional to the number of knots, The residual sum of squares from the smooth 
is the figure of merit used for the smooth. Solving the least squares problem for 
the original figure of merit requires 

operations, while the new figure of merit can be evaluated in roughly n operations 
using updating formulas for the moving average. The least squares problem has 
to be solved only once for each iteration to determine the new model after am has 
been found. 

To solve the least squares problem, we form the normal equations and use a 

pseudo-inverse, since the design matrix might not:have full rank. The singularity 
which arises form the inclusion of a constant term for each direction is remedied 
by simply dropping one column per direction from the design matrix. Higher 
order singularities caused, for example, by the linear terms for three co-planar 
directions, are not explicitly taken care,of, but are handled by the pseudo-inverse. 

Our knot placement procedure is motivated by the sequential nature of the 
algorithm. At each iteration, the knot positions are required for the least squares 
fit, after the new direction has been found. Our model at this point is the spline fit 
of the previous iteration, plus the moving average smooth along the newly found 
direction. The’knot placement is based on the residuals { ri} from this model. 
Multidimensional structure in these residuals due to incompleteness of the model 
manifests itself as high lo.cal variability in the scatterplots of ri against a,,, . Xi. 
In order to preserve the ability of fitting this structure in further iterations, it is 
important to avoid accounting for it by spurious fits along existing directions. For 
this reason we place fewer knots in regions of higher local variability. Since the 
residuals change, the knots are replaced along all directions at each iteration. 
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The knots along a direction am are placed as follows: the smooth described 
above is applied to { (ri, am** xi) }l<i<n and the local variability vi at each point is -- 
taken to^be the average squared residual from its local linear fit. The Winsorized 
local variabilities are defined by 

if Ui > 2U 

if .Vi < it, 

otherwise 

(where u = ixl<i<, Vi), and then are scaled so that zlCiKn & = 1. The -- 
knots ( tr } are placed to divide the line into intervals with equal content of &: 

for each I, 
1 

c 
1 

j,---q+l= 
-. 

am~xi~(wl+l) Wi 

4. Examples 

In this section we present and discuss the results of applying the 
Multidimensional Spline Approximation method (MASA) to four examples. (A 
FORTRAN program implementing MASA is available from the authors.) The 
first three examples were suggested elsewhere for testing surface approximation 
procedures. The function in the fourth example was studied in connection with 
a problem in mathematical genetics. 

The first exam.ple is taken from Friedman [1979]. In this example uniformly 
distributed random points { xi 1 1 5 i 5 200) were generated in the six- 
dimensional hypercube [O, I]“, Associated with each point Xi was a surface value 

yi = 10 sin(Xzi(l)zi(2)) + 2O[Zi(3) -- 0.512 j- lOZi(4) + 5zi(5) + OZi(6) + Ci, 

where the { ci} were independent identically distributed standard normal. The 
inverse figures of merit for the approximation with M = 1,. . ., 4 terms were 
6.71,, 4.29,1.87,0.97. In three restarts, the figure of merit did not decrease below 
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0.86,. so h = 4 was chosen. The four linear combinations and the corresponding 
spline functions are shown in figures 1.1-1.4. (For completeness, the program 
paramerers are also listed; see the program comments for a detailed explanation.) 
The spline along the first linear combination (figure 1.1) is seen to model the linear 
part of the surface. The second term in the approximation (Egure 1.2) models 
the additive quadratic d.ependence on ~(3). The Enal two terms (figures 1.3, 1.4) 

, model the interaction between ~(1) and z(2). The F2 norm of the error ]]f - $112 
was 0.57. 

Although the full advantages of MASA compared to other procedures are 
realized in higher dimensional or noisy settings, we applied it to two bivariate 
examples used by Franke [1979] to compare a number of interpolatory surface 
approximation schemes.. For both examples 100 uniformly distributed random 
points in. the unit square [0, 1]2 were generated. The function in Franke’s first 
example’ is 

- - 
f(s, y) = 0.75 

2)2 
exp[--- 

(” 2)2 
I(” ] 

+ 0,75exp[- 
(9x + 1)2 9y + l].’ 

