THE EFFECTIVE HAMILTONIAN FOR NUCLEON DECAY*

L. F. Abbott
Department of Physics
Brandeis University, Waltham, Massachusetts 02254
and
Mark B. Wise
Stanford Linear Accelerator Center
Stanford University, Stanford, California 94305

Abstract

Renormalization effects for the $S U(3) \otimes S U(2) \otimes U(1)$ invariant baryon-number violating operators of lowest dimension are calculated. Linear relations involving these operators are presented and a minimal set is given for nucleon decay processes.

Submitted to Physical Review D

[^0]
1. Introduction

Renormalization group analyses ${ }^{1}$ of $\mathrm{SU}(3), \mathrm{SU}(2)$, and $\mathrm{U}(1)$ gauge theories have shown that unification of the strong, weak and electromagnetic interactions is possible at a mass scale of order $10^{15} \mathrm{GeV}$. New interactions resulting from this unification may violate baryon number conservation as in the $\operatorname{SU}(5)$ model of Georgi and Glashow. ${ }^{2,3}$ If they do, nucleon decay will provide us with important information about these interactions and could help to determine how the $\operatorname{SU}(3)$, $\operatorname{SU}(2)$, and $\mathrm{U}(1)$ theories are unified. However, the parameters measured in a nucleon decay experiment refer to a mass scale of order the proton mass, m_{p}, whereas the mass scale relevant to grand unified models is $10^{15} \mathrm{GeV}$. In this paper, we calculate the $\operatorname{SU}(3), \operatorname{SU}(2)$, and $U(1)$ renormalization effects ${ }^{4}$ which allow one to relate parameters at these two widely different mass scales.

If nucleon decay is governed by a mass of order $10^{15} \mathrm{GeV}$, then only those baryon number violating operators of lowest possible dimension will contribute at an observable rate. Such operators, consistent with $S U(3) \otimes S U(2) \otimes U(1)$ and Lorentz symmetry have been enumerated by Weinberg and by Wilczek and Zee. ${ }^{5}$ In the notation of Weinberg, the operators are:

$$
\begin{align*}
& o_{a b c d}^{(1)}=\left(d_{\alpha a R} u_{\beta b R}\right)\left(q_{i \gamma c L}{ }^{\ell}{ }_{j d L}\right) \varepsilon_{\alpha \beta \gamma} \varepsilon_{i j} \tag{1.1}\\
& 0_{a b c d}^{(2)}=\left(q_{i \alpha a L} q_{j \beta b L}\right)\left(u_{\gamma c R}{ }^{\ell}{ }_{d R}\right) \varepsilon_{\alpha \beta \gamma} \varepsilon_{i j} \tag{1.2}\\
& 0_{a b c d}^{(3)}=\left(q_{i \alpha a L} q_{j \beta b L}\right)\left(q_{k \gamma c L}{ }_{\ell d L}\right) \varepsilon_{\alpha \beta \gamma} \varepsilon_{i j} \varepsilon_{k \ell} \tag{1.3}\\
& 0_{a b c d}^{(4)}=\left(q_{i \alpha a L} q_{j \beta b L}\right)\left(q_{k \gamma c L}{ }_{\ell d L}\right) \varepsilon_{\alpha \beta \gamma}(\vec{\tau} \varepsilon)_{i j} \cdot(\vec{\tau} \varepsilon)_{k \ell} \tag{1.4}
\end{align*}
$$

$$
\begin{equation*}
0_{a b c d}^{(5)}=\left(d_{\alpha a R^{\prime}}^{u_{\beta b R}}\right)\left(u_{\gamma c R^{\ell}}^{d R}\right)_{\alpha \beta \gamma} \tag{1.5}
\end{equation*}
$$

where α, β, γ are $\operatorname{SU}(3)$ color indices; i, j, k, ℓ are $S U(2)$ indices; a, b, c, d refer to generation numbers and L and R refer to left- and right-handed fields. We have used two-component spinor notation in Eqq. (1.1)-(1.5) with spinor indices contracted as in the appendix. The correspondence with four-component spinor notation is given in the appendix. The operator $0^{(6)}$ which appears in Ref. 5 can be expressed in terms of $0^{(5)}$ by the relation

$$
0_{a b c d}^{(6)}=\left[\begin{array}{c}
0_{\text {cbad }}^{(5)}-0_{\text {cabd }}^{(5)} \tag{1.6}
\end{array}\right]
$$

