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ABSTRACT 

The effect of the beam-generated transverse deflecting fields on 

the emittance of an intense bunch of particles in a high-energy linear 

accelerator is analyzed in this paper. The equation of motion is 

solved by a perturbation method for cases of a coasting beam and a 

uniformly accelerated beam. The results are applied to obtain some 

design tolerance specifications for the recently proposed SLAC Single 

Pass Collider. 
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1. Introduction 

Irthis paper we examine the effect of transverse deflecting 

fields, generated by the passage of an intense bunch of particles 

through a conducting pipe, on the emittance of the same bunch of par- 

ticles which generated these fields. This problem is important in 

determining the limits to the luminosity of linear colliding beam 

devices which are now receiving much attention 1) as possible succes- 

sors to colliding beam storage rings for achieving very high energy in 

the electron-positron center-of-mass system. These linear colliding 

beam devices require beam transverse dimensions of the order of microns 

at their collision point to achieve useful reaction rates and the mini- 

mum beam transverse dimension is directly related to the emittance of 

the beam. Significant emittance growth during the acceleration of the 

intense bunch required for linear colliders can degrade the perform- 

ance of these devices. 

When a point charge travels off-axis down a pipe, it interacts 

with the walls of the pipe and leaves behind a transverse wake field 

which will deflect particles traveling behind the point charge. If an 

intense bunch of particles travels through a structure whose trans- 

verse dimensions are large compared to the length of the bunch, the 

transverse wake field will be such that all particles behind the head 

of the bunch are deflected further away from the axis of the struc- 

ture. Thus, as the bunch travels down along the pipe, the total area 

in transverse phase space occupied by all the particles in the bunch 

will increase. 2) 
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We examine the effects of these wake fields with particular 

appliGtion to linear electron accelerators. We first find the equa- 

tions of motion for particles in the bunch, and then solve these equa- 

tions by a perturbation method for the cases of a coasting beam and a 

uniformly accelerated beam. For the case of a very strong wake, an 

asymptotic analytic solution is found. 3) Finally, the results of this 

analysis are applied to the SJAC linac for bunches of an intensity 

required for linear colliding beam applications. 

2. Equations of Motion 

In what follows we treat the bunch as relativistically and as if 

its transverse dimensions were zero. We calculate the displacement of 

a point on the bunch, x(z,s), as a function of z, the longitudinal 

position relative to the center of the bunch (z is positive toward the 

head of the bunch), and s, the distance from the beginning of the 

accelerator. The approximation of zero transverse dimensions for'the 

bunch is a good one in most cases of interest where the transverse 

dimension of the bunch is very much less than the size of the pipe. 

Thus the transverse wake field is uniform across the bunch. In 

effect, ~(2,s) is the displacement of the center of a slice through 

. the bunch at the position z. 

The transverse force at z depends on the displacement of all 

charges with z' > z and is given by 

/ 

00 

Fx(z,s) = e2 dz'p(z')W(z'-z)x(.z',s') 

z 

(1) 
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where p is the line density of the particles in the bunch (/pdz is 

normalfzed to the total number of particles in the bunch, N), e.W.x is 

the transverse field produced by a point charge displaced from the 

axis by x at a distance z' - z behind the point charge, and 

S ' = s - z' + z refers to the retarded time for the field. We have 

assumed that the displacement of a particle changes sufficiently slowly 

with s so that the average W of the structure can be used (certainly 

case in electron linac). the 

The equation of motion for x(z,s) can be written as 

d 
ds ] + ($-$ y(s)x(z,s) = r o idn'p(z')W(z' -z)x(z',sl) 

(2) 

. 2 where y(s) is the energy of the beam at position s in units of mc , m 

being the rest mass of the particle; X(s) is the instantaneous wave- 

length of betatron focusing at position s; and ro= e2/mc2 is the 

classical radius of the particle. 

We assume that W, y, X, and p are known functions, and that the 

betatron focusing is provided by a smooth function rather than coming 

from a series of widely spaced quadrupoles. We also assume that the 

bunch length is much shorter than the betatron wavelength so that the 

retardation can be ignored, i.e., x(z' ,s') on the right-hand side of 

eq. (2) can be replaced by x(z',s). 

We will first solve eq. (2) using a perturbation method for a 

coasting beam in which the bunch has constant energy as a function of s. 



