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1. Introduction 

The unified model' of weak, electromagnetic and strong interactions 

based on the gauge group SU(5) has many attractive features. However, 

it still involves too many arbitrary parameters. One way to reduce this 

number is to imbed SU(5) into higher simple groups. Various schemes have 

been proposed by many authors,' but since no fully convincing solution 

has been found so far, it seems worthwhile to keep the discussion as 

general as possible. 

In all schemes we have in mind, the Lagrangian is invariant under 

a given gauge group. The symmetry is spontaneously broken, that is if 

a scalar Higgs field transforms as a representation of the group, some 

of its components develop non-zero vacuum expectation values (VW). 

This defines a privileged direction in representation space and determines 

the pattern of symmetry breaking. The subgroup which leaves these VEV 

invariant remains unbroken. 

The scalar fields may be elementary. In this case, one wants the 

Higgs potential to be renormalizable, which limits it to a polynomial 

of degree four. A natural condition for the non-zero VEV is to require 

that they minimize the Higgs potential. This is the criterion used 

here. It is also possible to consider the scalar fields as boundstates 

of the fundamental fields. 394 In the absence of a satisfactory dynamical 

theory, it turns out that in this case also it may be necessary to 

minimize an effective Higgs potential.4 Hence, a general discussion of 

the absolute minima of scalar potentials is useful also for dynamical 

symmetry breaking schemes. 
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A general group theoretic discussion of the Higgs potential has been 

given by L. F. Li,5 who considered scalar fields in various irreducible 

represeztations. However, this is insufficient. For example, to break 

SU(5) down to SU(3)x SU(2)x U(1) and eventually to the exactly conserved 

SU(3)xU(l) one needs at least two irreducible components. Various 

particular examples have been discussed in some approximate schemes. 6,738 

Here we consider Higgs fields belonging to the adjoint plus the 

fundamental representation of SU(n) and the adjoint plus the spinor 

representation of O(10). This is still not sufficient, but our result 

has the merit of being exact, i.e., we do not require any parameter to 

be small. This may be important if one studies the transition between 

one symmetry breaking regime to another, the parameter in the Higgs 

potential varying as functions of energy (or temperature). For example, 

we shall find that in the SU(5) gauge model, a continuous.change in a 

certain ratio of parameters (see Section IV) changes the conserved 

subgroup from SU(4) to SU(3)xU(l). This may be relevant to the 

discussion of monopoles. 

To our knowledge, no exact treatment of the spinor Higgs fields 

has been given so far. This may be due to certain unfamiliar properties 

of these representations. Generalization to O(n) is hampered by the 

exponential growth of the number of spinor components. 

Results presented in this talk have been discussed in more detail 

elsewhere. 9,lO Some new features will be shown here. 
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11. SU(n): Higgs Potential 

Let the complex field Hi (i= 1, . . . . n) transform as the fundamental, 

the Hermitean, traceless field 4: as the adjoint representation of SU(n). 

The most general renormalizable potential of degree four, invariant 
. . 

(for simplicity) under the discrete operation $3 + -c$:, is, using the 

notation of Ref. 6: 

V(4,H) = -+n'tr$' +T(tr$ 22 ) - $V'H+H + $(H+H)' 

+orH+Htr 4' + $tr$4 + BH+$'H (2.1) 

V has to be minimized with respect to all components of H and (p. 

However, we are interested in the symmetry breaking pattern, that is 

the unbroken subgroups. This does not depend on the norm of H and 4, 

but only on their direction in representation space. Hence, we will . 

discuss the absolute minimum of 

F = $,,04 + BH+4'H 

keeping tr$'and H+H fixed. Diagonalizing 0: 

3 
$i 

3 = aisi 

n n 

c 
2 

a. = 
1 0 ; c ai = tr$2 

i=l i=l 

F becomes 
n 

x 
ai + B 2 IHil'az 

i=l i=l 

(2.2) 

(2.3) 

(2.4) 

(2.5) 
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Clearly, if b and $ are both positive, each sum in (2.5) has to be 

minimum; if b and B areboth negative, each sum has to be maximum. 

If theaigns are opposite, more discussion is required. 

