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ABSTRACT 

We study the lowest order electromagnetic and weak contributions 

to quark masses in quantum chromodynamics. We review the arguments 

that these quantities are ultraviolet divergent in perturbation 

theory. A suggestion due to Brodsky, Schmidt, and de Tgramond, based 

on a study of the Dyson equation for the quark self-energy, that 

electroweak corrections are controlled by low-energy physics if the 

number of quark flavors is greater than 10, is investiga.ted. The 

meaning of the electromagnetic mass shift defined by these authors 

is clarified. In models possessing natural relations among quark 

masses and spontaneous symmetry breakdown the prescription of these 

authors is shown to lead to the same results as those of conventional 

analyses. In particular, corrections to these relations remain 

sensitive to the symmetry violating scale for any number of quark 

flavors. 
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1. Introduction 

-The problem of calculating electromagnetic and weak contributions 

to hadronic masses and mass differences is an old one. ' Attached to 

this problem is an old question: Are electroweak corrections to these 

masses ultraviolet finite? Since we now have, in quantum chromo- 

dynamics (QCD), a promising candidate for a theory of strong inter- 

actions, it should be possible to address these issues. Of course, 

hadrons have yet to emerge from any QCD calculation, but, since the 

theory is asymptotically free, it should be possible to study the 

question of ultraviolet convergence. 

In QCD, this problem reduces to the question: Are electroweak 

corrections to quark masses (or appropriate mass differences) finite? 

In the standard version of the Weinberg-Salam mode12, ._ the mass of each 

quark arises from a separate Yukawa coupling to Higgs particles, and 

thus all quark masses are free parameters. As a result, even if 

electromagnetic and weak corrections to quark masses were finite, no 

relations among quark masses could be computed. Counterterms (albeit 

finite) could still be introduced to adjust each quark mass to any de- 

sired value. The issue becomes more meaningful, however, in models 

which possess "natural" mass relations. Natural relations are those 

imposed by the symmetries of the theory, and cannot be violated by 

counterterms. If the symmetry is spontaneously broken, one expects 

that at low energies (momentum scales well below the symmetry violating 

scale) corrections to these relations well be sensitive (logarithmi- 

cally) to the symmetry violating scale. If corrections to quark 
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masses were individually ultraviolet finite, one would expect this 

sensitivity to high energy scales to disappear. 

II. Electromagnetic Contributions to Quark Masses 
in Perturbation Theory 

In a recent paper3, Brodsky, Schmidt, and de T&amond (hereafter 

referred to as BST) addressed the problem of computing electro- 

magnetic corrections to quark masses, and arrived at some interesting 

conclusions. In particular, they argued that in QCD, if the number 

of quark flavors, nf, is greater than 10 (but less than 16, so as not 

to spoil asymptotic freedom) then the first order electromagnetic con- 

tributions to quark masses are in some sense calculable. Their 

analysis began with the Dyson equation for the running quark mass 

(Figs. 1-2):4 
A2 

m(p2) = m(A2) + J !A? 
P2 q2 

b,(s 
2 

1 + O(u2,a:) . (1) 

In this equation,Ais an ultraviolet cutoff, p is a large, Euclidean 

momentum, CF is the quadratic Casimir operator of the fermion repre- 

sentation (3/4 for SU(3)), and a,(q2> is the running coupling constant 

of QCD: 

where 

4a 

BoRn (q2/A&,) 

$0 
= 11 - $nf 

(2) 

(3) 

and 'QCD is the scale parameter of QCD. If we set a to zero, this 

equation has the solution 
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where 

m(p2) = m(A2> (4) 

3cF 
Y=B' (5) 

0 

This is just the standard result one obtains for the running mass in 

QCD using renormalization group arguments.5 BST noted that for 

nf > 11, y > 1. Under such circumstances, the integral equation, Eq. (1) 

continues to make sense if we set A to ~0 and m(A2> to zero. They 

argued that in this case one could then use the Dyson equation to 

identify strong and electromagnetic components of (renormalized) quark 

masses, 

m(p2> = ms(p2> + 6m(p2) 

where ms(p2) and 6m:(p2) satisfy the equations 

. (6) 

3c O3 
ms(p2) = -$ 

J 
35 

P2 q2 
as (q2bs (s2) 

03 

Sm(p2) = g 
/ 

d 
3c O" 

2 2ms(q2)+$ 
s 

dq2 - as (s2> 6m(q2) . 
P 4 P2 q2 

These equations have the solutions 

m(p2> 

6m(p2) = -g&n9- 
( ) h:lD 

ms(p2) + hs (p2) . 

