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ABSTRACT 

We present a method of obtaining WKB type solutions for generalized .~ 

Schroedinger equations for which the Hamiltonian is an arbitrary matrix 

function of any.number of pairs of canonical operators. 

Our solution reduces the problem to that of finding the matrix 

which diagonalizes the classical Hamiltonian and determining the scalar 

WKB wave functions for the diagonalized Hamiltonian's entries 

(presented explicitly in terms of classical quantities). If the 

classical Hamiltonian has degenerate eigenvalues, the solution contains 

a vector in the classically degenerate subspace. This vector satisfies 

a classical equation and is given explicitly in terms of the classical 

Hamiltonian as a Dyson series. 

As an example, we obtain, from the Dirac equation for an electron 

with anomalous magnetic moment, the relativistic spin-precession 

equation. 
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1. INTRODUCTION 

The WRB approximation' forms a bridge between classical mechanics 

and quantum mechanics. Classical features of the system are clearly 

displayed, and the quantum features are introduced in a simple way, 

with only minimal appearances of %. And while quantum mechanics, at best, 

is no easier a problem than classical mechanics, a virtue of the WKB 

approximation is that it makes it not much harder. 

The WKB approximation is usually presented in the context of a 

non-relativistic Schroedinger equation for a scalar wave function of a 

single spatial variable. It has been extended to general Hamiltonians2-5 

and severa12-' (or even an infinite number8 of) co-ordinate variables. 

The WKB method has also been applied to particular systems with internal 

degrees of freedom, e.g., the Dirac equation.2,4*g Our purpose is to ' 

present a straightforward extension of the WKB approximation for a more 

general case which will include each of the above, and combinations 

thereof, as special cases. In such a case, the Hamiltonian is an LX L 

'matrix, g with respect to some internal space (a tilde under a quantity 

denotes a matrix or vector with respect to internal co-ordinates), 

as well as being a function of some number of pairs of canonical 

operators xl, . . . xn and Pl, . . . Pn. [Here the operator Pi E -ifi(a/ax,). 

We will frequently-make use of the corresponding classical Hamiltonian, 

The mathematics of the WKB approximation may be approached from 

various points of view.1-7y10-17 The same approximation may be derived 

in many ways, e.g., as the first term of an asymptotic, or even a con- 

vergent,11Y12y17 series. Many of these methods do not seem to afford 
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an easy generalization to the case of interest.18,1g The method we do use 

is not an especially novel one, and the idea does occur in the mathemati- 

cal literature on the subject. However, we have not succeeded in finding 

a general discussion with direct applicability to the quantum-mechanics 

problem we address. In treating our general case, we take a simple 

approach, and work from a case which can be solved exactly, namely 

H_(if,z) = H,($,zo), independent of z. In such a case, the solution will be 

a linear combination of plane wave solutions 

g3 = R(P 
$‘;rNj (goI .; 

+(N) (Z,) ,Zo ) e LCN) 

(1.1) 

\ 

Nth place 

In this expression, JX($,z) is the matrix which diagonalizes a(;,:), 

-+(.N> while p -t(N) -t andp- l x3lJ (N) are the classical momentum and action 

associated with e)(;,g), the Nth entry of the diagonalized Hamiltonian. 

By no considerable feat of imagination, we might conjecture that gentle 

modulation of H, with respect to x'might be closely fitted by an 

approximation of the form - 
5 U(N) (g) 

ycN) (5 = E ( GcN) (g) ,ii) kcN) (3 e’ (1.2) 

Modulo a normalization factor (analogous to the l/G factor in the usual 

WE3 approximation), we would expect L, (N) (ii, = A(N) + O(ti) . 