Minimizing with respect to Hi gives:7 

IHiI = 0 , i-1,2, . . ..n-1 

If we choose 

ai < at(i=l,Z , . . ..n-1) when 8 > 0 

a: > a+= 1,2, . . . . n-l) when B < 0 

with (2.6), one gets for F: 

bn 4 F=- 2 c ai+f3H+Ha2 
i=l 

n 

(2.6) 

(2.7) 

(2.8) 

III. SU(n>: Symmetry Breaking Pattern 

We first minimize with respect to ai(i=l, . . . . n-l). The following 

Lemma, proved in Ref. 9, is very useful: 

* 
Lemma: the absolute minimum or the 

n-l 
f c 

4 = 
ai 

i=l 

where ai are real numbers subject to the constraints 

n-l 

c 
a. = u 1 

i-l 

n-l 
. , c 

i=l 

absolute maximum of 

9 n L L a. = p 
1 

* 
It can be shown that the Lemma holds also for the function 

g b 
n-l 4 

= 
c 

a. 1 
i=l 

n-l n 
+d 

c 
3 a. . 
1 

i=l 

(3.1) 

(3.2) 

I  -  __ __ 
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for fixed o and p2 (02 5 (n-l)p'), occurs only if at most two of the n-l 

variables ai are distinct. Furthermore, the absolute maximum is obtained 

if at breast n-2 variables ai are equal. This Lemma can be applied to 

the minimization of tr+4, where I$ is a second rank term with real 

eigenvalues. 

According to the Lemma, one has: 

nl times al , n2 times a2 

n +n2=n-1 1 

The subgroup structure after symmetry breaking is then: 

SU(n1) x SU(n,)xU(l) if nln2 # 0 

SU(n-1) if n1n2 = 0 

In order to find nl and n2, rewrite (2.4) as 

nlal + n2a2 = -an 

nla: + n2ai = tr+' - a: 

Solve for al and a2 and define 

nl-n2 , 2 a2 n 

x=$q- ' 
Suez-* n ~(oses;) 

tr+2 n- 

The function F to be minimized can now be written 

F = +tr+'[sin46(n2 -3n+3) + 6 sin20cos28 + n(l+x2)cos46 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

+ 4 6 x&i sinec0s3e + +A. (n- 1)2sin2el 1 

tr +I' 
n(n-1) (3.7) 
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The result of the minimization is given in Table I. For b 7 0, 8 c 0, 

the solution depends on the ratio b/b. 

IV. SU(n): Discussion 

The characteristics of the subgroup after symmetry breaking are the 

following: 

1) One loses one rank. This is due to H in the fundamental 

representation. With v= A= o= 0, one would get instead SU(n-l)xU(l) or 

SU(n/Z)x SU(n/Z) xU(1) ( neven) or SU (n-1)/2 x SU (n-1)/2 xU(1) (nodd). 

2) The subgroup is the product of at most three factors, with 

at most one U(1). This follows from the Lemma. 

3) For b 7 0 and B < 0, as the ratio B/b varies, one finds n/2, 

respectively (n-1)/2 different subgroups for n even, respectively n odd. 

4) SU(n-1) is obtained for b < 0, B < 0 and for part of the 

quadrant b 7 0, 6 < 0. SU(n/Z)x SU((n/Z)-1) x U(1) (n even) is obtained 

for b 7 0, B > 0 and for part of the quadrant b 7 0, 6 c 0. 

5) For SU(5), the solution is: SU(4) for b < 0, B < 0 and part 

of the quadrant b > 0, 6 < 0. SU(3)xU(l) for b c 0, 6 7 0 and part of 

the quadrant b 7 0, fl c 0. SU(2)X SU(2)X U(1) for b 7 0, f3 7 0. 

v. O(10): Higgs Potential 

We consider the antisymmetric Higgs scalar, 4 
ij 

= -4.. 
J1 

(i,j = 1 . . . 10) belonging to the adjoint representation 45, and the 

16+16 Higgs scalars x in the spinor representation. .We are interested 

in the most general renormalizable potential of degree four, excluding 

odd terms by requiring invariance under I$ + -4. 

