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ABSTRACT 

Chromodynamics with n flavors of massless quarks is invariant under 

chiral U(n) x U(n). We show that in the limit of large number of colors, 

under reasonable assumptions, this symmetry group must spontaneously 

break down to diagonal U(n). 

Submitted to Physical Review Letters 

Work supported in part by the Department of Energy under contract 
DE-AC03-76SF00515 and by the National Science Foundation under 
Grant No. PHY77-22864. 

** 
Permanent address: Department of Physics, Harvard University. 

*** 
Junior Fellow, Society of Fellows. 



-2- 

In nature, the gauge group of chromodynamics is SU(3), and quarks 

are c&or triplets. Nevertheless, it is useful to consider generaliza- 

tionsinwhich the gauge group is D(N) and quarks are color N-tuplets. 

There are many observed properties of meson dynamics (e.g., Zweig's 

rule) that can be argued to be exact in the large-N limit; it is tempt- 

ing to believe that this indicates that large-N &hromodynamics is in some 

sense a good approximation to the real world. 

In this note we study large-N chromodynamics with n massless quark 

N-tuplets. This theory is invariant2 under the chiral symmetry group 

U(n) X U(n). This group contains many inequivalent subgroups; thus 

group theory allows many possible patterns of spontaneous symmetry 

breakdown. We shall argue here that in the large-N limit, under reason- 

able assumptions, the pattern of chiral symmetry.breakdown is uniquely 

fixed: chiral U(n) X U(n) necessarily breaks down to diagonal U(n). 

Hearteningly, this is the pattern observed in nature. 

Our assumptions are as follows: 

1) We assume that the large-N limit exists, that chromodynamics 

has an asymptotic expansion in powers of l/N. 

2) We assume that chromodynamics confines for arbitratily large N. 

3) We assume that the breakdown of chiral symmetry is character- 

ized by a non-zero value of some order parameter which is 

bilinear in the quark fields and which transforms according to 

the representation (n,;) x (n,n) of the chiral group. 

4) We assume that the ground states of the theory are found by 

minimizing some effective potential, V, an invariant function 
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of the order parameter, constructed in the standard way by 

summing (an infinite number of) connected Feynman graphs. 

5) We assume that in the large-N limit, the effective potential 

does not display accidental degeneracy, that any of its minima 

can be obtained from any other by the action of the chiral 

group. 

Assumptions l), Z), 4), and 5) are more or less standard. Assump- 

tion 3), though, requires comment, because it restricts the pattern of 

symmetry breakdown even before we invoke large-N dynamics. Let us label 

the order parameter by a (not necessarily Hermitian) n x n matrix, M. 

For example, the simplest candidate for M is 

M; = <$i(l+Y5)$j> , (1) 

where i and j are flavor indices, the brackets indicate vacuum expecta- 

tion value, and the sum over (suppressed) color indices is implied. We 

stress that this is just an example; for our purposes some non-local or 

smeared-out version of this will do as well. All we need are the chiral 

transformation properties of M, 

(u, v> : M+uMv+, u,vsU(n) . (2) 

It is easy to show that by a transformation of this form we can always 

make M real, diagonal, and non-negative. The squares of the diagonal 

entries are the eigenvalues of M+M (or, equivalently, of MM+). Thus V 

can depend only on these eigenvalues, and the pattern of chiral symmetry 

breakdown is determined by the pattern of eigenvalues at the minimum of 
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V. For example, if all the eigenvalues vanish at the minimum, there is 

no s;etry breakdown; if they are all equal but non-zero, the symmetry 

breaks down to diagonal U(n); if they are all unequal and non-zero, it 

breaks down to U(l)n, etc. Note that under our assumption, breakdown 

beyond U(l)n is impossible. If we had assumed two order parameters, M 

and M', or if we had assumed different chiral transformation properties 

for the order parameter, further breakdown would have been allowed. 

This concludes our introductory discussion. The remainder of this 

note is the proof of the announced result. 