and therefore need not be considered separately.
For renormalization group calculations it is useful to take into account any relations between the operators being considered. The operators $0^{(3)}$ and $0^{(4)}$ can be written as the symmetric and antisymmetric part (in the first two generation indices) of a single operator. We therefore find it most convenient to define an operator

$$
\begin{equation*}
\tilde{0}_{a b c d}^{(4)}=\left(q_{\alpha i a L} q_{\beta j b L}\right)\left(q_{\gamma k c L} \ell_{\ell d L}\right) \varepsilon_{\alpha \beta \gamma} \varepsilon_{i \ell} \varepsilon_{j k} \tag{1.7}
\end{equation*}
$$

and note that ${ }^{6}$

$$
\begin{equation*}
0_{a b c d}^{(3)}=-\left(\tilde{0}_{\text {abcd }}^{(4)}+\tilde{0}_{\text {bacd }}^{(4)}\right) \tag{1.8}
\end{equation*}
$$

and

$$
\begin{equation*}
0_{a b c d}^{(4)}=-\left(\tilde{0}_{\text {abcd }}^{(4)}-\tilde{0}_{\text {bacd }}^{(4)}\right) \tag{1.9}
\end{equation*}
$$

With the relations (1.8) and (1.9) the effective Hamiltonian for nucleon decay can be expressed in terms of only four types of operators:

$$
0_{a b c d}^{(1)}, \quad 0_{a b c d}^{(2)}, \quad \tilde{0}_{\text {abcd }}^{(4)} \text { and } 0_{a b c d}^{(5)}
$$

To avoid'confusion we will retain the original numbering in Eqs. (1.1)(1.5). Thus, no $0_{\text {abcd }}^{(3)}$ will occur in our analysis. Note that there are still some relations between these remaining operators, namely: ${ }^{6}$

$$
\begin{equation*}
o_{a b c d}^{(2)}=o_{\text {bacd }}^{(2)} \tag{1.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{0}_{\text {abcd }}^{(4)}+\tilde{o}_{\text {bacd }}^{(4)}-\tilde{o}_{\text {cabd }}^{(4)}-\tilde{0}_{\text {cbad }}^{(4)}=0 \tag{1.11}
\end{equation*}
$$

In terms of the original operators $0^{(3)}$ and $0^{(4)} \mathrm{Eq} \cdot(1.11)$ becomes

$$
\begin{equation*}
0_{\text {abcd }}^{(3)}=\frac{1}{2}\left(0_{\text {cabd }}^{(3)}+0_{c a b d}^{(4)}+0_{c b a d}^{(3)}+0_{\text {cbad }}^{(4)}\right) \tag{1.12}
\end{equation*}
$$

In the following section, we derive the one loop renormalization factors for the operators $0_{a b c d}^{(1)}, 0_{a b c d}^{(2)}, \tilde{O}_{a b c d}^{(4)}$ and $O_{a b c d}^{(5)}$ from $S U(3)$, $S U(2)$ and $U(1)$ interactions, and then apply our results to nucleon decay into non-strange and strange final states. We will ignore the extremely small effects from light Higgs renormalization of the operators. Our results allow one to include $\mathrm{SU}(3), \mathrm{SU}(2)$ and $\mathrm{U}(1)$ renormalization effects in calculations of nucleon decay rates and branching ratios in grand unified models. ${ }^{7}$ For example, operators of type one and two can occur from vector boson exchange while operators of type four and five originate from Higgs boson exchange. ${ }^{5}$

2. Results

To determine renormalization effects in a renormalization group approach one needs to know the anomalous dimension matrix for the operators of interest. 8 This is determined from the renormalization
Z factors which relate the bare and renormalized operators. In our calculation of these Z factors, we have used dimensional regularization in $n=4-2 \varepsilon$ dimensions and minimal subtraction. The calculation was performed both in the Landau gauge and in the Feynman gauge (where external wave function renormalization must be taken into account). Our results are:

