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ABSTRACT 

Renormalization effects for the SU(3)@ SU(2) 0 U(1) invariant 

baryon-number violating operators of lowest dimension are calculated. 
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minimal set is given for nucleon decay processes. 

Submitted to Physical Review D 

': Work supported in part by the Department of Energy under contracts 
DE-AC03-76SF00515 and E(ll-1)3230, and by the Natural Sciences and 
Engineering Research Council of Canada. 



-2- 

1. Introduction 

Renormalization group analyses1 of SU(3), SU(2), and U(1) gauge 

theories have shown that unification of the strong, weak and electro- 

magnetic interactions is possible at a mass scale of order 13 
15 GeV. 

New interactions resulting from this unification may violate baryon 

number conservation as in the SU(5) model of Georgi and Glashow.2'3 

If they do, nucleon decay will provide us with important information 

about these interactions and could help to determine how the SU(3), 

SU(2), and U(1) theories are unified. However, the parameters measured 

in a nucleon decay experiment refer to a mass scale of order the proton 

mass, m , 

1015 Gei. 

whereas the mass scale relevant to grand unified models is 

In this paper, we calculate the SU(3), SU(2), and U(1) 

renormalization effects4 which allow one to relate parameters at these 

two widely different mass scales. 

If nucleon decay is governed by a mass of order 10 
15 GeV, then 

only those baryon number violating operators of lowest possible 

dimension will contribute at an observable rate. Such operators, 

consistent with SU(3) 0 SU(2) 0 U(1) and Lorentz symmetry have been 

enumerated by Weinberg and by Wilczek and Zee.5 In the notation of 

Weinberg, the operators are: 

O(l) = d 
abed ( aaRUBbR >( 'iycL 'jdL Easy " ' ) =J 

o(2) = 
abed ( qiclaL 'j@bL >( UycR'dR)EclBy eij 

o(3) = 
abed ( qiaaLqjf3bL >( 'kycLRRdL ) cclp~'ij skR 

Cl.11 

(1.2) 

(1.3) 

o(4) = 
abed qiclaLqjBbL )( 'kycL '%dL > %3y GE> ij' (&kg (1.4) 
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oc5) = d 
abed ( claRUBbR H UycRRdR 'aBy ) (1.5) 

where a,B,y are SU(3) color indices; i,j,k,R are SU(2) indices; a,b,c,d 

refer to generation numbers and L and R refer to left- and right-handed 

fields. We have used two-component spinor notation in Eqs. (l.l)-(1.5) 

with spinor indices contracted as in the appendix. The correspond- 

ence with four-component spinor notation is given in the appendix. The 

operator O(6) which appears in Ref. 5 can be expressed in terms of 0 (5) 

by the relation 

- '::;d 1 (1.6) 

and therefore need not be considered separately. 

For renormalization group calculations it is useful to take into 

account any relations between the operators being considered. The 

operators 0 (3) and O(4) can be written as the symmetric and antisymmetric 

part (in the first two generation indices) of a single operator. We 

therefore find it most convenient to define an operator 

cc4) = (qaiaLqBjbL abed )( qykcL 'RdL > 'a@y ciR Ejk 

and note that6 

-(4) 
' 'bacd 

(1.7) 

(1.8) 

and 

. (1.9) 

With the relations (1.8) and (1.9) the effective Hamiltonian for nucleon 

decay can be expressed in terms of only four types of operators: 

o(1) ow $4) and 0 (5) 
abed ' abed ' abed abed 

. 
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To avoid'confusion we will retain the original numbering in Eqs. (l.l)- 

(1.5). Thus, no OizLd will occur in our analysis. Note that there are 

still some relations between these remaining operators, namely:6 

o(2) = o(2) 
abed bacd 

and 

$4) 
abed (1.11) 

In terms of the original operators 0 (3) and O(4) Eq. (1.11) becomes 

(3) 
cabd (1.12) 