If we expand V in powers of M and M+, we will encounter terms like 

Tr(MM+)r, Tr(MM+)' Tr(MM+)S, etc. Because traces of quark operators 

arise in Feynman graphs from sums over quark loops, the terms of the 

first kind come from graphs with one quark loop,.those of the second 

kind from graphs with two quark loops, etc. However, it is known' that 

in the large-N limit, connected graphs with L quark loops are O(N 2-L >. 

Thus, the dominant graphs are those with only one quark loop, and, to 

leading order in l/N, 

V = NTrF(MM+) , (3) 

where F is some N-independent function. If we denote the eigenvalues 

of MM+ by Xi, i=l...n, then 

v = CNF(A~) . (4) 
i 

Since the eigenvalues are independent variables, to minimize this sum is 

to minimize each term. Each eigenvalue must be at the minimum of F, and 
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thus the eigenvalues are either all zero (no symmetry breakdown) or all 

equal-and non-zero (breakdown to U(n)). 

We shall now eliminate the first alternative. We shall apply a 

method of analysis recently devised by 't Hooft, 3 based on the Adler- 

Bell-Jackiw anomaly. 4 The simplicity of the large-N theory makes the 

application particularly clean; there is no need of the supplementary 

assumptions required in the examples considered by 't Hooft. 

Let us consider a chiral current 

J1-I = J/A (l+y5) yuljl , 

where A is an nxn Hermitian matrix, and let us define the three-current 

Green's function by 

r yvA(p49r) = / 
d4xd4yeip*xeiq*Y T<jp(x)jv(y)jA(0)> , 

where r is - (p+q). Pis symmetric under simultaneous permutations of 

(p,q,r) and (u,v,A). The anomaly equation 4,~ states that 

rhP 
FtVh = (N/n2)(TrA3)spvhophqo . 

(6) 

(7) 

We will choose A such that Tr A3 is not zero. 

Equation (7) implies that I' cannot be analytic at p=q=r=O. Proof: 

If r is analytic, it has a Taylor expansion, and the right-hand side of 

Eq. (7) must come from a first-order term in this expansion. If we neg- 

lect the permutation symmetry of r, there are two independent first- 

order pseudotensors, 0 E VvxO~o and E I.lvhaq * However, when we symmetrize 

these, each becomes E uvho(p+q+r)o = 0. Q.E.D. 
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It is known that in leading order in l/N, the only singularities 

in Gren's functions made of strings of quark bilinears are poles. 1 For 

a three-bilinear Green's function, like r, these poles are at values of 

P2, q2, and/or r 2 
equal to the masses of the particles made by applying 

the individual bilinears to the vacuum. Because r is not analytic at 

p=q=r=O, jFt must create at least one massless particle when applied to 

the vacuum. If we were dealing tiith massive particles, a vector current 

could create either vector or scalar particles. For massless particles, 

though, Lorentz invariance forbids the creation of vector particles; 

only scalar particles are allowed. 5 But for a conserved current, like 

jll, this is the Goldstone alternative: the current creates a massless 

scalar particle from the vacuum if and only if the associated symmetry 

suffers spontaneous breakdown. . 

Thus the first of our two alternatives, no symmetry breakdown at 

all, is excluded, and only the second, breakdown to diagonal U(n), 

remains. This completes the argument. 

Some comments: Our argument fell into two parts. For the first 

part (either no breakdown or breakdown to U(n)) we did not need assump- 

tion 2), the assumption of confinement. For the second part (exclusion 

of no breakdown), we did not need assumptions 3) to 5). In particular, 

we did not need to assume anything about the chiral transformation prop- 

erties of the order parameter. Regrettably,nopart of our argument 

gives any insight at all into the mechanism of symmetry breakdown. 
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Nuovo Cimento e, 107 (1967); R. Jackiw, in Current Algebra and 
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5. The little group of a null vector, k, is isomorphic to the two- 

dimensional Euclidean group. Under this group, the single helicity 

state of a scalar particle transforms according to the trivial 

representation, while the two helicity states of a vector particle 
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each transform according to non-trivial one-dimensional representa- 

tions. On the other hand, of the four components of the current, 

only the one aligned with k transforms according to a one- 

dimensional representation, the trivial representation. 