Our treatment, following through on this motivation, leads to a 

quite straightforward generalization of the single channel (i.e., L= 1) 
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problem, provided that no two of classical functions HD 'N)(G,S are 

identical. (N If some M dimensional subset of the HD 's is degenerate, 

it is necessary to go further - to do an analogue of degenerate 

perturbation theory. N L(N)($ (modulo the "l/ v U factor) now has an 

O(1) subvector C(~)(Z). We will determine an equation for 2 (N)( Z(t)), 

over all configuration space (t being a parameter which is a solution 

of the corresponding classical mechanical equations for time). This 

equation has the Schroedinger-like appearance: 

dg(t) 
dt = g(t) g(t) (1.3) 

where the matrix M(t) is determined in terms of the original Hamiltonian. 

The closed expression, Eq. (2.39), for g(t) is a principal result of 

this paper. 

As an application for this formalism, we may consider the motion of 

a Dirac electron in an arbitrary static external electromagnetic field 

which varies slowly in space. The local diagonalizing matrix is then 

just the Foldy-Wouthuysen transformation, and the diagonalized 

Hamiltonian is pairwise degenerate, corresponding to the twofold spin 

degeneracy. Thus our equation for the evolution of the internal state 

vector can be directly applied in order to obtain the relativistic 

equation of motion for the spin-precession of the classical particle. 

We have checked that the method works; it is in fact a quite straight- 

forward calculation to obtain the spin motion. 

This paper is organized as follows: in Section II we develop the 

matrix WEB formalism in detail. Section III is devoted to a discussion 

of the example of the Dirac electron. In Section IV we conclude with a 

summary and cautionary remarks regarding unanswered questions. 
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II. THE GENERALIZED MATRIX WXB METHOD 

We begin with a brief sketch of how we use our method to obtain 

the usual WJ.CB approximation. The Schroedinger equation is 

(2.1) 

We choose, as an ansatz, Y(x) = X(x)e where X(x) and U(x) will be 

chosen later. We find that 

([ 

2 
= + VW -E X 1 

(2.2) 

To set this expression equal to zero, within corrections of O($i2), we 

simply choose U and X such that 

2 
$q + V(x) - E = 0 , 

z2x+P$J=o ’ (2.3) 

These are two equations involving only classical quantities. Solution 

of the second equation gives 

p(x')dx' 

Solution of the first equation gives 

(2.4a) 

(2.4b) p(x) = J2m(E-V(x)) 
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We will follow the same line of argument in the general case, which 

is defined to be a system with N spatial and L internal degrees of 

freedom, characterized by the matrix Schroedinger equation: 

(2.5) 

Here z = (x,, . ..I x,) represents the spatial coordinates of the system, 

and 

?-i a * a $= P1,...PN = -- -- 
( > i ax 1 

9 .** i ax 
N 

(2.6) 

is the spatial momentum operator. The wavefunction 1 is now an 

L-component vector and the Hamiltonian is an Lx L Hermitian matrix 

(2.7) 

We shall assume that all% dependence of H, is contained in the % 

dependence of the spatial momentum operator. (However, at the end of 

this section we will consider Hamiltonians with explicit% 

dependence.) We assume I$$,$ may be expanded as a power series of 

the form 
m co 

l&Z) = 
c 

- 

c 
- 

k=-J z(l) ,;cl). -t(k) ,;W =o 2 .m ,a*., 
(2.8) 

(1) 
ml 

(1) (1) mu rl ril) m!2) d2) W rl 

1 . ..PN x1 . ..xN PL . ..PN "'XL . .."N 
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( The Hermitian conjugate (h.c.) is simply the factors written in reverse 

order ) where the c's are Hermitian matrices. It is not hard to show, 

by using the canonical commutation relations, that terms of the form 

are equal, independent of the ordering of the P's and x's through O(?i). 