$$
\begin{align*}
& { }_{o}^{(1)^{o}}=\left[1+\frac{\alpha_{s}}{4 \pi \varepsilon}(2)+\frac{\alpha_{2}}{4 \pi \varepsilon}\left(\frac{9}{4}\right)+\frac{\alpha_{1}}{4 \pi \varepsilon}\left(\frac{11}{12}\right)\right] 0_{\mathrm{abcd}}^{(1)}, \tag{2.1}\\
& 0_{a b c d}^{(2)^{o}}=\left[1+\frac{\alpha_{s}}{4 \pi \varepsilon}(2)+\frac{\alpha_{2}}{4 \pi \varepsilon}\left(\frac{9}{4}\right)+\frac{\alpha_{1}}{4 \pi \varepsilon}\left(\frac{23}{12}\right)\right] 0_{\mathrm{abcd}}^{(2)}, \tag{2.2}\\
& \tilde{0}_{\text {abcd }}^{(4)^{o}}=\left[1+\frac{\alpha_{s}}{4 \pi \varepsilon}(2)+\frac{\alpha_{2}}{4 \pi \varepsilon}\left(\frac{3}{2}\right)+\frac{\alpha_{1}}{4 \pi \varepsilon}\left(\frac{1}{6}\right)\right] \underset{\text { abcd }}{(4)} \\
& +\frac{\alpha_{2}}{4 \pi \alpha}(2)\left(\tilde{o}_{\text {bacd }}^{(4)}+\tilde{o}_{\text {cbad }}^{(4)}+\tilde{o}_{\text {acbd }}^{(4)}\right) \tag{2.3}\\
& { }_{\mathrm{O}}^{(5)^{o}}=\left[1+\frac{\alpha_{s}}{4 \pi \varepsilon}(2)+\frac{\alpha_{1}}{4 \pi \varepsilon}(1)\right] 0_{\text {abcd }}^{(5)} \\
& +\frac{\alpha_{1}}{4 \pi \varepsilon}\left(\frac{10}{3}\right) 0_{\text {acbd }}^{(5)} \tag{2.4}
\end{align*}
$$

Here a superscript o refers to a bare operator, α_{S} is the $\operatorname{SU}(3)$ coupling constant, which at some large mass M is given by

$$
\begin{equation*}
\alpha_{s}(M)=\frac{4 \pi}{\beta_{0}^{(3)} \log \left(M^{2} / \Lambda^{2}\right)} \tag{2.5}
\end{equation*}
$$

and α_{1} and α_{2} are the $S U(2)$ and $U(1)$ couplings related to the electromagnetic coupling $\alpha_{E M}$ at the W-boson mass, M_{W}, by

$$
\begin{equation*}
\alpha_{1}\left(M_{W}\right)=\alpha_{E M}\left(M_{W}\right) / \cos ^{2} \theta_{W} \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha_{2}\left(M_{W}\right)=\alpha_{E M}\left(M_{W}\right) / \sin ^{2} \theta_{W} \tag{2.7}
\end{equation*}
$$

Note that under renormalization $\tilde{\mathrm{O}}_{\text {abcd }}^{(4)}$ mixes with $\tilde{\mathrm{O}}_{\text {bacd }}^{(4)}, \tilde{\mathrm{O}}_{\text {cbad }}^{(4)}$, and $\tilde{\mathrm{o}}_{\mathrm{acbd}}^{(4)}$ and $\mathrm{O}_{\mathrm{abcd}}^{(5)}$ mixes with $\mathrm{O}_{\mathrm{acbd}}^{(5)}$.

We apply these results to two relevant cases. First consider $\mathrm{a}=\mathrm{b}=\mathrm{c}=\mathrm{d}=1$ so that we have operators relevant (apart from Cabibbo suppressed modes) to nucleon decay into non-strange final states. ${ }^{9}$ In this case there are only four linearly independent operators which we denote by

$$
\begin{align*}
& Q_{1}=o_{1111}^{(1)}=\left(d_{\alpha R} u_{\beta R}\right)\left(u_{\gamma L} e_{L}-d_{\gamma L}{ }_{L}^{e}\right) \varepsilon_{\alpha \beta \gamma}, \tag{2.8}\\
& Q_{2}=-\frac{1}{2} o_{1111}^{(2)}=\left(d_{\alpha L} u_{\beta L}\right)\left(u_{\gamma R} e_{R}\right) \varepsilon_{\alpha \beta \gamma}, \tag{2.9}\\
& Q_{3}=\tilde{o}_{1111}^{(4)}=\left(d_{\alpha L} u_{\beta L}\right)\left({ }_{\gamma L} e_{L}-d_{\gamma L}{ }_{L}^{e}\right) \varepsilon_{\alpha \beta \gamma}, \tag{2.10}
\end{align*}
$$

and

$$
\begin{equation*}
Q_{4}=0_{1111}^{(5)}=\left(d_{\alpha R} u_{\beta R}\right)\left(u_{\gamma R} e_{R}\right) \varepsilon_{\alpha \beta \gamma} \tag{2.11}
\end{equation*}
$$

