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Summary 

Arguments are presented that two magnetically bound monopoles will 

fall into a ground state characterized by an orbital angular momentum 

quantum number R= %. That such a state forms a suitable structure for 

point-like fermions is proposed. 
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Dirac, who was the first to speculate about the incorporation 
-c. 

of magnetic charge into elementary particle theory, (1) obtained the 

quantization condition 

(1) 
eOgO n --=- 
hC 2 

where e o and go are respectively the basic electric and magnetic charge 

quanta, and n is an integer. Gaussian units are used here; % and c have 

their usual significance. Schwinger, who considered a particle carrying 

both electric and magnetic charge, which he named the dyon, has proposed 

"A Magnetic Model of Matter," (2) in which the baryons are composed of 

three dyons (thus fundamentally differing from the approach here). 

He obtained the quantization condition 

(2) elg2 - e2q = nnc , 

where 1 and 2 denote two interacting dyons. By now there has been an 

enormous amount of theoretical work on magnetic monopoles, too voluminous 

for discussion here; the reader may consult a review article (3) for 

details and references. 

Since this letter is concerned with a magnetically bound monopole 

pair which is expected to be magnetically neutral, one may write 

(3) 8.2 = -81 - 80 * 

Substituting eq. (3) into eq. (2) yields 

(4) (el + e2)g0 = n?ic . 

Now (el + e2> is just the total electric charge which we attribute to 

the bound pair. Since it is proposed herein that the magnetically bound 
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pair is a possible structure for fermions, one may set 

(5) - I el + e2 I 
=eorO , 

where e is the charge of the positron CAn analogous equation made for 

fractionally charged quarks would not change any of the conclusions of 

the following analysis (except the magnitude of go> and is hence 

omitted as being redundant.1 Since there are two monopoles (or dyons, 

or vortons*) in the pair, one may make the phenomenological allocation: 

(6) Jell = le2j = e. = e/2 

Consequently, one. sees that for the structure under consideration here, 

eq. (1) and eq. (2) give the same result. Setting n= 1, one then 

obtains 

(7) 

2 
IiC +lC e -=- 

gO=Zi~ze 12 and 80 A- 
jg=a ' 

where a is the fine structure constant. 

Since the magnetic force is so much stronger than the electric force, 

there is no problem for a monopole pair to exist in an electrically 

charged, magnetically bound state. Such a structure, then, could furnish 

an answer to the old question(5) of the internal force ensuring the 

* 
The vorton is a recently proposed (4) semi-classical electromagnetic 

monopole configuration. It should be noted that the semi-classical 

value for the vorton charge, 25.8e, would not satisfy either the Dirac 

or Schwinger quantization condition, But possible unaccounted quantum 

mechanical effects might appropriately modify the semi-classical result. 



-4- 

stability (against electrical self-repulsive forces) of the electron. 

Howeve+ while solving this problem, the superstrong magnetic force leads 

also to what is in some sense the opposite problem. This is the problem 

of collapse, which we now take up. 

It is well known that if the laws of classical mechanics prevailed, 

then atomic structures could not exist; atomic electrons, bound to the 

nucleus (of charge Ze) by the dimensionless coupling constant Zo(<l) 

would, through their centripetal acceleration, radiate away their energy 

and ultimately fall into the nucleus. Quantum mechanics explains why 

atomic structures are stable and this catastrophe does not occur. 

Monopole pairs, on the other hand, would be bound by the superstrong 

magnetic force characterized by the coupling constant g2 /hc = l/a >>l. 

Unfortunately, perturbation theory, the technique so successfully used 

in QED, will not work in this regime. Since, as yet no other technique 

has been developed, we resort to a simple qualitative argument t which 

* 
An excellent review of the history of physical models and analyses of 

the electron has been written by Rohrlich (6) 

t Arguments along these lines are well known and found in the literature 

in varying degrees of complexity, e.g., the book by Bohm. (7) The ques- 

tion of stability of matter has been recently discussed in some detail (8) 

where it is shown that the use of the Heisenberg principle cannot be 

used for a general argument covering all conceivable wavefunctions. 

But the simplicity and directness of the argument, and its ease of 

extension to the relativistic domain make it suitable for the purposes 

of this letter. 
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shows that electrically bound atomic structures are stable against 

collapsg (and which gives the correct atomic scale), while magnetically 

bound monopole pairs must collapse. To do this we employ quantum 
* 

mechanics as embodied in the Heisenberg uncertainty principle: 

(8) Ax Ap > h 

and minimize total energy 

(9) w= T+V , 

where T and V are kinetic and potential energies, respectively. 