- 1o 

+ 0.5 exp[-(” 
““1)1+(9y-3)21 

-1 0.2 exp[-(92 - 4)2 ” (9y - 7)2]. 

Considerations similar to those in the previous example led to an approximation 
with three terms. The linear combinations and corresponding spline functions are 

shown in figures 2.1-2.3. 

The function in Franke’s second example is 

f(z, y) = i[tanh(Sy - 92) + I]. 

For this case the approximation used only one term, shown in figure 3.1. 

Since different random points were used in Franke’s and our tests, precise 
comparisons are not possible. On the first example, MASA gave roughly an order 
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of magnitude larger errors than the best methods in Franke’s trials (global basis 
function methods) while on the second example, MASA gave an order of mag- 
nitude s%aller errors than the best methods. These results are not surprising.since 
the peak-shaped basis functions of the global basis methods are especially suited 
for representing the peaks of the first example, whereas the ridge-shaped basis 
functions of MASA are especially suited to the second example. Unfortunately, 
peak-shaped basis functions are not appropriate for moderate or higher dimen- 
sionality. The difficulty is that in order to achieve a smooth fit, the width of 
the basis peaks. needs to be comparable to the distance between data points. For 
n uniformly distributed random points in a p-dimensional hypercube (0, l]“, the 
typical nearest neighbor distance is (k)*. In particular for n = 1000 and p = 

10, this distance ‘is 0.5, and.for p = 20 is 0.7. Thus variation of the surface 
over distances small,compared to such large interpoint distances cannot be well 
approximated with these global basis functions methods. 

Our fin.al example is a 19-dimensional function encountered by Carmelli and 

Cavalli [1979]. An important question is the structure .of this function near its 
minimum. We sam.pled the function at 200 points uniformly distributed in a small 

hypercube centered at the minimum found by numerical optimization and applied 
MASA. Th.e inverse figure of merit for the best constant Et was 13.3. The inverse 
figure of merit for M = 1 was 0.78. In 30 restarts, the Egure of merit did not 

decrease below 0.42. Figure 4.1 gives the linear combination and corresponding 
spline function. This picture shows considerable structure that was not revealed 

in. the original study. 

5. Discussion 

MASA can be expected to work well to the extent that the, surface can be 
approximated by a function of the form (1). Of course in the limit M --+ co all 
smooth su.rfaces can be represented by (l), but even for moderate M functions of 
this form constitute a rich class. 

As seen in the previous section, an advantage of using essentially one- 
diniensional basis functions is the possibility of graphical interpretation. The 
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entire mddel can be represented by graphing Sm(am s x) against a, - x and by 
specifyin.g { a, } l<m<M ( per a s ra h p g phically for p = 2 or 3). Additionally, ade- 
quacy o?’ thti knot placement can be judged using the M plots of ,the residuals 
from the final model against a, a x. Proper termination of the algorithm can be 
assured by monitoring at each iteration*th.e plot of the residuals from the model 

of the previous iteration along the newly found direction. 

The problem of sparse sampling in high dimensions is not encountered, since 
MASA is fitting one-dimensonal projections of the e&ire sample. The sample need 

not’ lie on a regular grid, and the approximation is affine invariant ai;ld smooth. 
Function values, derivatives, and integrals are cheap to evaluate. In addition, 
since the approximation is locally quadratic for Q = 3, optimization algorithms 

can be expected to converge rapidly. 
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figure 1.1 
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figure 1.2 
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figure 1.3 
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figure 1.4 
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MULTIDIMENSIONAL ADDITIVE SPLINE APPROXIMATION (4/19/80) 
;$V&METERS FOR2;;IS RUN 

NPRED 
MODE 
MAXTRY 
MAXPRO 
PPCONV 
MAXIT 
KORDER 
EEE? 
IPRINT 

6 
2 

74 
.150000 

4 

93 
2-002000 

KR% 1 
$VERAGE SQ"ARi? RESIDUAL AROUND THE MEAN 26.7495 
. 
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? 