These do not mix under renormalization. If $A_{1}^{G U M}, \ldots, A_{4}^{G U M}$ are the tree level coefficients of Q_{1}, \ldots, Q_{4} in a grand unified model, then the corresponding coefficients at a mass scale of order the proton mass, $\mu \simeq m_{p}$, are given by

$$
\begin{equation*}
A_{1}(\mu)=\left[\frac{\alpha_{s}(\mu)}{\alpha_{G U M}}\right]^{2 / \beta_{0}^{(3)}}\left[\frac{\alpha_{2}\left(M_{W}\right)}{\alpha_{G U M}}\right]^{9 / 4 \beta_{0}^{(2)}}\left[\frac{C^{2} \alpha_{1}\left(M_{W}\right)}{\alpha_{G U M}}\right]^{11 / 12 C^{2} \beta_{0}^{(1)}} A_{1}^{\text {GUM }}, \tag{2.12}
\end{equation*}
$$

$A_{2}(\mu)=\left[\frac{\alpha_{S}(\mu)}{\alpha_{G U M}}\right]^{2 / \beta_{0}^{(3)}}\left[\frac{\alpha_{2}\left(M_{W}\right)}{\alpha_{G U M}}\right]^{9 / 4 B_{0}^{(2)}}\left[\frac{c^{2} \alpha_{1}\left(M_{W}\right)}{\alpha_{G U M}}\right]^{23 / 12 C^{2} \beta_{0}^{(I)}} A_{2}^{G U M}$,
$A_{3}(\mu)=\left[\frac{\alpha_{S}(\mu)}{\alpha_{G U M}}\right]^{2 / \beta_{0}^{(3)}}\left[\frac{\alpha_{2}\left(M_{W}\right)}{\alpha_{G U M}}\right]^{15 / 2 \beta_{0}^{(2)}}\left[\frac{c^{2} \alpha_{1}\left(M_{W}\right)}{\alpha_{G U M}}\right]^{1 / 6 C^{2} \beta_{0}^{(1)}}{ }^{0} A_{3}^{G U M}$,
and

$$
\begin{equation*}
\rightarrow A_{4}(\mu)=\left[\frac{\alpha_{S}(\mu)}{\alpha_{G U M}}\right]^{2 / \beta_{0}^{(3)}}\left[\frac{C^{2} \alpha_{1}\left(M_{W}\right)}{\alpha_{G U M}}\right]^{13 / 3 C^{2} \beta_{0}^{(1)}}{ }_{0}^{G U M} . \tag{2.15}
\end{equation*}
$$

$\alpha_{1}\left(M_{W}\right)$ and $\alpha_{2}\left(M_{W}\right)$ are given by Eqs. (2.6) and (2.7), $\alpha_{S}(\mu)$ is the $S U(3)$ running coupling constant evaluated at the renormalization point $\mu \simeq m_{p}$ and $\alpha_{G U M}$ is the grand unified coupling. C is the normalization factor between the $U(1)$ of $S U(2) \otimes U(1)$ and the $U(1)$ subgroup of the grand unified gauge group. In $S U(5), C^{2}=5 / 3.10$ Renormalization effects due to the electromagnctic interactions have been neglected between the W-boson mass and the renormalization point mass since $\alpha_{E M} \ln \left(M_{W}^{2} / \mu^{2}\right)$ is a small number. The β-functions are given by: ${ }^{11}$

$$
\begin{align*}
& \beta_{0}^{(3)}=11-\frac{2}{3} N_{f} \tag{2.16}\\
& \beta_{0}^{(2)}=\frac{22}{3}-\frac{2}{3} N_{f}-\frac{1}{6} \tag{2.17}
\end{align*}
$$

and

$$
\begin{equation*}
\beta_{0}^{(1)}=-\frac{2}{3} N_{f}-\frac{1}{10} \tag{2.18}
\end{equation*}
$$

when one light Higgs doublet is included. The last terms in Eqs. (2.17) and (2.18) are the contributions of the light Higgs doublet. Nf is the number of quark flavors.