Since we will be neglecting 0(%2) terms, for the remainder of the paper 

we may take 

H_(S,Z) = a G)P 
Ml MN Ml 

“x 1 

. ..P 
N 

+ P 1 . ..P MN 
N g,G) 

M 
I 

l (2.9) 

Now, in analogy to the simple WKB treatment, we shall take for the 

matrix problem a similar exponential ansatz for the wave function. We 

again introduce what will turn out to be an action-function U(z), to be 

determined later, and define the classical momentum G(g): 

pi = e or ;=+ u 
i X 

(2.10) 

The ansatz for the wave function is again 

(2.11) 

We shall need the effect of the momentum operators on this wave 

function. We note that 

a2 
aP,aP, 

(2.12) 
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We may now see how a general Hermitian operator, 5, of the form 

(:) ~1 . ..pN + Pl . ..P. b 
Ml MN Ml 

xi, 
(;) 

I 

(2.13) 

( where the expansion coefficients k+(z) are Hermitian matrices 
> acts on 

such a wave function. Using Eq. (2!12) we find 

iU 
,% iU -- 

~(K5 &e'. N , N ( J = F(i:;) x+h 

C 

N 

1 
a2u a2gG,2 

i2 c axraxs ap,ap, E 
r,s=l 

(2.14) 

N a&it) a~ 1 N c c 

a2F(;,;) 
+ 

ap, axr + 7 ai ax x + O(ti2> l 

r=l r=l r r I 

In particular, the above expression is valid for the matrix Hamiltonian, 

H_(zf,Z) . It may be simplified by using gradient notation and introducing 

the derivative operator Df/Dxi as follows: for a function f@(Z);%), 

define 

( > i;,f&&= - 
c 

af 3 af 

i ap. axi+axi . 
j J 

Then 

. 
?J IU 

e-’ H($ z)-e’ N ’ X = H(G z) X + 4 N ,N#’ w i 

+ ( gH_(s) l (%,I + c+i2> (2.15) 
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We have now obtained the equivalent of Eq. (2.2): 

(2.16) 

Because 5 is a matrix and 5 a vector, this equation cannot be solved by 

inspection as Eq. (2.2) was. If I$;,:) could be diagonalized by a 

constant matrix, 5, the solution would be straightforward. However, 

5 is a slowly varying function of c and z because H, is. Therefore, 

we will follow the method used for a constant g, keeping track of 

extra terms. 

We write 

Hil)(;,;) 
\ 

. . . 0 

. 

. g2'(;,3 : 

. . . 
. 

0 . . . ' Hy <;,3 

(2.17) 

where, by convention, - 

(2.18) 

in the neighborhood of the region of interest. Because B is Hermitian, 

a can be taken to be unitary. Defining k($,z) by X_($,g) = g($,g)k($,g), 
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we obtain 

(2.19) 

A= 
+ (SR) l (~xE&-l + (g”) l t$J)(‘x&-l) 

+ !i(3x!%& (‘p?i-l) + %,,(‘x l ‘pE-l) 

(2.20) 

2 = (“,$J)L? + ED(bp~-‘) 

Were 5(&z) independent of f: and z, then A, and i would vanish and we 

would have 

(I&,-E)L_+2 
= ob2> 

(2.21) 

This is a diagonal matrix equation, which may be solved in the same way 

we solved Eq. (2.2). Let us for the moment assume no classical degener- 

acy, i.e., all tigenvalues of H_($,$) distinct; then our solutions will 

take the form 

L@J) = $'J) & #'I (2.22) 
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where h(N) is a unit eigenvector, i.e., 

p fj , &C2)= (g) , . . . 

and CO(~) satisfies 

(2.23) 

(e)-E)wo) + 2 ppe’> . ($xa(N))] = O(h2). (2.24) 

To make the leading term vanish, we choose U(z) = @) (z), that function 

satisfying 

H(N) 
D 

? dN) (;) ;;) - E = 0 
X 

(2.25) 

So, to no one's surprise, U (N) is Hamilton's characteristic function 

for the Nth eigenvalue of H_($,g). 

