
SLAG-PUB-2494 
April 1980 
0-f) 

A PDP-11 FRONT-END FOR A VAX-11/780* 

M. J. Browne, Charles Cranieri, D. J. Sherden, Leon J. Weaver 
Stanford Linear Accelerator Center 

Stanford, California 

ABSTRACT 

An unpublicized feature of the VAX-11/780 is the 
provision for attaching a PDP-11 to the VAX UNTBUS 
Adapter. This can givr significant1.y improved J/O 
performance for applications which are limited by 
overhead in the VAX I/O driver rather than by the 
transfer speed of the UNIBUS itself. We have 
implemented such a system using a PDP-11/04 as a 
“front-end” to a CAMAC data acquisition system. 
Both the PDP and the VAX have full access to the 
UNIBUS. That portion of the PDP address space 
which does not have UNIBUS memory can be mapped to 
buffers in the VAX memory, allowing the PDP to 
access VAX memory and to initiate DMA transfers 
directly to the VAX. The VAX also has full access 
to the PDP memory, providing a convenient means for 
developing and downloading the PDP software. 

INTRODUCTION 

As online computers have progressed from 
simple to more complicated machines such as 
the VAX-l l/780 many of the more difficult 
tasks have been made easy, but many of the 
simple tasks have been made difficult. One 
such area is in the reading of time-critical 
data. While modern computers offer useful 
facilities for user protection, DMA 
capability, and I/O queueing and buffering, 
the software overhead in the interrupt 
servicing and I/O systems has in some cases 
outpaced the increasing speed of the 
computers. Fortunately, such problems are 
well suited to micro-computer applications. 

In this paper we describe a means of 
connecting PDP-11 computer (in our 
appl ication aaPDP-1 l/04) to the VAX-l l/780, 
which allows the two to interact in a very 
flexible fashion. We note that this scheme 
is an unpublicized design feature of the 
VAX, and hence credit for the system should 
go to Digital, although we accept 
responsibility for any misstatements in this 
paper, and, should it make anyone feel 
better, blame for any of its failures. 

In cur particular application a VAX-l l/780 
is used for the acquisition and analysis of 
data for elementary particle physics 
experiments in End Station A of the Stanford 
Linear Accelerator Center. Communication 
with t h e experimental equipment is 
accomplished through a CAMAC rll system 
using three Jorway Model 411 Branch Drivers 
121. Time critical data are acquired at 
rates of up to 360 llevcnts’l per second. 
While the amount of data read for each event 

is small (typically several hundred bytes), 
the high repetition rate, combined with the 
fact that each event requires several 
separate PDT (single word transfer) and DMA 
(block transfer) operations, introduces 
significant software.overhead. 

As the system was originally set up, the 
event data were read by the VAX using a 
locally written CAMAC I/O software driver 
[31. To minimize software overhead this 
system provides for list-driven multiple 
CAMAC operations and multip1.e interrupt 
servicing within a single 010 system service 
call (note that the software overhead of a 
single 910 call is comparable to the time 
between events). Independent of the 
overhead involved in the QIO call itself (‘2 
msec) . each CAMAC PDT oneration reauires ‘80 
usec, -each DMA operation requires -300 usec, 
and each event interrupt requires ‘300 uscc. 
With this system, the reading of event data 
required -25% of the total CPU power of the 
computer. Particul.arly when compared to the 
time available for the analysis of events, 
this is a quite significant overhead, which, 
with the present scheme,‘is almost entirely 
eliminated through the use of a “front-end” 
PDP-11/04 to read the data. 

THE SECRET PORT 

In the most naive picture, one imagines the 
UNTBUS adapter (UBA) hanging from the SUI 
with the UNIBUS emanating from the UBA, i! s 
shown in Figure 1. The UNIBUS arbitration 
functions are mentally associated with the 
UBA. There are two separate UNIBUS 
arbitration functions: Non-Processor 
Request (NPR) arbitration and Bus Request 

*Work supported by the Department of Energy, contract DE-AC03-76SF00515. 