(7) 

(8) 

(9) 

(10) 
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BST argued that A has no dependence on cc, and thus should be ab- 

sorba into ms(p2). Alternatively one might argue that since one can 

set A to infinity, A 
QCD 

is the natural scale for the problem. From 

this result, they concluded that electromagnetic corrections to quark 

masses are determined by physics at momentum scales less than or of 

order the threshold for the eleventh quark flavor. 

In order to decide whether or not this separation is appropriate, 

we must first point out (as did BST) that the electromagnetic cor- 

rections to the quark masses are not ultraviolet finite. ‘,‘,’ This 

fact is readily established using the Cottingham formulaland the 

operator product expansion (OPE).' The Cottingham formula gives for 

the electromagnetic contribution to the mass 

*m(p2) = -i J d T '1(q,p) 
32a4 q2 1-' 

(11) 

where T uv(9'P) is the virtual forward Compton amplitude for scat- 

tering of a virtual photon of momentum q on a target of momentum p. 

For the question of interest, only the integration region 

q2 " P2,P*q (12) 

is relevant. In this region, one may study Tn? using the OPE. The 

leading operators in the expansion are miTiQi and g2Fzy Favv , 

where mi and $i are quark masses and fields, respectively, and Fzv 

is the Yang-Mills field strength. Since both of these contributions 

are renormalization group invariant, Tuv behaves as a constant at 

large q2, and the integral diverges. 6,798 
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In order to understand the BST result in light of this divergence, 

a gra$hical analysis is instructive. We can reorganize the pertur- 

bation series so that Am is given by a sum of terms, each of which 

appears to be ultraviolet finite, and each of which appears to receive 

its dominant contribution (for nf > 10) from low energy phenomena. We 

first 

as in 

gives 

sum all QCD contributions to the quark mass, obtaining ms(pZ) 

Eq. (4). Consider then the diagram of Fig. 2. This diagram 

(from now on we choose units in which A 
QC" 

= 1) 

2 a1 
Am(')(p) = 2 J 

2 3a 1 
2+j-ms(q2) =G~ ms (P2)Rnp2-ms (A2)!LnA2 > 

. (13) 
P q 

If nf 2 11, this diagram has a finite limit as A2 + 00. Similarly, 

diagrams of the type shown in Fig. 3 all separately have finite 

limits. For the diagram with n gluons outside the photon, we obtain 

Am(n)(p) 3a 
A2 -f 00 
--&y ms(P 

The sum 

m a, 

Am(p) ---- c Am(n)(p) 2 
=-$+ > y-l 

Rnp2 
A2 -f co n=O 

(14) 

(15) 

is divergent. (Note that we would obtain the same result if we 

attempted to solve Eqs. (7-8) (with A + ~0) by iteration.) If our 

expression for Am b, (P > was correct for ]-'I < 1, then we could sum 
Y-1 

the series by analytic continuation, and obtain the BST result, 

Eq. (10). This is not the case, however, since the integrals diverge 
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for such values of y. Thus it is necessary to keep the cutoff in 

thescintegrals. One can easily demonstrate by induction that 

Am(n)(p) = g ms(p2) $ 
n 

-$fms(n > 2 $ go (&r (n-i) ! iygn($)) n-m. (16) 

This expression remains valid for I-&I < 1. For such values of y, 

we can sum the series, interchanging summation orders with impunity. 

co 

Am(p2) = c Arncn’ (p) 
n=O 

m 

2 
= 3 ms(P 1 y-l 

finp2 
n=o A =( > 

n 3e - -Gms(A >---- 2 % s, $ (Gi) = 

= - -$ m,(p2) Rnp 

= z ms(p2)En(A2/p2) . 