Particle masses, which are assumed to be constant, are omitted from 

eq. (9). 

In the case of atomic structures 

2 
T=k 

(10) and 

2 
TJ=* . 

Using eq. (8) to set p=%/r in eq. (lo), one finds a minimum in W at 

(11) 
f12 

a= - 

Ze2m 
, 

where a has been used (for r) to represent the scale of the bound state. 

For Z= 1, a is just the Bohr raidus, the correct scale for atomic struc- 

tures. With Za << 1, T=$(Za)2mc2, and the motion is nonrelativistic. 

* 
One recognizes, of course, that this derivation is qualitative in nature, 

and eq. (8) could just as well be modified by a factor of order unity. 
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If 'one considers stronger couplings, i.e., as Za + 1, the electron 

become&relativistic (a statement independent of its mass) and a better 

approximation for the kinetic energy becomes T=pc. In this relativistic 

regime, then, the mass of the bound particles becomes irrelevant and the 

energy in which to find a minimum, in order to determine the appropriate 

scale of the bound state, is 

(12) w=% - za $2 = %(l-ZCX) . 

Extrapolating to ZCX >> 1, which is the regime equivalent to that of the 

magnetic force, one sees that the Heisenberg localization energy is 

easily furnished by the superstrong binding; eq. (12) shows no minimum 

in energy for any a > 0. One concludes, then, that the scale of the 

bound state -t 0, i.e., collapse ensues, and the magnetically bound 

monopole pair will tend to be point-like. * (The fact that W < 0 is a 

deficiency of the approximation which does not necessarily negate the 

conclusion that Zcl >> 1 implies collapse; see below.) 

The extent of collapse of the magnetically bound monopole pair 

depends upon one's assumptions about the extent of the monopole. Some 

previous models have assumed that monopoles have an intrinsic dimension 

which would limit this collapse. (9-12) Here, on the other hand, we ex- 

plore the assumptions that the monopole is a point-like particle inter- 

acting only locally with the photon and that the mass and spatial extent 

* 
It is also possible to show, using a relativistic version of the 

Sobolev inequality (more rigorous than the analysis here using the 

Heisenberg uncertainty principle) that a large coupling constant 

implies collapse; E. H. Lieb, private communication. 
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of the free monopole are consequently due to electromagnetic self- 

interaaions. In this case the intrinsic nature of the free monopole 

would not furnish a scale for the magnetically bound monopole pair. 

Using physical intuition to argue against singularities leads one 

to expect some new phenomenon to enter the picture and prevent the bound 

pair from becoming a true geometric point-hence the term "point-like" 

is used advisedly. While at present, what new phenomenon ultimately 

steps in to set the scale of the magnetically bound monopole pair is a 

matter of conjecture, it is relevant to note that Landau and his 

collaborators(13) have suggested that graviational phenomena taking 

place on the scale of the Planck length Rp= (*G/c 3% > = 1.616x 1O-33 cm 

might "save" QED. In looking at the QED self-mass problem along these 

lines, it has been suggested(14) that due to vacuum polarization, there 

may be a reversal of the electromagnetic force beyond the Landau singu- 

larity (at or near Rp). This reversal would have the effect of a hard- 

core repulsive potential preventing the complete collapse of the magnet- 

ically bound monopole pair state beyond a scale on the order of Rp. In 

any case, the issue of the precise scale of the bound state of the mono- 

pole pair is not crucial here since Rp is many orders of magnitude beyond 

present experimental data on the point-like nature of fermions. 

While the above line of reasoning concludes that the magnetically 

bound monopole pair will tend to be point-like, the S state, which is 

the ground state of binding by small coupling constants, needs special 

consideration because of the effects of (superstrongly coupled) vacuum 

fluctuations, Vacuum fluctuations are known to decrease the binding 

energy (raise the enrgy level) of S state electrons in atoms, leading 
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to what is known as the Lamb shift. The reduction in binding in 

hydrogen(15) is given by 

(13) AE = n&m 

where L z ln(mec 2 / <W >) and Xe is the (reduced) electron Compton wave- 

length. In hydrogen the average excitation energy <W> (for the 2s level) 

has been calculated (15) to be 17.8 Ry, yielding L N 7.6. For small r, 

the wavefunction 

(14) VJ n&m 
- r% Rm 

where Y Rm is the usual spherical harmonic. For S states the substitution 

(15) I$uo12 = l 
a ha> 

3 

where (na) is the scale of the state, may be used. Using eqs. (14) and 

(15) in eq. (13) shows that 

C.161 

while 

(17) 

for R= 0, 

AEn!?,m + O for R > 0 . 