KNOTS ALONG DIRECTION NR 1 
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PRCU Ah, v "LY I 

3000000~0000000000001000000000010010000010000000000100000003 AXIS 
+ ---I-- ------+------+----+-------- -t- 

I***** 

i 

** 

*** 
i 

I ** 
T ** T 

0.3412 
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figure 2.1 
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PLOT STATISTICS = 
PRoJ 
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PROJ 
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272724949495050505161616272727283838384949495050505161616272 

? 

figure 2.2 
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SPL01bJ;g;UNC;I~;5ND KNOTS ALONG DIRECTION NR 3 
. . 
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ON X 
AXIS 
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figure 2.3 
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MULTIDIMENSiONAL ADDITIVE SPLINE APPROXIMATION (4/19/80) 
PARAMETERS FORIT;IS RUN 
NOBS 
gg? a 

liEsoy 
: 
12 

PFCONV 
MAXIT l 15?000 
KORDER 
!EE? 

3 

IPRINT 
1.~~000 

kzE&i 
13 

GVERAGE SQ"ARi! RESIDUAL AROUND THE MEAN .109703 . 
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MULTIDIMENSIONAL ADDITIVE SPLINE APPROXIMATION (J/19/80) 

NOBS. - 
PARAMETERS FORIT;IS RUN 

z 

PFCONV 
f 

MAXIT 
KORDER 

l IsYaO 

3 
.*2000 

!ERS 
13 

eVERAGE SQUAti: RESIDUAL AROUND THE MEAN 
. .972118E-02 
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S';I;;2;UNd;I;N AND ~~22AL~~G2~~~EC~~O~3~~ 
-;:;242 : 

-E039 
PI:0556 

-A 5495 
-0:0384 -0:0141 0:0 fE351 . 

. -0.0660 -0.0153 -0.0235 
PLOT&TA&TICS = 0. 0. 0. / 0. 11. 0. / 0. 0. 0. 

ON X PROJ 
AXIS 400000000000000000010000000000000001000001000000000000000004 %I: 29.8919 t------t-----t-----1------(----1-1+---1--- 

29.6401 I* ***** 
29.3884 
29.1366 
28.8848 
28.6331 

1* *** 
I* ** 
1** ** 
1* ** 
I ** * 

** *** 
I *;**;* 
I 
+ 
I 

** 
** 

* 
** 

* 
** 

* 
* 
** 

* 

I 
I 

27.1225 
26.8707 f ** 

* 
* 
** 

* 
* 
** 

* 
* 
** 

* 
* 
** 

* 
* 
** 

* 
** 

* 
* 
** 

I I 

I I 

; ; 

z z 
+ + 

: : 
: : 

: : 
: : 
I I 
+ + 

jE jE 

i i 

z z 

i i 
*+ *+ 

***I ***I 
,***** ,***** *** 1 *** 1 

***** ***** 
: : 

**** 

;m; II * *** 

21:0802 I 
** ** 

** ** 

%E: E 
I ** *** T 

20:3249 I 
**t I 

20.0731 I 
19.8214 +4 

I 
+ + + 4+ -_-- ----- -------+------- ------- ------ 

LEFT ------------I--------------------------------- 
BIN 
EIXE 

111111111111111111111111110000000000000000000000000000000000 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...*..... 
111110000000000000000000009999999999999999999998888888888888 
211009988777665544332211009988777665544332211009988877665544 
272838394940505161627273838494950506161727283839495050616172 
257025803580358036813681368146914691469247924792570257025703 

? 

figure 4.1 
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MULTIDIMENSiONAL ADDITIVE SPLINE APPROXIIMATION (4/19/80) 
PARAMETERS FOR2;;IS RUN 
NO%S 
gg? -cI 19 
MAXTRY 
MAXPRO 

z 
PPCONV 
MAXIT 

.15:000 
KORDER i 

1.+;000 

EiEE 13 
$VERAGE SQ"ARh: RESIDUAL AROUND THE MEAN 13.2975 . 