Now consider the case of nucleon decay into strange final states. ${ }^{9}$ The linearly independent set of operators relevant to this case are

$$
\begin{align*}
& Q_{1}^{\prime}=0_{2111}^{(1)} \tag{2.19}\\
& Q_{2}^{\prime}=0_{1121}^{(1)} \tag{2.20}
\end{align*}
$$

$$
\begin{align*}
& Q_{3}^{\prime}=o_{2111}^{(2)} \tag{2.21}\\
& Q_{4}^{\prime}=\left(2 \tilde{o}_{2111}^{(4)}+\tilde{o}_{1211}^{(4)}\right) \tag{2.22}\\
& Q_{5}^{\prime}=\left(\tilde{o}_{2111}^{(4)}-\tilde{o}_{1211}^{(4)}\right) \tag{2.23}
\end{align*}
$$

and

$$
\begin{equation*}
Q_{6}^{\prime}=o_{2111}^{(5)} \tag{2.24}
\end{equation*}
$$

$Q_{1}^{\prime}, \ldots, Q_{6}^{\prime}$ have been defined in such a way that they do not mix under renormalization. Denoting the tree level coefficients of these operators in a grand unified model (i.e., the values of the coefficients at the superheavy mass scale) by $A_{1}^{\prime G U M}, \ldots, A_{6}^{\prime G U M}$ it follows from Eqs. (2.1)(2.5) that the coefficients determined at $\mu \simeq m_{p}$ are

$$
\begin{equation*}
A_{1}^{\prime}(\mu)=\left[\frac{\alpha_{S}(\mu)}{\alpha_{G U M}}\right]^{2 / \beta_{0}^{(3)}}\left[\frac{\alpha_{2}\left(M_{W}\right)}{\alpha_{G U M}}\right]^{9 / 4 \beta_{0}^{(2)}}\left[\frac{C^{2} \alpha_{1}\left(M_{W}\right)}{\alpha_{G U M}}\right]^{11 / 12 C^{2} B_{0}^{(1)}}{ }^{1} A_{1}^{\text {GUM }}, \tag{2.25}
\end{equation*}
$$

$A_{2}^{\prime}(\mu)=\left[\frac{\alpha_{S}(\mu)}{\alpha_{G U M}}\right]^{2 / \beta_{0}^{(3)}}\left[\frac{\alpha_{2}\left(M_{W}\right)}{\alpha_{G U M}}\right]^{9 / 4 \beta_{0}^{(2)}}\left[\frac{C^{2} \alpha_{1}\left(M_{W}\right)}{\alpha_{G U M}}\right]^{11 / 12 C^{2} \beta_{0}^{(1)}}{ }_{0}^{A_{2}^{\prime}}{ }_{2}^{\text {GUM }}$,
$A_{3}^{\prime}(\mu)=\left[\frac{\alpha_{S}(\mu)}{\alpha_{G U M}}\right]^{2 / \beta_{0}^{(3)}}\left[\frac{\alpha_{2}\left(M_{W}\right)}{\alpha_{G U M}}\right]^{9 / 4 \beta_{0}^{(2)}}\left[\frac{C^{2} \alpha_{1}\left(M_{W}\right)}{\alpha_{G U M}}\right]^{23 / 12 C^{2} \beta_{0}^{(1)}} 0_{0} A_{3}^{\prime G U M}$,
$A_{4}^{\prime}(\mu)=\left[\frac{\alpha_{S}(\mu)}{\alpha_{G U M}}\right]^{2 / \beta_{0}^{(3)}}\left[\frac{\alpha_{2}\left(M_{W}\right)}{\alpha_{G U M}}\right]^{15 / 2 \beta_{0}^{(2)}}\left[\frac{C^{2} \alpha_{1}\left(M_{W}\right)}{\alpha_{G U M}}\right]^{1 / 6 C^{2} \beta_{0}^{(1)}}{ }^{\text {GUM }}$,
$A_{5}^{\prime}(\mu)=\left[\frac{\alpha_{S}(\mu)}{\alpha_{G U M}}\right]^{2 / \beta_{0}^{(3)}}\left[\frac{\alpha_{2}\left(M_{W}\right)}{\alpha_{G U M}}\right]^{3 / 2 \beta_{0}^{(2)}}\left[\frac{C^{2} \alpha_{1}\left(M_{W}\right)}{\alpha_{G U M}}\right]^{1 / 6 C^{2} \beta_{0}^{(1)}}{ }^{1} A_{5}^{\prime G U M}$
and

$$
\begin{equation*}
\rightarrow A_{6}^{\prime}(\mu)=\left[\frac{\alpha_{S}(\mu)}{\alpha_{G U M}}\right]^{2 / \beta_{0}^{(3)}}\left[\frac{C^{2} \alpha_{1}\left(M_{W}\right)}{\alpha_{G U M}}\right]^{13 / 3 C^{2} \beta_{0}^{(1)}} A_{6}^{\prime} \text { GUM } \tag{2.30}
\end{equation*}
$$

3. Conclusion

In the previous section we enumerated the linearly independent $S U(3) \otimes S U(2) \otimes U(1)$ invariant operators which enter the effective Hamiltonian for nucleon decay into strange and nonstrange final states and calculated the relationship between their coefficients at the grand unified and proton mass scales. A given grand unified theory predicts most directly (i.e., from tree level) values of these coefficients at the grand unified mass scale. However quark model-type estimates for the matrix elements ${ }^{7}$ of the operators can be expected to be valid at the proton mass scale. Thus one must make use of Eqs. (2.12)-(2.15) and (2.25)-(2.30) in order to make predictions concerning proton decay from a grand unified theory or to extract from future experiments information on the physics occuring at the grand unified mass scale.