Presented at the 1980 Spring DECUS U. S. Symposium, Chicago, Illinois, April 22 - 25, 1980. 



4-00 FIGURE I 381OAl 

A naive view of the UBA. 

(BR) interrupt processing. While the UBA 
does contain a BR interrupt processor, the 
NPR arbitrator is separate from the UBA, as 
shown in Figure 2. The UBA may, for most 
purposes, be considered as an NPR device on 
the UNIBUS, The NPR arbitrator is 
functionally identical to that in any 
PDP-11, so one can simply replace the 
arbitrator card with a standard UNIBUS cable 
to a PDP-11 without adverse effect, as shown 
in Figure 3. 

THE UNIBUS ADAPTER 

Almost all of the information in this 
section is readily available from the 
VAX-11/780 Hardware Handbook. We 
nonetheless present the information here 
since it is relevant to understanding the 
VAX/PDP interaction. 

One of the most important functions of the 
UBA is to map the UNIBUS address space 
000000-757777(8) to VAX memory. For this 
purpose, the UBA contains 496 map registers, 
allowing one to map each page of UNIBUS 
address space to VAX memory. Because the 
PDP *has its own memory on the UNIBUS, one 
needs a mechanism for disabling the 
corresponding map registers in the UBA. For 
this purpose (or to accommodate external 
UNIBUS memories, in general) DEC provides 
the Map Register Disable field (bits 26:30) 
of the UNIBUS Adapter Control Register 
(UACR). This field may be loaded with the 
number of 4K word blocks of external UNIBUS 
memory, which must begin at UNIBUS address 
0. With the corresponding map registers 
disabled, the VAX has complete access to the 
UNJBUS memory; the disabling simply prevents 
the UBA from attempting to associate these 
pages with VAX (SBI) memory. The fact that 
the VAX can access the PDP memory directly 
provides, among other things, an extremely 
simple method of downloading programs to the 
PDP. 

The PDP can be given access to VAX memory 
using the UBA map registers. Here one 

I 

UBA 
1 

UNIBUS NPR g XI 
ARBITRATOR [D 

5 DEVICE 
R2 c 

. 

. 
4-80 

. 
381OAZ FIGURE 2 

A slightly less naive view showing the 
separation of UBA and NPR arbitrator. 

I UBA I 

I-- I 
POP - DEVICE 

MEMORY u-l 
2 

XI 

z 
3 

POP-II DEVICE 
#2 

. 

. 

. 
d-10 
381OAl FIGURE 3 

UBA with NPR arbitrator replaced by PDP-11 

simply maps some portion of PDP address 
space without UNIBUS memory to the desired 
pages of VAX memory. Note that for PDP 
models without memory management, the sum of 
PDP memory plus PDP-accessable VAX memory is 
thus limited to 28K words. The UNIBUS 
address space allocation for our 
configuration (PDP-11/04.with 8K words of 
memory) is illustrated in Figure 4. 

As long as the map registers remain 
unchanged, the PDP may treat the associated 
VAX memory as though it were its own. Since 
the PDP also has access to the UNIBUS I/O 
space (760000-777777(8)), it may initiate 
I/O from a UNIBUS device directly to or from 
VAX memory. 

Because the UBA has its own BR interrupt 
processor, it intercepts BR interrupts from 
all UNIBUS devices downstream of the UBA 

2 



777777, 

760000, 

UNI BUS ADDRESS SPACE ALLOCATION 

I600008 

I LlNJBUS I/O SPACE 

NON -POP ADDRESS SPACE 
(mopable to VAX memory 
for non-POP functions) 

POP ADDRESS SPACE 
(mopoble to VAX memory) 

POP MEMORY 
(mop registers disabled) 

4 -a0 FIGURE 4 381OA4 

(the “VAX side’! of the UNIBUS) and 
interrupts the VAX, not the PDP. BR 
interrupts from devices upstream of the UBA 
(the “PDP side” of the UNIBUS) are received 
bY the PDP and not the VAX. This 
arrangement can be altered by clearing (or, 
more precisely, by not setting) the 
Interrupt Field Switch (Bit 6) of the UACR. 
In this case the UBA will pass all BR 
interrupts to the PDP. 