(17) 

Now we can continue y back to its correct value, yielding the diver- 

gent (cutoff dependent) result. A similar analysis can be performed 

for the diagrams such as those of Fig. 4, which were neglected in the 
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BST analysis. These diverge as RnRnA2. Their contribution to 

runni:g masses is suppressed compared to those of Fig. 1 by a power 

of a logarithm. 10 

This result is also readily obtained if we keep the cutoff, A, in 

the Dyson equation, Eq. (1). Then we obtain 

m(p2) = (ms(A2) + 6m(A2)) ($r[ + $ 9n($$) (18) 

where we have taken 

m(A2) E ms(A2) + 6m(A2) . 

The BST prescription corresponds to identifying 

ms(p2) = ms(A2) 

6m(A2) = - $ ,P,n m,(A2) . 

(19) 

(20) 

(21) 

In the standard Weinberg-Salam model, such a separation is without 

observable significance, since ms(p") can be adjusted to any desired 

value. 

Still, BST argued that this breakup was in some sense appro- 
n 

priate and that low energy physics would determine this 6m(pL>. They 

clearly had in mind cases where m(A2), the bare masses, were con- 

strained in some way (or equivalently that the normalization of the 

ms(p2) was fixed at some scale). In the following section, we con- 

sider their prescription in models which possess "natural" relations 

among quark masses. 
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111. A Simple Model with a Natural Mass Relation 

-ci 
These questions become more meaningful if we consider a model 

. . 
with a "natural" mass relation. 11 In this section, we study such a 

model, using both the Cottingham-OPE (COPE) type analysis and the 

prescriptionof Brodsky, Schmidt and de Tgramond. Since the theory 

makes a definite, observable, prediction for relations among quark 

masses, if the two procedures were to make different predictions, 

this would have definite physical consequences. At least one would 

certainly be wrong. Moreover, we might expect such a difference, 

based on our discussion in the introduction, for the BST analysis 

suggests that corrections to quark masses are determined (for nf > 11) 

by low energy physics, in contrast to the COPE analysis, which sug- 

gests scales up to the symmetry breaking scale should be-important. 

The model we consider is based on the gauge group SU(3)cXO(3). 

The color group is just the usual one, and will remain unbroken. 

Quarks will transform as triplets under this group. Under O(3), we 

take the quarks to lie in triplets (the O(3) coupling is taken 

vector-like), 

U 

+ d = 

0 
(22) 

s ' 

We also introduce a Higgs triplet, with potential arranged so that 

(23) 
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Two of the vector mesons, which we denote by W', will gain mass 

4 = &2, where e is the O(3) gauge coupling. A third, the photon of 

this model, remains massless. We also arrange the Higgs potential so 

that the surviving scalar $" has mass m2 Q e2v2 
9 l 

The symmetry of the 

model, as well as the restriction to renormalizable couplings, limits 

the possible mass terms for the fermions to two: 

(24) 

where Ta are the O(3) generators, and a sum over colors is implied. 

At tree level, then, we have 

m =m+Gv 
U 

"d =m 

m =m-Gv 
S 

or 

mU- “d = 1 
m-m ds * 

(25) 
. 

(26) 

Any counterterms must respect this relation. Thus, in perturbation 

theory 
m-m u d =l+f (27) m-m d s 

where f is a calculable function of the parameters of the theory. 

We will renormalize the quark masses at scale p2, 

';CD << P 2 << F$,rni . (28) 
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For the analysis, it is convenient to choose a renormalizable gauge 

'for fie W+, since all diagrams individually have good high energy 

behavior, and power counting arguments are straightforward. If, for 

the moment, we turn off the color interactions, a simple calculation 

yields 

mu(p)-md (p) 
md(p)-ms (p) 

= 1 +-$(!Ln($) +0(l)) . 

In particular, all infinities cancel, as expected. This result, 

Eq. (291, is easily understood physically. At momentum scales below 

the symmetry breaking scale, the primary corrections to the mass 

relation come from emission and absorption of virtual photons by the 

u and s quarks. The corresponding integrals are divergent, but in 

computing the ratio these integrals are cut off at scales MW, yielding 

Eq. (29). 