-5- 

3. Coasting Beam Solution 

%r a coasting beam we have y(s) = y, and X(s) = X0 both inde- 

pendent of s. Consider a bunch injected into the linac with a dis- 

placement of x=x0 and a slope x1= 0. In the limit of no wake field, 

the zeroth order solution for the bunch motion is simply 

xb) (2,s) = xocoskos (3) 

where we have defined ko= 2~/h . 
, 0 

We expand x(z,s) in a series of powers of the wake field 

(4) 

co 
x(z,s) = c ,(n) (2,s) 

n=o 

. 

and obtain the n th order term fromthe (n-l)th order term by solving 

d2 ,W 
ds2 

(z,s) + k ix+z,s) = > jdz'p(z')W(z'-z)x("-l)(z',s) (5) 
0 z 

which is a direct consequence of eq. (2). The solution of eq. (5) is 

xcn)(z,s) = fds'G(s,s')> rdz'p(z')W(z'-z)x("-l)(z',s') 
0 0 z 

with G(s,s') the Green's function: 

G(s,s') = $ sinko(s- s') 
0 

(6) 

(7) 
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Inserting x (0) from eq. (31, we obtain by iteration 

h 

x(l)(z,L) = xo(&)($ sin,,) . [dzlo(nl)W(zl- z> 

L 
coskoL + - 8k sink 

0 
0 

co co 

. I dzlP (zl)W(zl - z> I dz2P (z,)W(z, - zl> (8) 
z “1 

. . . 

where we have taken values at the end of linac s=L. For a weak wake 

field, one can ignore all the terms higher than the first order and 

the deviation of a particle from its zeroth order trajectory is given 

by x(l). It is sufficient to keep only the first-order term if 

lx(l) 1 <<Ix 
0 

1 which requires 

Lro m 
I 

2yoko 2 
dzlo(zl)W(zl- z> << 1 (9) 

The fact that Ix (1) 1 is proportional to s is a direct consequence 

of the resonant driving situation. Since x(-l' a s sin(kos) and 

xb) a cos(kos), a series of snapshot pictures of the bunch looks like 

the sketch in fig. 1. The value of x (1) depends on the position z 

along the bunch, and at the head of the bunch x (1) vanishes as it 

should. If the wake field is not weak, one has to carry the calcula- 

tion to higher orders. 
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In many practical situations, the pipe is long enough so that the 

bunch?;as completed many betatron oscillations before reaching s=L, 

i.e., koL >> 1. In this case, we find after some albegra that eq. (8) 

reduces to 

,b) (z,L) z x0(-&y $- ($)n eikoL . R,(z) (10) 

where Rn is defined by 

Rn(z) = dzlP (z,)W(z,-d dz2P (z2)Nz2-zl>. . . I 
z 

s1 
z 

dznp (~~>“(z,y-z~-~) 

n-l 

(11) 

It is understood that only the real part of eq. (10) is meaningful. 

Note that x (n+~,s) h as the useful property that it is factorizable in 

the variables s and z, although x(z,s) is not. 

A closed form can be obtained for Rn if we approximate p by a 

rectangular distribution and W by a linear function, i.e., 

1 
N/R for jz[ < R/2 

P = (124 
0 for Iz] >= R/2 

w = w,z/I1 (12b) 

Both approximations are close enough to reality in many applications 

to allow a good assessment to be made of the importance of higher 

order terms. In particular the linear wake is a quite good approxima- 

tion for the SLAG linac. We find 
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and 

x(z,L) = xoe 

where we have defined 

(13) 

(14) 

(15) 

The validity condition eq. (9) f or the first-order approximation 

becomes In/41 CC 1. In the limit InI >> 1, one can find an asymptotic 

expression for eq. (14): 

For intermediate values of lnl , the power series expression (14) is 

more accurate. 

4. Accelerated Beam Solution 

We assume that the energy of the beam increases linearly with s 

as a result of acceleration in such a way that y(s) = y,(l+Gs), with 

yomc2 the beam energy at injection, and G the acceleration gradient. 

We assume that the strength of the focusing force in the linac scales 

with beam energy so that the instantaneous betatron wavelength remains 

constant, h(s) = X . 
0 
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We first make a change of variable in the equation of motion (2) 

from s to a new variable u= l+Gs . Equation (2) then becomes 

2 
-+Ldx+ ax 

du2 u du 
x=------ dz'p(z')W(z' -z)x(z',u) (17) 

where we have defined ko=2a/Xo. This equation will again be solved 

by an iteration procedure as in the coasting beam case. The zeroth 

order solution is obtained by setting the right-hand side of (17) to 

zero and demanding the initial conditions x(z,u)=xo and dx(z,u)/du=O 

at s=O or u=l: 

N(k)J (&)-Jl(+)No(;u) (18) 
x(O) (z,u) = x0 . -q O kG 

Nl($)Jo($) - Jl(>&m 

where J 0' J 1' No' and N 1 are the usual Bessel functions. 