In the following section, we derive the one loop renormalization 

factors for the operators OLk)d, OLiLd, ELzLd and OizLd from SU(3), SU(2) 

and U(1) interactions, and then apply our results to nucleon decay into 

non-strange and strange final states. We will ignore the 'extremely small 

effects from light Higgs renormalization of the operators. Our results 

allow one to include SU(3), SU(2) and U(1) renormalization effects in 

calculations of nucleon decay rates and branching ratios in grand unified 

models.7 For example, operators of type one and two can occur from vector 

boson exchange while operators of type four and five originate from Higgs 

boson exchange.5 

2. Results 

To determine renormalization effects in a renormalization group 

approach one needs to know the anomalous dimension matrix for the 

operators of interest.* This is determined from the renormalization 



-5- 

Z factors which relate the bare and renormalized operators. In our 

calculation of these Z factors, we have used dimensional regularization 

in n= 4-26: dimensions and minimal subtraction. The calculation was 

performed both in the Landau gauge and in the Feynman gauge (where 

external wave function renormalization must be taken into account). 

Our results are: 

,m” = 
abed 1+ 2 (2) + -&(;)+ ~($]"si, , (2-1) 

,w” 
abed 

$4)O = 
[ 

1+ as 
abed K (2) + 

,(5)O 
abed 

Here a superscript o refers to a 

&g+ &g)]o;gd , (2.2) 

&)+ k(k)] 'f;:d 

+ Qid + e;,) , (2.3) 

o1 
G (') I ':::d 

. (2.4) 

bare operator, os is the SU(3) coupling 

constant, which at some large mass M is given by 

c@f) = c3j 
4lT 

PO log (M2/A2> 
, (2.5) 

and cx 1 and c1 2 are the SU(2) and U(1) couplings related to the electro- 

magnetic coupling oEM at the W-boson mass, MW, by 

+f$J = aEM(M$/Cos2eW (2.6) 

and 

(2.7) 



I 
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Note that under renormalization gLzLd mixes with -(4) 0 c(4) 
bacd' cbad' and 

$4) and OizLd (5) 
acbd - mixes with 0 acbd' 

We apply these results to two relevant cases. First consider 

a=b=c=d=l so that we have operators relevant (apart from Cabibbo 

suppressed modes) to nucleon decay into non-strange final states.g 

In this case there are 

we denote by 

(1) = Ql = Ollll 

and 

only four linearly independent operators which 

( d u aR BR )( UyLeL- 

Q2 = -?Ollll ' (2) = (doLUBL)(UyReR)"aBy 

= ( d clLUBL )( UyLeL 
-d vet 

yL L ) clBv 

= doRUfiR)(UyReR)EeBy ( 

, 

, 

, 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

These do not mix under renormalization. If AyUM,...,AtUM are the tree 

level coefficients of Q,,...,Q, in a grand unified model, then the 

corresponding coefficients at a mass scale of order the proton mass, 

vzm, P 
are given by 
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and 

(2.15) 

"l(%) and a2(MW) are given by Eqs. (2.6) and (2.7), u,(u) is the SU(3) 

running coupling constant evaluated at the renormalization point p = m 
P 

and cxGUM is the grand unified coupling. C is the normalization factor 

between the U(1) of SU(2) @ U(1) and the U(1) subgroup of the grand 

unified gauge group. In SU(5), C2=5/3.10 Renormalization effects due 

to the electromagnetic interactions have been neglected between the 

W-boson mass and the renormalization point mass since ffEMRn (M$u2) 

is a small number. The B-functions are given by:ll 

and 

BO 
(3) = ll- 

5Nf , 

6, =3-3f-z , 
(2) 22 ZN 1 

(1) = 2 
BO 

1 -- 
- FNf 10 , 

(2.16) 

(2.17) 

(2.18) 

when one light Higgs doublet is included. The last terms in Eqs. (2.17) 

and (2.18) are the contributions of the light Higgs doublet. Nf is the 

number of quark flavors. 

Now consider the case of nucleon decay into strange final states.' 