To make the next term of order% vanish, we must have 

Define the classical velocity 

- 
and the probability density p (N) by 

,(N) = $N) ’ . [ 1 (2.28) 

Then Eq. 2.26 transforms into the continuity equation 

(2.26) 

(2.27) 

;;, l 

$N) p(N) = o 

> 
. (2.29) 
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In one space dimension, this equation is easy, and we get the usual 

WKB amplitude, 

(2.30) 

In more than one dimension p is a conserved density in configuration 

space, found by Van Vleck5 to be a determinant formed of partial deriva- 

tives of Hamilton's principal function S with respect to coordinates 

and initial-condition parameters. In any case, w (N) may be calculated 

in the context of classical mechanics, in the same way U (N) may. 

We have just found that our "unperturbed" equation (2.21) has 

solutions 

(2.31) 

However, we must now investigate the effect of the z and s dependence 

of the diagonalizing matrix g. We go back to Eq. (2.19), letting 

L(N) (Z) 5 JN) (d) (pCN) (ii) 

with w(N)(z) given above. 

We obtain 

(2.32) 

(H+ - E)&N) +$ [$ (sx*?p~+ l+R)‘p(N) + ppH++ +R) l (-& (+xP)p(N) 
= o(G) (2.33) 

If we set s(b) =p 3(N)(g) defined above and let +(N)(g) : 

k c(N> + (i> 
i Cx>L 3 we obtain the following equations for the expansion 

i=l 
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coefficients c (N) : 
i 

[@)GCN),:)-E]c;) + +~($x.;pH;i)6mi + (+&)c~) 

i 

+ c {(?pH;i))6mi + ($&+). I-& 13x,(N)cfN) + ;,cy)) 

i 

+ C [('pgi))6mi + @-'k)mi)* ((EIC~x~l)~j cjN']] = O(ti2) . (2.34) 

kj 

At this point, we also generalize back to the case in which there may 

be degenerate eigenvalues of H,. We may then divide the L-dimensional 

internal space into degenerate subspaces; i.e., 5 (i> and A(j) are in 

the same subspace if Hp (&2) = Hp (&ii). In the case g($,g)=const., 

all coefficients cCN) for which hCi) i is in a degenerate subspace 

containing & (N) must be expected to be of order unity with those c (N) ,s 
i 

outside the subspace remaining zero. 

In considering the general case, we take the hint from the constant 

(N) g case to estimate the magnitude of the ci 's outside and inside the 

classically degenerate subspace. We will then be able to obtain simpli- 

fied expressions involving these. Because the extra terms in Eq. (2.34) 

for the cCN)' i s are of O(*), we are led to suspect that in the case of - 
(N) non-constant g, the c. 1 's outside the degenerate subspace will be of 

O(+d, while those in the subspace remain of O(1). 

In that case we can rewrite Eq. (2.34) using this assumption to 

drop terms of O()12). For hCrn) not in the degenerate subspace 
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(N) containing h. , we obtain the expression 

m Hf' (;'N),;) - E 
(2.35) 

with 

AAN) = 
m 

c - { (~pI-p)-(~-%x~)mi + +(“l&)mi 
i in ' 

degenerate 
subspace 

(2.36) 

(N) We note that all quantities in this expression for cm are 

classical except for the overall factor of -fi; thus, as anticipated, 

it is indeed O(%). 

We also note that for the special case % = T(p); + V_(x), only 

the first term in JV survives. 

(N) Now we turn to the O(1) components cn in the classically degen- 

erate subspace; i.e. the subspace spanned by those i Cd for which 

I$' (&ii) = H.p ($,3. We will not be able to explicitly solve for 

these, but we'will be able to derive a purely classical differential 

equation for them which may be formally solved. 

(N) Let us concatenate the subspace coefficients cn into a vector 

$J> in the degenerate subspace. We will also consider matrices 

projected onto the degenerate subspace; thus an Lx L matrix A, will 

have a projection z=P (N) Ap (N) 
N - , with E(N) a diagonal projection 



-15- 

such that 

1 if i is degenerate with N 
(2.37) 

0 if i is not degenerate with N 

-- 
We note that E # A, g. After considerable manipulation, and remembering 

-t(N) .$ $0 = 
-V 

X-- 

-- ;? (2.38) 

Taking a cue from hydrodynamics, we may interpret v "09 and G.9 as the 

flow derivative d/dt; i.e., given a time independent field f(g),(G'?x)f 

would be the observed rate of change of f observed because of the motion 
+ 

of an observer moving with velocity, v. 