If we expand x(z,u) as in eq. (4), the n th order term x Cd can be 

obtained from the (n-l)th order term x (n-1) by solving eq. (17) with 

the x's on the left-hand side replaced by x (4 and the x on the right- 

hand side replaced by x (n-1) . The solution can again be obtained 

using a Green's function: 

x(~)(z,u) = J"du'6(u,u') " rdz'p(z')W(z'- z)x(n-l)(z',u') (19) 
1 yoG2u' z 

with the Green's function 
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- G(u,u’) = + .[No(+ u)Jo($ ut) - Ji+ u)N~> u’)] (20) 

In practice, over.most of the length of a linear accelerator, the 

betatron oscillation wavelength is much shorter than the distance 

required to double the energy, i.e., ko>>G. The acceleration is then 

adiabatic and the arguments in the Bessel functions that appear in 

eqs. (18) and (20) are much larger than unity. We can use the large 

argument expressions for the Bessel functions to obtain 

x(O) (z,s) = 

pi 

kO 
- cos $U- 1) = [ I J& =Oskos 

(211 

G(u,u’) = f-- sin[>(u- u')] 02) 

The factor ,/l+Gs in eq. (21) is the usual adiabatic damping factor. 

The terms in the series solution are 

,b> (z,s) = 

where R,(z) has been defined in eq. (11) and I,(s) is given by the 

recursion relation 

S 

In(s) = sin ko(s- s') In-l(s') 1 1 

(23) 

IO(s) = coskos (24) 
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In general, the solution to eq. (24) for In is rather complicated. 

Howevm, if the beam energy at the end of acceleration is much higher 

than the beam energy at injection, i.e., (l+GL) >> 1, eq. (24) can be 

solved to yield 

I,(L) =. $- e ikoL[& !?n(l+GLgn (25) 

where taking the real part is understood. 

Comparing the accelerated beam results, eqs. (23) and (25), with 

the coasting beam results, eq. (lo), we note that the accelerated beam 

results can be obtained from the coasting beam result to all orders by 

the simple substitution rule 

Coasting Beam Accelerated Beam 

constant energy y, --+ injection energy y, 

injection displacement x + 
0 

length of linac L 
(26) 

where the last rule L+$ Rn(yf/yo) does not apply to the betatron oscil- 

lation phase exp(ikoL). The particle energy at the end of acceleration 

is 2 y mc f . The accelerated beam result reduces to the coasting beam 

result in the limit G-to. 

For a bunch with a rectangular charge distribution and in the 

linear wake field approximation, eqs. (14) and (16) still hold if we 

replace x0 by (yo/yf) l/2 x0 and n of eq. (15) by 
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Lr NW 
0 Yf 

n = ko(y;- y,) ai1< ' 

In fig. 2 we have plotted x(z,L) along the bunch for values of 

koL=O, ~r/2, n, and 3~/2 (modulus 2~r). The wake field strength is such 

that the value of n at the very tail of the bunch is equal to 150. It is 

lz 2 ( ) --- 
2 R (27) 

clear from fig. 2 that the distortion of the bunch can be very large. 

5. Misalignment Effects 

In the previous analysis, we have assumed that the accelerator 

structure is perfectly aligned and the wake field is produced as a con- 

sequence of beam injection with a displacement error. In this section, 

we will study the effect caused by misalignment of the accelerator 

pipe. We assume the beam is injected into the linac with perfect pre- 

cision and it travels down the linac in a straight line in the limit 

of low beam intensity. We will study the case with acceleration under 

the approximation that the acceleration is adiabatic. 

The equation of motion can be written as 

-+Ldx+ d2x 

du2 u du 
dz'p(z')W(z'-z) [ x(z',u) - d(s)] (28) 

where d(s) is the transverse position error of the pipe structure at 
t 

position s. The accelerator will be treated as N structures, with the 
C 

i th structure misaligned by a distance d.. 
1 Compared with eq. (172, 

eq. (28) contains an additional force term on the right-hand side that 

comes from the pipe misalignment. 
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The zero-th order solution to eq. (28) is x ('I = 0 since the beam 

is asTurned to be injected without error. The trajectory of the head 

of the bunch strictly follows x (0) and is therefore a perfect straight 

line. The first-order perturbation term comes solely from the mis- 

alignments d.: 1 

x(l)(z,s) = - c 

r d.R. 

i 
; 5; = l 

00 
(l+Gs)l/2:l+GsZ)l/2 sin[ko(s-si'l l Rl'.Z' 

wq 
I 

(29) 

where the factor sin [ko(s - y)] is characteristic of the response to 

an angular kick, and the quantity R,(z) has been defined in eq. (11). 