HARDWARE 

Hardware associated with the PDP-11/04 in 
our system is shown schematically in Figure 
5. The PDP is powered up and down with the 
VAX CPU. When the system is powered up, PDP 
control is transferred to the ROM of the 
M9301-YA bootstrap module. Since the UBA is 
initially unmapped, it is important to 
prevent the PDP from accessing its own 
memory until the UACR Map Register Disable 
Field has been properly initialized. (Note 
that the M9301 ROM is in the I/O space of 
the UNIBUS, which is always known to be 
external by the UBA.) Hence it was 
desireable to provide a means of 
communication between the VAX and the PDP 
which did not require the use of PDP memory. 
For this purpose a simple interface module 
was build using an MDB-1710 foundation 
module [41 plugged into the PDP side of the 
UNJBUS so that the PDP rather than the VAX 
receives its interrupts. The interface 
module consists of a control register (CSR), 
two data registers, and two interrupts. One 
register is used by the VAX to initiate 
program operation, while the second is left 
free for user applications. The first 
interrupt is used to signal an event, while 
the second is used by the VAX to terminate 
PDP program operation. (As designed, either 
interrupt can be fired from hardware or from 

SBI 

r- 
POP I-J II/O4 

4-00 FIGURE 5 3a10*5 
PDP-associated hardware for our system. 

software. To provide for PDP program 
downloading a simple modification was made 
to the M9301 ROM program. The program 
initially loads an odd number into the data 
register of the interface module. In 
addition to looking for input from the 
DL-11B (i.e. the normal console emulator 
routine) the program also looks at the data 
register. After the VAX has downloaded the 
program into the PDP memory, it places the 
(even) starting address ’ the. data 
register. This is recognized’:y the PDP and 
used to begin program execution. Sufficient 
unused space exists in the M9301-YA that the 
downloading feature could be added without 
elimination of any features of the standard 
ROM. 

In the standard ROM console emulator 
routine, a START command causes the ROM 
program to execute a RESET before 
transfering control to the requested 
address. Since this instruction resets all 
devices on the UNIBUS, its execution after 
the VAX has been bootstrapped would have 
disastrous consequences. Hence the RESET 
instruction was eliminated from the ROM 
program. 

In addition to the VAX/PDP interface, the 
PDP also has a DL-11B serial line interface 
and an M7846 floppy disk controller, both of 
which are used sole1 y for diagnostic 
purposes. The DL-11B can be connected to 
one of the terminals normally used by the 
VAX, and the M7846 can be plugged into the 



RX01 normally used by the VAX console LSI. 
As an indication of the reliability of the 
system we note that the terminal has not 
been connected to the PDP since the initial 
debugging of the PDP program, and, apart 
from verifying that the M7846 module worked, 
the floppy disk has never been connected to 
tne PDP. 

The only- unexwcted problem which arose in 
bringing up the system occurred in the 
bootstrap sequence. With the switches of 
the M9301 bootstrap module properly set, the 
power up sequence should cause the PDP to 
interrupt to the M9?f71 ROM. This indeed 
occurred when power was initially applied to 
the CPUs. However, the power fail and power 
up sequence can also be generated from VAX 
software by: (i) SBJ UNJAM, (ii) setting 
the Adapter Init field (Bit 0) in the UACR, 
or (iii) setting (and resetting) the UNIBUS 
Power Fail field (Bit 1) in the UACR. At 
least one of these methods is employed by 
the VAX bootstrap procedure. It was found 
that for the software generated power up 
sequence, the AC LO signal was deasserted 
simultaneously with DC LO rather than the 
prescribed >5 usec later. This caused the 
PDP to trap to location 24 (power fail) 
rather than to the bootstrap ROM. While a 
less brutal approach is probably possible, 
we cured the problem by cutting a trace on 
the M9301 module. 