Finally, it is worth noting that our analysis is only valid in the simplest possible scenerio where there exist only two relevant mass scales. It is possible that new physics exists at intermediate mass scales. The grand unified group G could break down to $\operatorname{SU}(3) \otimes \operatorname{SU}(2) \otimes$ $U(1)$ in a series of steps $G \supset G^{\prime} \supset \ldots \supset \operatorname{SU}(3) \otimes \operatorname{SU}(2) \otimes U(1)$ in which case one must also calculate, for example, the renormalization of the operators due to $a G^{\prime}$ gauge theory in order to relate the coefficients of operators at the grand unified and proton mass scales.

ACKNOWLEDGEMENTS

Author MBW thanks H. Schnitzer, the Brandeis Physics Department and Cathy Abbott for their hospitality during a visit when much of this work was done. Research supported by Department of Energy contracts DE-AC03-76SF00515 and E(11-1) 3230 (LFA) and by the Natural Sciences and Engineering Research Council of Canada (MBW).

APPENDIX

Two component spinors come in two varieties which for fields that annihilate particles we refer to as left- and right-handed. These two transform under $\mathrm{SL}(2 \mathrm{C})$ according to representations which are complex conjugates of each other. To distinguish these representations we denote left-handed fields with an undotted index and right-handed fields with a dotted index. Under complex conjugation of the fields undotted indices become dotted and vice versa. Either dotted or undotted indices may be lowered, raised, or contracted by the antisymmetric ε-tensors $\varepsilon_{\alpha \beta}=\varepsilon^{\alpha \beta}=\varepsilon_{\dot{\alpha} \dot{\beta}}=\varepsilon^{\dot{\alpha} \dot{\beta}}$.

The relationship between the four-component spinor notation and the two-component form is as follows. If we write

$$
\gamma_{5}=\left(\begin{array}{cc}
-1 & 0 \tag{A.1}\\
0 & 1
\end{array}\right)
$$

and

$$
\gamma^{\mu}=\left(\begin{array}{cc}
0 & \sigma^{\mu} \tag{A.2}\\
\bar{\sigma}^{\mu} & 0
\end{array}\right)
$$

with

$$
\begin{align*}
& \sigma^{\mu}=(1, \vec{\sigma})=\left(\sigma^{\mu}\right)_{\alpha \dot{\alpha}} \tag{A.3}\\
& \bar{\sigma}^{\mu}=(1,-\vec{\sigma})=\left(\bar{\sigma}^{\mu}\right)^{\dot{\alpha} \alpha} \tag{A.4}
\end{align*}
$$

then a four-component spinor can be written as

$$
\begin{align*}
& \psi=\binom{L_{\alpha}}{R^{\dot{\alpha}}} \tag{A.5}\\
& \bar{\psi}=\left(\bar{R}^{\alpha} \bar{L}_{\dot{\alpha}}\right) \tag{A.6}
\end{align*}
$$

where a bar on a two-component spinor indicates complex conjugation. Familiar'bilinears are

$$
\begin{equation*}
-\bar{\psi} \psi=\overline{\mathrm{R}} \mathrm{~L}+\overline{\mathrm{L} R} \equiv \overline{\mathrm{R}}^{\alpha_{\alpha}}+\overline{\mathrm{L}}_{\dot{\alpha} \cdot} \mathrm{R}^{\dot{\alpha}} \tag{A.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{\psi} \gamma_{\mu} \psi=\overline{\mathrm{R}} \sigma_{\mu} \mathrm{R}+\overline{\mathrm{T}}_{\mu} \bar{\sigma}_{\mu} \mathrm{L} \equiv \overline{\mathrm{R}}^{\alpha}\left(\sigma_{\mu}\right)_{\alpha \dot{\alpha}} \mathrm{R}^{\dot{\alpha}}+\overline{\mathrm{L}}_{\dot{\alpha}}\left(\bar{\sigma}_{\mu}\right)^{\dot{\alpha} \alpha} \mathrm{L}_{\alpha} . \tag{A.8}
\end{equation*}
$$