Note that unlike the case for an injection error, the first-order 

term in this case is not driven by a force with the natural frequency 

of this system and the resonant driving condition does not apply. As 

a consequence we do not expect a large value of x (1) . On the other 

hand, the second-order term x (2) is driven by 

late with the natural frequency of the system 

amplitudes. For this reason, it is necessary 

xw which does oscil- 

and may acquire large 

to carry out the pertur- 

bation calculation up to the second order in wake field. The second- 

order term can be obtained by substituting eq. (29) into eq. (19). 

2 
xW (z,s) = C "odiRi . 

(l+Gs)/(l+Gsi) 1 
i 

(S'Si) 
2y;kzG (l+Gs)l/2(l+Gsi)l/2 cosPo(s -'ii]* R2(Z) 

(30) 

If we assume the misalignment errors di are uncorrelated from one 

pipe structure to the next, 
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<x(1)2> = R;(z) 

<x(2)2> = & <d2> (-$-rEn3(zJ *R;(z) 
C 

(31) 

where <d2>lj2 is the rms value of the misalignment and we have assumed 

that all structures have the same length ai=L/N . 
C 

In eq. (31), we 

have approximated the sum over i by an integral over the length of the 

linac and we have also made the approximation that yf>> y,. 

The factor l/NC in the expression for <x (112 > is a consequence of 

the fact that the first-order perturbation is not driven resonantly. 

That xC2) is driven resonantly by x (1) is shown by the fact that <x (212) 

does not acquire an additional factor of l/N 
C’ 

If we assume a rectangular distribution (12a) and a.'linear wake 

field (12b), we can use eq. (13) t o obtain the quantities R,(z). The 

ratio of <x (212 > to <x(lj2 > under these assumptions is n2/1728. 

The emittance growth due to misalignment can be substantially reduced 

by empirically controlling the injection offset x and angle x' at the 
0 0 

beginning of the linac. The corresponding first-and second-order con- 

tributions have been obtained in eq. (23): 

Jn(l+GL) 
R1(Z) 2G 

x sink L xA 
o o -<'OSkoL 

(32) 

x(2)(z,L) = 
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By choosing proper values of x0 and x: it is possible to cancel either 

the first-order misalignment contribution, eq. (29), or the second-order 

misalignment contribution, eq. (30), by a corresponding contribution 

from (32). For example, if the second order misalignment term dominates, 

one might choose 

‘X 
0 

0 4G = c 
!?,n2(1+GL) i 

diRi 
an[(l+G~)/(l+Gs~)l 

' (l+Gs )1'2 
X’ 

i 
0 

(33) 

so that the second-order contribution from the injection offset and 

angle cancels the second-order contribution from the misalignments. The 

required x0 and x: have rms values given by . 

<xi> = -ii- 
YflY 2 

3Nc !?n(y,/;,) <d > 
0 

i34) 

With x0 and x: given by eq. (33), the first-order term obtained by 

the sum of misalignment and injection contributions is 

Rn(l+Gsi) 

Rn(l+GL) 

(35) 

The rms value of this x (1) is given by 

<x(l)2> = Yf 
Rn y l R;(z) 

0 

(36) 
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which is l/3 of that for the case with no injection cancellation effort. 

Thus this scheme of minimizing the emittance growth due to misalignment 

by controlling the injection conditions not only cancels the second- 

order misalignment contribution but also significantly reduces the 

first-order contribution. 

6. Application to SLAC Linac 

The wake field for the SLAC linac has been calculated by K. Bane 

and P. Wilson. 4) In the regions of interest to us, the wake field W(-z) 

is linear in z. The relevant parameters for the proposed single pass 

collider operation arel) 

N = 5 x lOlo u = lmm 
Z 

5 -5 
YO 

= 2.4 x lo3 (1.2 GeV) W. = 5.9 x 10 m 

yf = lo5 (50 GeV) 

3 L=3XlO m 

X0 = 100 m 

CT 
X 

= 70 urn 

NC = 240 

(37) 

