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ABSTRACT 

We describe a class of plotting procedures which can be 

to view data in one through four dimensions. The plots 

be made by hand or computer. They can show four-dimens 

aspects of higher dimensional data. 
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1. INTRODUCTION 

Tn this paper, we describe a method for scatterplotting four-dimen- 

sional data. The basic idea is a variation on a suggestion by Tukey and 

Tukey (1978): represent a four-dimensional observation p = (x,y,s,t) 

by a point in each of two coordinate systems. 

FIGURE 1 
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To show that the dots corresponding to (x,y) and (s,t) represent the 

same point p in four dimensions, connect them with a straight line. 

When many points are plotted, the large number of lines can become vis- 

ually confusing. The lines can be "thinned down" (details are given in 

Section 3) so that the remaining lines give an accurate representation 

of which points in one plot correspond to those of the other plot. 

Before a general discussion of the technique, we illustrate it by 
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considering an example in some detail. These data are from a diabetes 

study_of Reaven and Miller (1979). For each of 145 subjects in the study, 

five variables were measured., The variables, here somewhat crudely des- 

cribed, are: 

1) relative weight 

2) a measure of glucose tolerance 

3) a second measure of glucose tolerance - glucose area 

4) a measure of insulin secretion - insulin area 

5) a measure of how glucose and insulin interact - SSPG 

Variables two and three, the two measures of glucose tolerance, exhibited 

a very high degree of linear association (r=0.96) so that only variables 

one, three, four and five will be considered. Figure 2 shows a 2 and 2 

plot of this data. The right-hand part has been rotated 180" to make 
, . 

the picture easier to view (this is discussed in Section 3). We have 

found it useful to focus on each scatterplot separately, and then see 

what additional structure can be seen in the lines. 

FIGURE 2 
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- In the left-hand plot, both variables are quite spread-out 

in their range. There are almost no points in the upper 

left-hand part of the plot, so thin people tend to have 

lower SSPG; medium weight and heavier people seem quite 

spread out in SSPG. 

- In the right-hand plot, there is a good deal of structure. 

glucose area seems tightly clustered around low values with 

some scattered high values. People with high values of 

glucose area are generally considered to be diabetics. 

The insulin area variable is more uniformly spread out with 

a high density of medium values. Subjects with very low 

values of insulin area seem to have higher values of glucose 

area. . 

We next discuss the lines connecting the two plots. Consider first 

the lines emanating from the densist region of the right-hand picture. 

These lines move down to the left. They spread out on relative weight 

but seem to range over lower values of SSPG. This cluster of points 

represents "normal subjects" who have low values of glucose area and 

insulin area and low values of SSPG. 

Next, consider the lines emanating from the points in the right-hand 

picture representing high values of glucose area. These lines fan out 

over medium values of relative weight and higher values of SSPG. 

Finally, lines representing subjects with higher values of insulin 

area range over medium values of relative weight and medium values of 

SSPG. 
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T,he three groupings suggested above agree qualitatively with the 

groupings of Reaven and Miller (1979). One difference brought out in 

our analysis: relative weight seems to be a relevant factor. Further 

pictures of this data set are in Sections 2 and 5. 

In the diabetes example, 2 and 2 plots allow some higher dimensional 

aspects of the data set to be seen. The idea is easily generalized. 

Section 2 considers examples of general M and N plots. Section 3 ex- 

plains an efficient thinning algorithm and ways of drawing M and N plots 

by hand. 

The earliest reference to 2 and 2 plots we know of is Eckhart (1968). 

There is a good deal of literature on visualization of four dimensions. 

See Manning (1960) and Brisson (1978) for surveys. The best available 

reference to graphical methods for high-dimensional data is Gnanadesikan 

(1976). 

2. EXAMPLES OF M AND N PLOTS 

Conventional scatterplots use dots on a rectangular coordinate sys- 

tem to graphically represent k two-dimensional vectors. An M and N plot 

represents (M+N)-dimensional vectors by plotting M coordinates in one 

coordinate system and N coordinates in a second coordinate.system. The 

two dots representing a point are connected by a straight line segment. 

Thus, scatterplots are 2 and 0 plots. 