._, .-._... -.. -., - _... -. 
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Notice that: 

1) The product 16x 16x 16x 16 vanishes. 

27 For the symmetric product of two 16's one gets 

(16 x 16), = lo+126 so that one might have only two independent 

invariants 16x 16x16~16. 

3) From 16x16= 1+45+210 and (45~45)~ = 1+54+210+770 one 

sees that there are only two independent invariants 16x16~ 45x 45. 

From this it follows that the most general Higgs potential is: 

V(4 9x1 = v. + v, + va + vi 

vO = ax+x + btr 4' + c(x+x>’ + d(tr4')'+ ex+xtr 4' 

10 
vs = K 

c (XTcviX) (XTcviX) * 
i=l 

10 2 
‘a 

= Xtr @4 ; Vi = VX+ C ‘ij $ij X 
( i,j=l ) 

where c,y are defined in Ref. 11, 12, 13. 

VI. O(10): Orbits of the Spinor Representation and Symmetry Breaking 

A given spinor x can be considered as a point in a 16 dimensional 

space. Acting on x with all the group elements of O(lO), one gets a 

set of points called the orbit of x. According to Michel and Radicati, 14 

all smooth, real, invariant functions are stationary on what they call 

critical orbits. A fortiori, an absolute minimum of the Higgs potential 

will occur on a critical orbit. 

_ _...,_ ..-_ .- .,. 
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To characterize these orbits, define the basic states xA(A= 1 . . . 16). 

They are-eigenstates of five mutually commuting generators Hcc(a= 1 . . . 5) 

belonging to the Cartan subalgebra. The eigenvalues are At= k%, their 

product over cz being positive for representation 16, negative for 16. 

Any spinor x can be written as 

16 
XbA) = - cAXA c 

A=1 
(6.1) 

For a given basic state xA, define a xX by changing the sign of four 

eigenvalues X A For example, if xA a' is given by (+$,+%,+k,+%,+%) 

then a x is given by (++, -4, -4, -4, -%). There are five possibilities 
7i; 

for x . 
‘3i 

It can be shown that any x(c,) can be transformed by an O(10) 

rotation into 

x(e) = xAcOse + x sin& . (6.2) 
A 

Especially, any basic state xA can be transformed into another basic 

state XA, . The invariant Vs of Eq. (5.1) becomes 

vS = KIX+X12 2 sin ec0s2e (6.3 

For each value 8 one gets a different orbit. The critical orbits 

correspond to extrema of Vs. For K 7 0, Vs is minimum for f3 = 0 and 

8 = r/2. The corresponding little groups, i.e., the subgroups of O(10) 

leaving x(O) or x(n/Z) invariant are SU(5) groups conjugate to each 

other. FOr’K < 0, Vs is minimum for 8 = r/4. The little group of 

l/a(X(O) + x(*/Z)) is O(7). 

The set of orbits for 8 # 0, r/4, IT/~ (modulo IT/~) is called 

generic and not critical. The little group is O(6) w SU(4). 
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Hence, the symmetry breaking due to the spinor representation alone 

yields the subgroups SU(5) or O(7). 

VII. O(10): Symmetry Breaking Patterns 

It remains to minimize Vi and Va in (5.1). Through an O(10) 

transformation, one can always rotate the Higgs scalar I$ ij in such a way 

that the only non-zero components are (a= 1 . . . 5) 

+2a-1,2a = -4 Za,Za-1 = aa 

5 

c 
a2 a = tr$2 

a-l 

Replacing (7.1) in (5.1), we get 

va = x 5 4 
c 

a a 
a=1 

(7.1) 

(7.2) 

Keeping tr$' fixed, the minimum of V, is obtained for al = a, = a, = 

a4 =a = 5 if X 7 0 and a 12 =a =a 3 =a 4 0 # a5 if X < 0, 

subgroups being SU(5)xU(l) and 0(8)xU(l) respectively. 5 

With (6.1) and (5.1) one obtains 

L 2 

the unbroken 

Vi=-$ lcAj20z ; GA=22 Ataa 
A=1 a=1 

(7.3) 

3 3 
At fixed values of the aa's we define CI- = (Min ~i)/p so that 

the absolute minimum V i = (~/4)x+x cr2 is obtained for any direction 

xAO 
such that oA = u. 