One may use the substitutions c1 -+ Zct, ?ie + $, the Compton wave- 

length of the monopole, and n= 1 in eq. (16) to convert it to an 

appropriate (estimated) magnetic monopole Lamb shift potential to add 

to eq. (9). Including this potential and minimizing total energy, the 

scale of the S state bound monopole pair is then estimated to be 

(18) ( > 
4 

aSg2 7~ ZCXL X 
M -35J-M , 
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where Za=137 has been used, and L, since it is a logarithmic function 

(which4s insensitive to large variations in its argument), was assumed 

to be the same as the value employed in eq. (13). It is important to 

note that since eq. (18) yields as >> KM, one can argue that at a scale 

characterized by a 
S 

we are not yet in a fully relativistic regime, i.e., 

the non-relativistic Lamb shift potential approximated by eq. (16) would 

still be valid. Thus vacuum fluctuations which cause a 10 -6 effect in 

hydrogen, an effect measured with considerable difficulty, assume a 

dominant role in the superstrongly bound monopole pair due to the a -3 

dependence in eq. (16). 

Now, using eqs. (17) and (18), one can make the argument that states 

with R > 0, which do not have a ("first order") Lamb shift C$E,o(0)a 01, 

will collapse to a smaller radius than will the S state. Thus, the S 
. * 

state will be prevented from being the ground state by the Lamb shift! 

Since the radial function near the origin goes like r', the a=$ 

state will be one which minimizes the l/r potential, the kinetic, and the 

Lamb shift energies. As the monopole pair is (radiatively) cascading 

* 
This estimate ignores the vacuum polarization graph which in hydrogen 

is the same order (a2> as the first order Lamb shift, but of opposite 

sign. For vacuum polarization loops consisting of leptons (electri- 

cally coupled), this graph will be down by a factor of It is 

further assumed that vacuum polarization loops of monopoles are never 

able to form because the superstrong coupling effectively prevents a 

spatial separation of the monopole-antimonopole pair. 
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down through integral R angular momentum states, the final transition, 

say, cold be from an R= 1 state to an R= k state by the emission of an 

antifermion. Since it is proposed that the original monopole pair will 

become a fermion, then the final result would be a fermion-antifermion 

pair, conserving angular momentum (as well as other quantum numbers). 

Hence we have an argument that the a=% state is, in fact, the ground 

state of'the magnetically bound monopole pair, and could become a spin $ 

entity, a point-like fermion. Since it is a pair of monopoles under 

consideration here, the spin of a single monopole does not enter these 

arguments in any crucial way. However, since this letter proposes a 

composite structure for fermions, consistency and simplicity would imply 

an integral spin for the monopole, which itself would then be elementary. 

(One would not suppose that there are two basic structures for fermions.) 

Now in proposing this composite structure, two difficulties must 

be acknowledged. The first is that the above Lamb shift argument is 

based upon a non-relativistic perturbation analysis which is of question- 

able applicability to the superstrong binding of magnetic monopoles. 

However, while a proper solution to the strong binding problem, using 

the Bethe-Salpeter equation, say, has never been done, we note that a 

straightforward physically based argument (16) gives a result (for hydro- 

gen) that is in qualitative accord with more sophisticated perturbation 

calculations. Thus, we argue that in the strong coupling regime we can 

rely upon the same physical arguments by which one would expect the 

local magnetic fields associated with vacuum fluctuations to act to 

separate oppositely charged particles, militating against states with a 

finite Jt(O>, i.e., against S states, favoring states for which $(O) = 0, 

. I.e., states of R > 0. 
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The second is that arguments have been advanced as far back as (17) 

1939 t& show that these half odd integral orbital states would be pre- 

cluded in the physical world. In a review article on this question 

Whippman(l*) counters all arguments opposing the state with R=%, save 

the one attributed to Nordsieck (19) and one published by Schwinger (20) 

while Whippman's paper was in proof. More recently the pros and cons 

of half-integral orbital angular momentum have been discussed by 

van Winter. (21) These papers cite what is by now an extensive literature 

on this subject. A perusal of this literature reveals that none of the 

arguments against !L=$ appear, in the final analysis, to be conclusive. 