Now consider what happens in the presence of strong interactions. 

We can organize the calculation along the lines of the COPE analysis, 

for photon, W' and 4f exchanges. Then the leading contributions to 

the quark masses are the same as those of the bare theory, except 

that the quark masses now include all strong corrections, evaluated 

at scale p2. Thus Eq. (29) remains unchanged. 

What of the BST prescription? The problem is most simply dis- 

cussed in the language of the Dyson equation. The analysis of photon 

contributions is as before. For the W' and 4 contributions, we can 

write similar Dyson equations with photon lines replaced by W and $ 

lines. Then, for the W contribution to the u-quark mass, for example 
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(using 't Hooft-Feynman gauge), 

03 
&r$p2) = g 

J 
3c m 2 

-+$ mi(s2) + -$ 
2 4 -“w J +- as (q2> ~~~q2) (30) 

P 2 P 4 

where we have followed BST in taking the cutoff to infinity. The 

solution to this equation which these authors instruct us to take is 

S{(P2) = - g mi(p2) Rn 
(~)(1+($) ' C31) 

A similar analysis can be performed for the other contributions to the 

ratio, Eq. (27). When we sum these contributions we again obtain the 

result, Eq. (29), p rovided that the quantities mi(p2) for the various 

quarks obey the natural relation. Noting that (Eq. (19).) 

mi(A2) = mi(A2) - c+A2) - Smyi(n2) - smi(A2) 

f mi(A2) - 6m(A2) 
(32) 

and that the mi(A2) necessarily satisfy Eq. (26), one can readily 

verify that the quantities mi(p2) do in fact satisfy the natural 

relations. This is simply a consequence of the renormalizability of 

the theory: The divergent counterterms must have the same structure 

as the original Lagrangian. 

The lesson to be drawn from this analysis is that the BST 

separation of fermion masses into "strong", "weak", and "electro- 

magnetic" components (and other components in models with additional 

interactions) will in general respect natural relations among fermion 
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masses. If the strong interactions by themselves respect the sym- 
h 

metries represented by the natural relation, the quantities mi(p2) 

defined by BST must as well, and the finite corrections obtained from 

the 6m1(p2) will agree with the results obtained with standard methods 

of analysis. 

In cases where the strong interactions do not respect the natural 

relations, the quantities mt(p2) will not obey them, and the BST 

analysis must be extended in order to find relations among these 

"strong" masses. Grand unified models possessing natural relations 

are examples of such theories. To extend the BST analysis to such 

theories one merely needs to start with their solutions to the Dyson 

equation for momenta well above the grand unification scale. Here 

the theory is symmetric, and masses will respect the natural relations. 

One can then evolve their equations down to lower p2. Since the 

masses defined by BST satisfy the same scaling laws as those obtained 

using the renormalization group, the corrections to natural relations 

must necessarily be the same as those obtained with conventional 

analyses. For example, in the standard SU(5) grand unified model 12 

with the simplest Higgs assignment, there are certain natural rela- 

tions, such as mb = m T' at tree level. The analysis of BST again (to 

leading order) reproduces the result of conventional analysis 13 for 

corrections to this relation, but only if physics near the grand 

unification point is included. 

We conclude by emphasizing that in these models, even if we use 

the BST prescription, it is not correct to say that the corrections 



-14- 

to quark masses come only from physics at low energies (i.e. scales 

of theorder of the 11th quark mass). As we have seen, both quark 

masses and natural relations among them receive important corrections 

from physics at much higher energy scales. In grand unified models, 

in particular, physics at the grand unification scale will give im- 

portant contributions to relations among quark masses. 
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FIGURE CAPTIONS 

Fig. 1 Dyson equation for quark masses, including first order 

electromagnetic effects. Label g denotes gluons, label y 

denotes photons. 

Fig. 2 A contribution to the electromagnetic mass shift of a quark. 

Fig. 3 Another class of diagrams which contribute to the electro- 

magnetic mass shift of a quark. With an appropriate choice 

of gauge, these, along with the diagram of Fig. 2, are the 

leading contributions. 

Fig. 4 A non-leading (but ultraviolet divergent) contribution to 

quark masses. 
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