One-dimensional Data 

A 1 and 0 plot, the dot plot, is sometimes used to plot one-dimen- 

sional data, plotting each point as a dot. For example, Figure 3 shows 
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a 1 and 0 plot of the glucose area variable in the diabetes example. 

Figure 3 shows the clustering around low values and the spreading at 

higher values reasonably well. A histogram might be a more informative 

picture for this data set. 

FIGURE 3 
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Glucose area . 

Two-dimensional Data 

There are two ways to draw M and N plots of two-dimensional data - 

the conventional scatterplot (a 2 and 0 plot), and the 1 and 1 plot. A 

1 and 1 plot represents a two-dimensional point (x,y) by 2 dots and a 

line segment on a pair of parallel coordinate axis: 
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FIGURE 4 
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It is useful to look at 1 and 1 plots of familiar point clouds. For 

example, Figure 5 shows a cloud of points lying close to a straight line 

and the corresponding 1 and 1 plot. 
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FIGUBE 5 

. . 

__- 
I----- 

-.--------- __. - __.. 

i---- --_-- 

‘, 

-.___ 
X Y 1 Y 

Before considering other examples of 1 and 1 plots, we describe the 

connection between 1 and 1 plots and the set of lines in the plane. To 

avoid confusion, the line segments in 1 and 1 plots, such as Figure 5, 

will be called segments in what follows. Each segment can be thought of 

as a section of the (infinite) line in the plane that passes through 

that segment. Thinking of segments as lines helps in understanding the 

parallel segments in Figure 5. 
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Consider a collection of points in two dimensions: by 'Y, > 3 

(X2'Y2)'...' (xn,yn). It is easy to see that these points lie on a line 

if and only if the lines corresponding to these points in a 1 and 1 plot 

intersect at a point. As usual, parallel lines are thought of as inter- 

secting at infinity. An illustration of this is in Figure 6. 

The next group of figures (Figures 7, 8 and 9) are examples of fami- 

liar scatterplots. It is useful to learn to recognize the structure of 

lines in the associated 1 and 1 plot because such structures occur in 

higher dimensional M and N plots. 
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0% other aspect of 1 and 1 plots should be noted: the number of 

times that the segments cross in a 1 and 1 plot is equal to ;(;I h-1 

where T is Kendall's measure of association, T computed for (x,,y,),... 

(x,,y,). Thus, few crossings correspond to T close to 1 and many cross- 

ings correspond to 7 close to -1. The earliest reference we know for 

this is Griffin (1958). 

Three-dimensional Data 

It is not a straightforward task to make a scatterplot of three- 

dimensional data -- a 3 and 0 plot. Consider Figure 10 which is a scatter- 

plot of three of the variables from the diabetes data set introduced in 

Section 1. 
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FIGURE 10 
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The plot is not easy to make sense of. A version of a three-dimen- 

sional scatterplot is at the center of the PRIM-9 plotting program 

(Fisherkeller, et al (1976)). Briefly, the idea is to show the collection 

of three-dimensional points as a rotating point cloud using a graphics 

display terminal. Points closer to the viewer rotate faster and parallax 

fools the eye into seeing the points as a three-dimensional point cloud. 

An artist's rendering of this display for the data of Figure 10 gives a 

very useful picture of this data set. Figure 11 is reproduced from Reaven 

and Miller (1979). 

FIGURE 11 

SSPG 

i -“QJ+ Artist’s rendition of data as 
‘W %e*, - 0, @O 

______j__ 

seen in three dimensions. View is 
approximately along 45” line as seen 
through Prim 9 program on the corn- 
puter; coordinate axes are in the 
background 
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FIGURE 12 

glucose area 

A 1 and 2 plot of the same three variables from the diabetes data 

set is shown in Figure 12. The right-hand scatterplot was discussed in 

Section 1. The 1 and 0 plot of SSPG shows a high density of lower 

values. Looking at the lines, we see that points from the central clus- 

ter of "normal" patients have low values of SSPG. As one looks down 

in the right-hand plot, the values of SSPG increases, always remaining 

below the middle of the range. Looking left from the main cluster 
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in thg right-hand plot, the values of SSPG increase somewhat slowly. At 

the very top, there appears to be an interesting reversal -- the highest 

values of glucose area are connected to central values of SSPG. 