That is, R=% does not violate any basic laws of quantum mechanics. (18) 

In fact, there are at least two published elementary particle 

models(10'22)* (both differing from this one in essential ways) which 

incorporate the possibility of R=+. 

It was argued above that the strong magnetic binding force would 

cause the (magnetically neutral) monopole pair to collapse to a point- 

like state. Since it has been assumed that the free monopole mass is 

due to magnetic self-interactions (neglecting the electric components 

of the charge as being negligible relative to the magnetic components), 

it follows that the binding energy causing the collapse will be furnished 

by and limited to the mass (energy) of the original unbound, or free, 

monopoles. This being the case, one may argue that in the point-like 

limit, the binding energy will be identically equal to the sum of the 

masses of the free monopoles (a statement independent of the monopole 
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* 
mass!); it will not become negative as implied by (the simple approxi- 

matio;given in) eq. (12). 

From a qualitative point of view, the point-like bound monopole pair 

would be a massless entity because the magnetic charges are essentially 

in full spatial overlap, t the magnetic charges effectively cancelling 

each other, precluding their coupling to the vacuum and consequently pre- 

cluding the generation of any individual or pair mass due to (magnetic) 

self-interactions. By the self-mass assumption, objects which are 

electromagnetically (completely) neutral cannot couple to the vacuum 

and will hence be massless. 

Any residual electric charge on the pair could, in fact, go on to 

generate a self-mass for this composite entity as a pair (electron or 

muon, say) as described in further detail in ref; 14. In this latter 

process, as in other fermion interactions, the magnetic substructure 

would remain hidden. 

One can also look at this question from the point of view of Feynman 

diagrams. The lowest order self-mass diagram for the monopole is shown 

in fig. 1, and the lowest order binding diagram in fig. 2. As the two 

magnetic monopoles enter into the point-like state, these evolve into 

* 
We see, then, that the assumption that the monopole has only the 

electromagnetic interaction furnishes in a natural way a reason that 

the binding energy can exactly cancel the mass of the monopoles. 

t One expects the monopole wavefunctions to expand to the size of the 

bound state just as the electronic wavefunction in hydrogen expands 

to -11. 
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diagrams such as are shown in fig, 3. The (sum of the) integrands 

associated with these four diagrams will cancel for scales greater than 

that of the point-like state. The other possible time orderings as well 

as the vacuum bubbles will similarly cancel. The contributions to the 

integrals for photon momenta k 2 %/a will depend upon the physics which 

determines a. But if there is a cutoff as suggested by Landau, then 

this ultraviolet "end effect" would be expected to be much less than 

the monopole mass because of the restricted range in which the sum of 

the integrands would be nonzero. And since potential energy tends to a 

minimum, it is not unreasonable to expect this magnetic self-energy for 

the point-like pair to be null or nearly null. 
* 

This argument easily 

extends to all orders because every photon line terminating on the pair 

can have its vertex either on a +gO or a -go and all other factors are ._ 

equal. 

In conclusion, arguments have been presented that the ground state 

of two magnetically bound monopoles may be characterized by an orbital 

angular quantum number a=%. As a consequence, that two oppositely 

charged monopoles in a tightly bound state form a suitable structure for 

point-like fermions is proposed. 
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* 
It might be more appropriate to describe the bound, point-like state as 

"massless-like" which, like the term "point-like", would allow for the 

possibility of a small discrepancy from mathematical perfection. 
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Figure Captions 

Fig. 1. The lowest order self-mass diagram of a magnetic monopole. 

Fig. 2. The lowest order binding diagram of a monopole pair. 

Fig. 3. The four possible lowest order time ordered (x earlier than y) 

Feynman diagrams for the point-like bound monopole pair. The 

(ultraviolet) photons binding the pair are omitted. The upper 

two diagrams derive from self-mass diagrams for the individual 

monopoles, the lower two from the binding diagram. Because 

the pair is in a point-like state, tightly bound in both 

space and time, the bottom two diagrams are distinct (below 

the ultraviolet cutoff). 
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