The linearly independent set of operators relevant to this case are 

Qi = o(1) 
2111 

Q; = og, 
, 

, 

(2.19) 

(2.20) 



and 
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Q; = (2) 
O2111 

Qi = ( 
25(4) 

2111 + %) 

4; = ( 
$4) 

2111 
_ $4) 

1211 

Q; = (5) 
O2111 

3 (2.21) 

, (2.22) 

, (2.23) 

. (2.24) 

Qi ,...,Q' have been defined in such a way that they do not mix under 6 

renormalization. Denoting the tree level coefficients of these operators 

in a grand unified model (i.e., the values of the coefficients at the 

, GUM superheavy mass scale) by A1 ,Gm ,***, *6 it follows from Eqs. (2.1)- 

(2.5) that the coefficients determined at 1-1 1: mp are 

Ai(v) = 

“s(ld [ 1 
21 f3A3) A;(d = - 

“GUM 

(2.25) 

and 
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A;(v) = 

(1) 
BO 

IGuM 
A6 (2.30) 

3. Conclusion 

In the previous section we enumerated the linearly independent 

SU(3) @ SU(2) 0 U(1) invariant operators which enter the effective 

Hamiltonian for nucleon decay into strange and nonstrange final states 

and calculated the relationship between their coefficients at the grand 

unified and proton mass scales. A given grand unified theory predicts 

most directly (i.e., from tree level) values of these coefficients at 

the grand unified mass scale. However quark model-type estimates for 

the matrix elements7 of the operators can be expected to be valid at 

the proton mass scale. Thus one must make use of Eqs. (2.12)-(2.15) 

and (2.25)-(2.30) in order to make predictions concerning proton decay 

from a grand unified theory or to extract from future experiments 

information on the physics occuring at the grand unified mass scale. 

Finally, it is worth noting that our analysis is only valid in 

the simplest possible scenerio where there exist only two relevant mass 

scales. It is possible that new physics exists at intermediate mass 

scales. The grand unified group G could break down to SU(3) 0 SU(2) 0 

U(1) in a series of steps G 1 G'3, . . . > SU(3) @ SU(2) 0 U(1) in which 

case one must also calculate, for example, the renormalization of the 

operators due to a G' gauge theory in order to relate the coefficients 

of operators at the grand unified and proton mass scales. 
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APPENDIX 

T"wo component spinors come in two varieties which for fields that 

annihilate particles we refer to as left- and right-handed. These two 

transform under SL(2C) according to representations which are complex 

conjugates of each other. To distinguish these representations we 

denote left-handed fields with an undotted index and right-handed fields 

with a dotted index. Under complex conjugation of the fields undotted 

indices become dotted and vice versa. Either dotted or undotted indices 

may be lowered, raised, or contracted by the antisymmetric s-tensors 

The relationship between the four-component spinor notation and 

the two-component form is as follows. If we write 

and 

with 

Y5 = 

Y PC 

then a four-component spinor can be written as 

(A. 1) 

(A. 2) 

G.3) 

(A.4) 

(A.5) 

(A.61 
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where a bar on a two-component spinor indicates complex conjugation. 

Familiar'bilinears are 

and 

The charge conjugate 4 field is 

where 

(A. 9) 

(A.lO) 

so that for example 

and 

c I) I# = L2 + R2 z LaLa + R&R' (A.ll) 

c5 - L2 + R2 : 
. 

$rvJ= - L"L, + R&R" . (A.12) 

These formulas can be used to express the operators defined in Eqs. 

(l.l)-(1.6) in four-component form. 

In order to prove some of the identities involving the operators 

(l.l)-(1.5) and to calculate the renormalization effects one needs the 

Fierz transformation rules: 

(A.13) 

x CRciVvBR)) ( (A.14) 
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PLBLPLDL) = -#LDL)(CLBL) 

+ SL” 1J.v DL)(CL 2v BL )I 

where 

. 
u uv = - 5 y%J- %yJ ( - -> 

and 

0 I.lv = $ yPv- v p (- a u > 

(A.15) 

(A.16) 

(A.17) 

It is also useful to note that 

PR 
u uvBR = > ( - BR+lt) ’ 

(A.18) 

and 

P-L yAv BL) = -PL ydL) , (A.19) 

(AZ uFr BR) = -(BR a' AL) , (A.20) 

(AR Epv BR)(CLoVvDL) = 0 . (A.21) 

Eqs. (A.13)-(A.21) can be used to write all SU(3) @ SU(2) @U(l) 

invariant baryon number violating nucleon decay operators (of lowest 

possible dimension) as linear combinations of those in Eqs. (l.l)-(1.5). 
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