The line segments in a 1 and 2 plot can also be viewed as a plot of 

lines in three dimensions by picturing the one-dimensional axis as a 

line lying above and parallel to the plane of the, two-dimensional plot. 

Another way to plot three-dimensional data is to make a (l,l,l) 

plot -- three distinct coordinate axes, each showing one'dimension and 

a pair of line segments connecting each dot to the other two represent- 

ing dots. 

Four-dimensional Data 

We have already given an example of a 2 and 2 plot in Section 1. 

We here discuss an interpretation of such plots as a picture of lines 

in three dimensions. The basic ingredients of a 2 and 2 plot are a pair 

of coordinate axes and a segment: 

FIGURE 13 
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Imagine the (S,T) plane as a plane parallel to but above the (X,Y) 

plan: A segment can then be pictured as part of a line running "down" 

from the (S,T) plane through the (X,Y) plane. Only that part of the line 

which lies between the planes is visible. In this way, the segments in 

a 2 and 2 plot can be thought of as lines in three-dimensional space. 

It is not hard to see that the set of all lines in three dimensions is a 

four-dimensional space. One argument considers a pair of parallel planes 

(like the (X,Y) and (S,T) planes described above). "Almost all" lines 

in the three-dimensional space pass through both planes and uniquely de- 

termine four coordinates. This omits lines parallel to the planes, but 

these form a lower dimensional surface. Hence, the lines in three-dimen- 

sional space form a four-dimensional space and can be used to picture 

ion of four-dimensional data. A similar argument shows that the dimens 

the set of lines in n-dimensional space is 2(n-1). 

It is natural to try to find a set of coordinates for the 1 ines in 

three dimensions which do not have the problem of omitti ng a low-dimen- 

sional set of lines. Several approaches are described i n Chapter 1 of 

Jessop (1969). The most widely discussed coordinates - Pluckers coord- 

inates -- are not particularly suited to working with statistical data. 

While natural mathematically, Pliickers coordinates use five coordinates 

to describe the four-dimensional set of lines. 

We mention, in passing, that four-dimensional data can also be 

viewed using a (2,1,1) plot, a (l,l,l,l) plot or a (3,1) plot (a 3 and 1 

plot would require a PRIM g-like graphics device). 
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Highekdimensional Data 

With a PRIM g-like graphical device, or an artist's rendering as in 

Figure 11, it is possible to draw 3 and 3 plots of six-dimensional data. 

Higher dimensional data can also be pictured by connecting together lower 

dimensional M and N plots. A more practical thought is to link the best 

two-dimensional projection with a plot of the output of one of the many 

nonlinear mapping or scaling algorithms. This gives a way of labeling 

the points of the resulting output. An example is given in Figure 14. 

This is a picture of the Reaven and Miller (1979) diabetes data. The 

right-hand plot is nonlinear mapping of the original five-dimensional 

data into the plane. The nonlinear mapping algorithm described in Fried- 

man and Rafsky (1979) was used. This algorithm preserves 2n-1 of the (3) 

interpoint distances. In this picture, the n-l distances in the minimal 

spanning tree of the n points are preserved along with selected other dis- 

tances. The right-hand plot has a dense area in the lower left-hand part 

and two "wings". The lines connect this plot to the ordinary projection 

of the data onto coordinates 2 and 4. The lines indicate that the dense 

part of the right-hand picture corresponds to "normal" patients and the 

two "wings" correspond to the other two groups described previously. 

Looking more closely at the right-hand picture, it seems that the group 

of "normal" subjects may split into two groups - a dense lower group and 

a less dense upper group. An outlying observation shows up clearly in 

the line at the top of the plots. 
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3. SOME PRACTICAL DETAILS 

In this section, we discuss thinning -- by hand or computer -- 

rotating, and some ideas for interactive implementation of M and N plots. 

Thinning 

To understand the need and results of thinning, consider the data 

set introduced in Figure 1. Figures 15-25 show the results of different 

amounts of thinning. 

FIGURE 15 
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It Seems clear that thinning allows a better view of the individual 

scatterplots. The thinning in Figures 17 through 22 seems acceptable. 