Under these conditions, the asymptotic expression must be used in 

order to find the proper tolerance criterion for not having a signifi- 

cant emittance growth. The value of 0, according to eq. (27), is 37 

1 at z=O, 94 at z=-0 =- - L, and 150 at z= -R/2. The bunch shape 
Z 

2\/5 
for this case has been shown in fig. 2. The corresponding values of 

the maximum magnitude of x(z,L) are 1.5x0 for z= 0 and 6.1x0 for 

z = -0 z. If we require a wake field displacement at z=-oz of <ux, we 

obtain a tolerance on the injection displacement of lx01 s 11 pm. 
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This tolerance on the injection error, x0, sets the requirement for 

injectj%n stability since the injection error can always be canceled 

by a set of static magnets. The corresponding tolerance on the jitter- 

inc of the injection kicker magnet is + 1 grad. 

Misalignment effects are cominated by the second-order perturbation 

term rather than the first-order term. For a particle at z=-oz, for 

example, (2) (1) the ratio xrms to xrms is about 2.2. 

The misalignment effect can be minimized by injecting the beam with 

empirically determined offset x and angle x'. Since the second-order 
0 0 

contribution dominates, the optimum chaise of x0 and x: is given by 

eq. (33). The expected rms value of the required injection offset, 

given by eq. (34), is <x:>~'~ = 0.35 <d2>l12. After optimizing by con- 

trolling the injection conditions, the resultant beam size growth, 

<x("> 2>w 
, is given by eq. (36), which is found to be 0.25 <d 2 > 112 at 

the bunch center and 0.62 <d 2 l/2 > at oz behind the bunch center. For 

this beam size growth at z = -oz to be less than the transverse beam 

size o x at the end of the linac, we demand a misalignment tolerance of 

<d">1/2 = 0.11 mm. 

The effect of the accelerator misalignment is determined by examin- 

ing the reduction in luminosity arising from the emittance growth. 

Since the luminosity is inversely proportional to the emittance, the 

reduction factor R is approximately given by 

R = (38) 
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where <x(~)~ > is given by eq. (36).In fig. 3, we have plotted the lumi- 

2 l/2 
nosity reduction factor versus the rms orbit distortion, <d > . For 

<d2>l12 = 0.1 mm, the reduction in luminosity is about 20%. The third- 

order term is appreciable only at the very tail of the bunch and thus 

does not affect the luminosity noticeably. 

We have not taken account of the spread in betatron frequencies 

in the beam which comes from the energy spread in the bunch, Since 

different particles have slightly different energies and thus differ- 

ent betatron frequencies, there will be a Landau damping effect which 

will become significant if Ak L>v 
0 

(Ak 
0 

is the spread in the betatron 

wave number in the bunch). A numerical tracking program is being pre- 

pared to investigate this effect. 

7. Summary 

We have studied the effect of transverse wake fields on the emit- 

tance growth of an intense bunch of particles in a linear accelerator. 

We first set up the equation of motion for particles in the bunch and 

then solve it by a perturbation method for cases of a coasting beam 

and a uniformly accelerated beam. The coasting beam result is given 

by eqs. (4), (lo), and (11). For the case of an accelerated beam, we 

have found a substitution rule, eq. (26), that allows one to obtain 

the result from the coasting beam result. 

For practical applications, we simplify the calculation by assum- 

ing a rectangular charge distribution and a linear wake function. 

Under these assumptions, an asymptotic expression of the bunch shape, 
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eqs. (15), (16), and (27), can be obtained for cases with strong wake 

fields? 

We have looked at the effects caused by misalignments of the linac 

acceleration sections. The perturbation method is again applied. The 

effect of misalignment on beam emittance growth can be minimized by con- 

trolling the injection conditions of the bunch. After the minimization 

scheme, the expected rms perturbation to beam emittance is given by 

eq. (36). 

These results are applied to the recently proposed SLAC single pass 

collider. We find that the emittance growth and the associated reduc- 

tion in luminosity will be tolerable provided the jittering in the 

injection angle is within f 1 urad and the accelerator misalignment is 

less than +O.l mm. . 
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Fig. 1. 

Fig. 2. 

Fig. 3. 

FIGURE CAPTIONS 

Sketches of bunch shape for a case with weak wake field at 

four instances of time. 

Bunch distortion at the end of accelerator for four differ- 

ent values of total betatron phase 

wake field strength parameter Q is 

bunch tail. 

koL (modulus 27r). The 

taken to be 150 at the 

Luminosity reduction factor R versus accelerator misalign- 

ment tolerance <d 2 l/2 > for the case of the SLAC Single Pass 

Collider. 
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