SOFTWARE 

A VAX/VMS I/O driver was written to support 
the “front-end” PDP-11/04. While not 
technically necessary, the I/O driver format 
was chosen because it offered a convenient 
and well documented means of accessing both 
VMS system routines and UNIBUS addresses. 
There is, however, one special feature about 
this driver. In order to allocate the UBA 
map registers specifically associated with 
the PDP, the PDP driver must be loaded 
before the drivers of any other devices 
which access the UNIBUS. 

When it is loaded 
routine 

the PDP driver 
initialization performs the 
following functions: 

It permanently allocates within VMS the 
rIrst 28K words of UNIBUS addresses (i.e. 
the PDP address space). 

2. It sets the Map Register Disable field 
of the UACR for the 8K words of PDP UNIBUS 
memory which is attached. 

3. It sets up VMS system page table entries 
so that the 8K of UNIBUS memory may be read 
and written directly from the VAX and saves 
the generated virtual addresses for later 
use. 

VAX user programs may access the PDP through 
the PDP driver by using the standard 010 
system service. The PDP driver supports the 
following functions: 

1. Write to PDP memory. 

2. Read from PDP memory. 

3. Read VAX/PDP interface registers. 

4. Write VAX/PDP interface registers. 

5. Interrupt the PDP by writing into the 
VAX/PDP interface CSR register. 

6. Set up a “never-ending” 010 which maps 
UNIBUS addresses between RK and 28K into VAX 
memory to allow the PDP program to read data 
directly into or from the VAX memory. 

Down-loading of programs from the VAX to the 
PDP is accomplished by a user level routine 
using the QIO facility described above. PDP 
programs are prepared, assembled, and linked 
usine the comnatibilitv-mode PSX-1 1M 
facilities of the ‘VAX. The down-loading 
routine reads the load module to determine 
the program length, first address, and 
starting address, as well as the program 
itself. Using the 010 facility, the program 
is written to PDP memory, and the starting 
address is written to the VAX/PDP interface 
module data register to initiate program 
operation. 

OPERATIONAL EXPERIENCE 

In our particular application one of the 
three CAMAC branch drivers is dedicated 
exclusively to the reading of event data. 
This restriction was present in the original 
VAX-based system and has been carried over 
to the PDP system. The other two branch 
drivers are used for I/O which occurs at 
repetition rates significantly lower than 
that of the event data, and remain driven by 
the VAX rather than the PDP. The is01 ation 
of the event branch was adopted to avoid 
handshaking and interlocking problems 
between the VAX and the PDP. 

The event interrupt was moved from the VAX 
to the PDP. The event branch driver, 
however, was left on the VAX side of the 
UNIBUS so that diagnostic programs can be 
run from the VAX when the PDP is not running 
its normal event reading program. This 
prohibits the PDP from receiving DMA 
completion interrupts from the branch 
driver. However, since CPU time on the PDP 
is not at a premium, it is a simple matter 
for the PDP to monitor the CSR of the branch 
driver until the DMA operation is completed. 

Upon receipt of an event interrupt, the PDP 
reads event data along with status 
information from the branch driver directly 
into a circular buffer in VAX memory. The 
buffer is large enough to contain roughly 20 
events. A VAX program, which is activated 
roughly 10 times per second, retrieves data 
from the buffer for analysis and logging on 
magnetic tape. 

Because the PDP could be programmed to read 
data in a more brute force fashion than the 
list-driven VAX I/O system, the PDP was able 
to duplicate the functions of the VAX-based 
system using less real time. In practice, 

4 



the PDP program was expanded to provide 
error checking with retry capability, and to 
format the data in a form more convenient to 
the specific experiment than that of the 
more general VAX-based system. The final 
PDP program reads 
the 

events in approximately 
same time as did the original VAX 

system. While most of the PDP program is 
specific to 
written with 

-the current experiment, it was 
sufficient generality that 

reprogramming for an auxiliary experiment 
was accomplished in less than a day. 