With more thinning, the lines tend to lose their usefulness. 

It is straightforward to make an M and N plot by hand. Simply draw 

a pair of coordinate axis and start plotting points. Lines can be drawn 

either at random (say, with probability 1 in 5) or more systematically. 

One systematic approach is to break the (X,Y) and (S,T) planes into boxes. 

The first time a point is plotted in two boxes, the connecting segment 

is drawn. Only one segment is drawn for each pair of boxes. Thinning 

at random causes the density of lines to be proportional to the density 

of points. Systematic thinning causes the density of lines to be pro- 

portional to volume. In either case, we recommend starting with a low 

density of lines and adding lines systematically as they seem useful. 

We next describe an efficient thinning algorithm for use on a com- 

puter. The algorithm we prefer (based on some experimentation) causes 

the density of lines to be proportional to volume (not density). Here 

is a rough description: suppose we want to make a 2 and 2 plot of n 

points. Divide the four-dimensional space up into "boxes". A single 

connecting line is drawn for each non-empty box. The line for each box 

may be taken to be the line representing the (four-dimensional) average 

point for that box. 

More generally, suppose that the data consists of p-dimensional 

vectors (or points) z1,z2,...,zn. For expository purposes, suppose that . 

the scale is chosen so that the data lies between zero and one in each 

coordinate. Suppose that the p-dimensional unit cube is divided into 

"boxes" of side h in each dimension. This makes J = (l/h)' boxes in all. 
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Each box can be indexed by a p-truple of integers. We will refer to the 

j-th b;;x, and use lexographic order on the box labels. To determine what 

box a point ,x is in requires checking p inequalities. With this notation, 

we now present a semiformal description of our recommended algorithm. 

The main phase is to form a list containing 

- the label of each non-empty box 

- the sum of the vectors in that box 

- the number of points in that box. 

To begin, determine the box containing -xl. Call this 1,. The list 

begins 

1,) q, 1 

the last component being a counter to indicate how many points are in . 
box 1,. Next, consider x2. If it is in box -ii, the first entry in the 

list is changed to 

$3 5, + 3, 2 

If x2 is in box j2 + ii, the list contains 

J,, x1 3 1 

12’ 3, 1 - 

Continue, for each point zj determine what box fj contains zj. If the 

label ~j appears in the list, add zj to the second component of that 

list entry and increment the counter in the third component of the entry 

by 1. If -ij does not appear in the list, insert -ij in the list by binary 

insertion (using lexographic order on the labels). After processing all 

the points, the list contains the labels of the non-empty boxes, the sum 

of the points in each box, and the number of points in each box. 
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To draw an M and N plot using this list, make a single pass through 

the list computing the k-dimensional average for each box, and draw the 

line corresponding to this average point. If the number of non-empty 

Rotation 

boxes is B, the algorithm may be seen to run in 

OCpn(l+log B)1 "operations". 

Some of the earlier plots have been rotated to make them less con- 

fusing. The next example is a 1 and 2 p lot to i llustrate the usefulness 

of rotation. Figure 26 is a plot of 100 triples (x,y,z) where y and z 

were chosen independently and uniformly in [O,l] and x = y+z. Look at 

the outside edge of the right-hand plot. Notice how the lines move down 

in x as y or z decrease. Next, look from top to bottom on the right- 

hand picture along any fixed line R corresponding to y 5 constant. The 

lines in a neighborhood of R have approximately constant slope. Recall- 

ing the discussion of 1 and 1 plots in Section 2, these observations 

suggest a linear relation between (y,z) and x. 

Figure 26 is somewhat confusing to view because the lines change in 

slope and cross each other. Figure 27 shows a rotated 1 and 2 plot of 

the same data. Now the linear relation is striking. 
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Intaactive Usaae _. 

When M and N plots are viewed on an interactive graphics device, 

the decisions about thinning and rotation are made by trial and error. 

A program making this easy to do was written at Stanford Linear Accel- 

erator Center by Roger Chaffee. The program incorporates some other 

features which may be of interest. 

- All points in the same box as a given point can be made 

brighter 

- Lines can be easily added and deleted 

- Lines can be made thicker to show another variable or 

the density of points in a box 

. 
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