The charge conjugate 4 field is

$$
\begin{equation*}
\psi^{c}=\binom{\bar{R}_{\alpha}}{\overline{\mathrm{L}} \dot{\dot{\alpha}}}, \quad \overline{\psi^{c}}=\left(\mathrm{L}^{\alpha^{\prime}} \mathrm{R}_{\dot{\alpha}}\right) \tag{A.9}
\end{equation*}
$$

where

$$
\begin{equation*}
\overline{\mathrm{R}}_{\alpha}=\overline{\mathrm{R}}^{\beta} \varepsilon_{\beta \alpha}, \overline{\mathrm{L}}^{\dot{\alpha}}=\varepsilon^{\dot{\alpha} \dot{\beta}} \overline{\mathrm{L}}_{\dot{\beta}}, \mathrm{L}^{\alpha}=\varepsilon^{\alpha \beta} \mathrm{L}_{\beta}, \mathrm{R}_{\dot{\alpha}}=\mathrm{R}^{\dot{\beta}} \varepsilon_{\dot{\beta} \dot{\alpha}} \tag{A.10}
\end{equation*}
$$

so that for example

$$
\begin{equation*}
\bar{\psi}^{c} \psi=L^{2}+R^{2} \equiv L^{\alpha} L_{\alpha}+R \dot{\alpha}^{R^{\dot{\alpha}}} \tag{A.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{\psi}^{c} \gamma^{5} \psi=-L^{2}+R^{2} \equiv-L^{\alpha} L_{\alpha}+R_{\dot{\alpha}^{R}} R^{\dot{\alpha}} . \tag{A.12}
\end{equation*}
$$

These formulas can be used to express the operators defined in Eqs. (1.1)-(1.6) in four-component form.

In order to prove some of the identities involving the operators (1.1)-(1.5) and to calculate the renormalization effects one needs the Fierz transformation rules:

$$
\begin{align*}
\left(A_{R} B_{R}\right)\left(C_{L} D_{L}\right) & =-\frac{1}{2}\left(\Lambda_{R} \bar{\sigma}_{\mu} D_{L}\right)\left(C_{L} \sigma^{\mu} B_{R}\right) \tag{A.13}\\
\left(A_{R} B_{R}\right)\left(C_{R} D_{R}\right) & =-\frac{1}{2}\left\{\left(A_{R} D_{R}\right)\left(C_{R} B_{R}\right)+\frac{1}{4}\left(A_{R} \bar{\sigma}_{\mu \nu} D_{R}\right)\right. \\
& \left.\times\left(C_{R} \bar{\sigma}^{\mu \nu} B_{R}\right)\right\} \tag{A.14}
\end{align*}
$$

$$
\begin{align*}
\left(A_{L} B_{L}\right)\left(C_{L} D_{L}\right) & =-\frac{1}{2}\left\{\left(A_{L} D_{L}\right)\left(C_{L} B_{L}\right)\right. \\
& \left.+\frac{1}{4}\left(A_{L} \sigma_{\mu \nu} D_{L}\right)\left(C_{L} \sigma^{\mu \nu} B_{L}\right)\right\} \tag{A.15}
\end{align*}
$$

where

$$
\begin{equation*}
\sigma_{\mu \nu}=\frac{i}{2}\left(\sigma_{\mu} \bar{\sigma}_{\nu}-\sigma_{\nu} \bar{\sigma}_{\mu}\right) \tag{A.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{\sigma}_{\mu \nu}=\frac{i}{2}\left(\bar{\sigma}_{\mu} \sigma_{\nu}-\bar{\sigma}_{\nu} \sigma_{\mu}\right) \tag{A.17}
\end{equation*}
$$

It is also useful to note that

$$
\begin{align*}
& \left(A_{R} \bar{\sigma}_{\mu \nu} B_{R}\right)=-\left(B_{R} \bar{\sigma}_{\mu \nu} A_{R}\right) \tag{A.18}\\
& \left(A_{L} \sigma_{\mu \nu} B_{L}\right)=-\left(B_{L}{ }_{\mu \nu} A_{L}\right) \tag{A.19}\\
& \left(A_{L} \sigma^{\mu} B_{R}\right)=-\left(B_{R} \bar{\sigma}^{\mu} A_{L}\right) \tag{A.20}
\end{align*}
$$

and

$$
\begin{equation*}
\left(A_{R} \bar{\sigma}_{\mu \nu} B_{R}\right)\left(C_{L} \sigma^{\mu \nu} D_{L}\right)=0 \tag{A.21}
\end{equation*}
$$

Eqs. (A.13)-(A.21) can be used to write all $\mathrm{SU}(3) \otimes \mathrm{SU}(2) \otimes \mathrm{U}(1)$ invariant baryon number violating nucleon decay operators (of lowest possible dimension) as linear combinations of those in Eqs. (1.1)-(1.5).