0 
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Now one has to minimize 

5 
vi+va = x 

c 
a:+'+ -qxxo2 

a=1 
(7.4) 

5 

c 
a2 

a 
= tr.+' 

a=1 

with respect to aa, where o = aA A0 = c 2Xa aa. As noticed before, 
0 a 

the basic state xA = u, can be transformed into any 
0 

, associated to aA 
0 

other basic state. Correspondingly, only the signs at the au's will be 

affected, a + +a a a' in Eq. (7.3). Therefore we take xA = x 
0 1' 

Aa = A; = +%(a= 1, . . . . 5), u= C aa, without any loss of generality. 
a 

We can now again apply the Lemma of Section III to the minimum of 

keeping c a% = tr$' and c aa = u fixed. 
a a 

It is then a matter of simple algebra 10 . 
to find the absolute 

minimum of (7.4). In particular, one finds that aa Z 0 and aa # -a6 

(a,$ = 1, . . . . 5). The result is given in Table II. 

The absolute minimum of the Higgs potential V of Eq. (5.1) is as 

follows. For K 7 0, the choice of the spinor x on the critical orbit 

with invariance group SU(5) is the proper one to minimize both Vs and 

vi+ v,. Minimizing with respect to ai yields the subgroups of SU(5) 

given in Table II. 

If, instead, K < 0 and hp f 0, it can be shown that in order to 

get the absolute minimum of V, x cannot stay on the orbit with O(7) 

invariance group, which minimizes Vs. In general, x will belong to 

the orbit defined by xAcos8+ x sin0,with 8 depending on the parameters 
7i: 

of the potential V. If 1 K 1 is small enough, 8 = 0 (or 6 = IT/~), and 
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the pattern of symmetry breaking will again be given by Table II. 

Otherwise, the residual symmetry group will be a subgroup of rank 3 of 

SU(4). - 
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Table I 

Su(n) symmetry breaking pattern. The subgroups in the Table leave 

&variant the minimum of the potential F= (b/Z)tr $4 + #3H+$'H, 

41 c adjoint, H c fundamental representation of SU(n). 

IA) n even 

b 7 0, B 7 o: 

b 7 0, 8 < o:* 

b < 0, B < 0: 

b < 0, S > 0: 

- 
T 

SU(n/Z) x SU((n/Z)-1)x U(1) 

SU(n/Z) x SU((n/Z)-l)xU(l) 
SU((n/Z)+l)x SU((n/Z)-2) x U(1) 
---------_------ 

SU(n-1-m)x SU(m)x U(1) 
---------------- 

SU(n-2)xU(l) 

SU(n-1) 

SU(n-1) 

SU(n-2)x U(1) . 

b ) - n odd 
t 

b 7 0, 6 7 0: SU((n-1)/2)x SU((n-1)/2)x U(1) 

b 7 0, fj < O:* SU((n+l)/Z)x SU((n-3)/2)xU(l) 

SU((n+3)/2) x SU((n-5)/2)xU(l) 
---------------- 

SU(n-1-m)x SU(m)x U(1) 
-----L---------- 

SU(n-2) xU(1) 

SU(n-1) 

b < 0, 6 < 0: SU(n-1) 

b < 0, 6 7 0: SU(n-2) x U(1) 

1 

*Increasing the ratio B/b. 
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Table II* 

O(10) symmetry breaking pattern. The subgroups in the Table leave 

invariant the minimum of the potential: 

v= K gl XTCyiX (XTCyiX>* + Atr @4 + ux+ (i yvl uij,i,)z x ’ 

? - 

0 c adjoint and x c spinor representation. 

-~~~~~ 

7c 7 0, p 7 0: SU(3)X su(2) xU(1) 

x 7 0, u < 0: SU(5) 

x < 0, p 7 0: SU(4) x U(1) 

x < 0, u 7 0: SU(4)x U(1) or+ SU(5) 

* 
Table II gives the result for K 7 0. For K < 0, see text- 

t Depending on the ratio p/X. 
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