The PDP system has been in use for six 
months, and has not encountered problems in 
that time. 

CAVEATS 

While we have been extremely satisfied with 
the system, we must add that it is not all 
things to all people. 

1. The system is effective in eliminating 
software overhead but does not improve 
hardware performance. In particular, since 
the PDP requires UNIBUS cycles to access its 
own memory, UNIBUS performance will be 
degraded rather than enhanced. Note, 
however , that the PDP itself has the l.owest 
UNiBUS priority and the WAIT instruction can 
be used to inhibit PDP activity during idle 
periods. 

2. For PDP models (including the PDP-11/04) 
which use the DATIP-DATO (read-modify-write) 
sequence to write to memory, the UBA direct 
data path must be used, resulting in heavier 
traffic on the SBI. Even for models using 
the DATO sequence, the use of a UBA buffered 
data path would destroy the feature of 16 
bit random access to VAX memory by the PDP, 
although one could have 32 or 64 bit access. 
Similarly, for any model, the PDP could 
initiate DMA transfers from I/O devices to 
the VAX through a buffered data path if the 
block size were always in integral units of 
32 or 64 bits, or if the VAX were 
interrupted to purge the data path after DMA 
completion. 

3. VAX buffers which are to be used by the 
PDP must be page aligned in VAX memory since 
the UBA map registers can only map a page of 
VAX memory to a page of UNIBUS address 
space. 

4. A HALT instruction on some PDP models 
(including the PDP-11/04) hangs the UNIBUS 
causing the VAX to crash. Don’t do that. 

5. Access by the PDP to unmapped (and not 
disabled) U!JIBUS addresses also causes the 
VAX to crash. Don’t do that either. 

6. One of the VAX micro-diagnostics gives 
a n error condition when the PDP is 
connected. We have not investigated this 
further, but simply disconnect the PDP 
before running the micro-diagnostics. 

7. Crash recovery is not an important 
aspect of our system and we have not paid 

detailed attention to the relative power up 
and down sequences of the VAX CPU, PDP CPU, 
and UNIBUS adapter. 

8. As previously mentioned, no general 
scheme exists.for the sharing of interrupts. 

9. While i.t is in principle possible to 
share a common I/O device between the VAX 
and the PDP, provision must obviously be 
made in hardware and/or software to handle 
the associated handshaking and lock-out 
problems. 

SUMMARY 

The system described provides a simple means 
of interfacing a PDP-11 computer to a 
VAX-l l/780, and offers the following 
features: 

1. Complete access to the UNIBUS by both 
PDP and VAX computers. 

2. Complete access to PDP memory by the 
VAX. 

3. Limited access to VAX memory by the PDP. 

4. Initiation by the PDP of I/O directly 
from UNIBUS devices to VAX memory. 

5. Availability of RSX-11M facilities on 
the VAX, providing a convenient means of PDP 
program development. 

ACKNOWLEDGEMENTS 

We would like to thank Mr. Rick Casabona, 
of the DEC VAX-11/780 Engineering Group, for 
his advice in this project. 

This work was supported by the Department 
of Energy under contrnct number 
DE-AC03-76SFC0515. 

REFERENCES 

111 Computer Automated Monitoring And 
Control (CAMAC) , IEEE Standard 583-1975. 

[21 Jorway Corporation, Westbury, N.Y. 

[33 Charles Cranieri and Karl Johnson, 
REAL-TIME DATA COLLECTION USING MULTIPLE 
VAX/VMS SYSTEMS, Proceedings of the Digital 
Equipment Users Society, Vol. 5, No. 4, 
April 1979. 

[4] MDB Systems Inc., Orange, California. 

5 