REFERENCES

1. H*: Georgi, H. R. Quinn and S. Weinberg, Phys. Rev. Lett. 33, 451 (1974); W. J. Marciano, Phys. Rev. D20, 274 (1979); D. A. Ross, Nucl. Phys. B140, 1 (1978); T. J. Goldman and D. A. Ross, Phys. Lett. 84B, 208 (1979); L. Hall, Harvard University preprint (in preparation).
2. H. Georgi and S. L. Glashow, Phys. Rev. Lett. 32, 438 (1974).
3. For other grand unified models see: J. C. Pati and A. Salam, Phys. Rev. D8, 1240 (1973); H. Georgi, in Particles and Fields 1974, ed. by C. E. Carlson, AIP Conference Proceedings No. 23 (American Institute of Physics, New York, 1975); H. Fritzsch and L. Minkowski, Ann. Phys. (N.Y.) 93, 193 (1975); H. Georgi and D. V. Nanopoulos, Phys. Lett. 82B, 392 (1979) and Nuc1. Phys. B155, 52 (1979); F. Gursey, P. Ramond and P. Sikivie, Phys. Lett. 60B, 177 (1976); F. Gursey and P. Sikivie, Phys. Rev. Lett. 36, 775 (1976); P. Ramond, Nuc1. Phys. B110, 214 (1976); P. Sikivie and F. Gursey, Phys. Rev. D16, 816 (1977).
4. The renormalization effects for $0^{(1)}$ and $0^{(2)}$ have already been calculated. See: A. J. Buras, J. E11is, M. K. Gaillard and D. V. Nanopolous, Nuc1. Phys. B135, 66 (1978); J. E11is, M. K. Gaillard and D. V. Nanopoulos, Phys. Lett. 88B, 320 (1979);
F. Wilczek and A. Zee, Phys. Rev. Lett. 43, 1571 (1979).
5. S. Weinberg, Phys. Rev. Lett. 43, 1566 (1979); F. Wilczek and A. Zee, Phys. Rev. Lett. 43, 1571 (1979).
6. These relations come from using the identities in the appendix and from the identity

$$
\varepsilon_{i j} \varepsilon_{k \ell}-\varepsilon_{k j} \varepsilon_{i \ell}+\varepsilon_{i k} \varepsilon_{\ell j}=0
$$

This can be proved by noting that the L.H.S. is completely antisymmetric on its four indices i, j, k, ℓ and thus is zero since each indice only takes on two values. We thank B. Ovrut for pointing out this simple proof.
7. M. Machacek, Nuc1. Phys. B159, 37 (1979); J. F. Donoghue, MIT preprint CTP \#824 (1979), unpublished; C. Jarlskog and F. Yndurain, Nuc1. Phys. B149, 29 (1979).
8. For an excellent review see D. Gross in Methods in Field Theory (C. R. Balian and J. Zinn - Justin editors, North Holland, 1976).
9. We have written the operators for a positron or electron antineutrino in the final state. Our results hold equally well for $d=2$ in which case there is a anti-muon or muon anti-neutrino in the final state. Note also that the quark fields d_{L} and s_{L} are weak eigenstates and related to the mass eigenstates d_{L}^{\prime}, s_{L}^{\prime} by the rotation:

$$
\binom{d_{L}}{s_{L}}=\left(\begin{array}{cc}
\cos \theta_{c} & \sin \theta_{c} \\
-\sin \theta_{c} & \cos \theta_{c}
\end{array}\right)\binom{d_{L}^{\prime}}{s_{L}^{\prime}}
$$

10. It is possible that such a C factor could enter into the relations of the $\operatorname{SU}(3)$ or $\operatorname{SU}(2)$ couplings as well. These could be accomodated in a similar manner.
11. H. D. Politzer, Phys. Rev. Lett. 30, 1346 (1973); D. J. Gross and F. Wilczek, Phys. Rev. Lett. 30, 1343 (1973); A. J. Buras et al., Ref. 4.

[^0]: * Work supported in part by the Department of Energy under contracts DE-AC03-76SF00515 and E(11-1) 3230, and by the Natural Sciences and Engineering Research Council of Canada.