Thus, if we switch to a time parametrization, where z and p +(N)are 

assumed to have been found by classical mechanics in terms of t (which 

here is taken to be just a convenient parametrization), we obtain: 

d,(N) (t) = p (t) z(N) (t) 
dt- 

_M(N) (t) = + R-l E -I. ; E-'(s~)(,','- e)~). $-1($xg) 
_" 

1 -- 
2 E-‘pxE)(zq) - fpL) ’ (“‘BE) 

(2.39) 
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This equation may be solved as a convergent Dyson series: 

t 

L + dtl$N)(tl) 
J 
0 (2.40) 

Thus, we have found here an expression for the evolution of the 

large components of the wave function in terms of purely classical 

quantities. Notice that, because E is unitary, the submatrix iI+J --(N) (t) 

is Hermitian. This implies that the norm of 2 --(N) (t) is preserved along 

classical trajectories; all normalization changes in the wave function 

have been taken into account in the WKB amplitude factor w (N) (;) . 

Notice also that in the nondegenerate case 

jp) (t) = - g-1 2 ( ) NN . (2.41) 

Thus an additional phase of order 1 is accumulated (in.addition to the 

WKB phase): 

-c:)(t) = exp[- / (5-l $)NNdtl] c;)(O) . 

If R is not only-unitary, but also orthogonal, then 

L > R-l 2 NN = 0 

(2.42) 

(2.43) 

then this extra phase vanishes. 
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Before closing this section, we consider what modifications must 

be made if there exists an explicit term in the Hamiltonian of order%; 

as in the example of the Dirac equation for an electron with anomalous 

magnetic moment, considered in the next section. If 

Gy~,~) = H_(S,Z) + Qp) (&E) + li22H_(2) <c,5 + . . . (2.44) 

where all the H, (0 's are assumed to only depend implicitly on ?I via the 

momentum operator 6, and where the ordering of operators of H, (0 

is chosen as in Eq. (2,9), then all of our results of this section hold, 

except that one must make the replacement 

A, -+ & + 2$(l) (2.45) 

in Eq. (2.19) and those following. This implies, in particular, that 

Eq. (2.39) must be modified by the replacement 

j$N) ---+ G(N) - i R,-lH(l)R hr rVN N (2.46) 

III. EXAMF'LE - THE DIRAC EQUATION 

The results of the preceding section may be applied directly to 

the single particle Dirac equation for a particle with an anomalous 

magnetic moment in an external electromagnetic field. The equation 

we will derive will give us the correct classical precession equation, 

obtained by many methods in the past.2,g,20-22 

The Dirac equation is:23 

(3.1) 
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where 

(3.2) 

As mentioned in Section II, this Hamiltonian has an explicit% term, 

and the modifications, such as in Eq. (2.46), must be kept in mind in 

what follows. The matrices, EC;,;> [which diagonalized g&$)1 and 

~(&a, are easily obtained from those used in the Foldy-Wouthouysen 

transformation for the free Dirac theory:24 

-1 
tan r 

I c$- eq 
7 

w 

28 

I 

,/J m2c4+ (cp- eA)2 
'z 

sin &- 
II I 401 

1 
(3.3) 

+ e+ . . . 0 

\ 
. Jm2c4+ (cp- eA)2 + e$ . 

. 

4 
2 

+ e9 . 

\ 
o... - 2c4+ (cp- eA)2 + e@ 
- 

(3.4) 

We see that there are two classically degenerate, two component 

subspaces. 

We can simply insert Eqs. (3.3) and (3.4) into Eq. (2.39) with 

modifications from Eq. (2.46) and obtain the equation of motion for 

the positive-energy subspace components E. 



-19- 

We find, after considerable algebra, 

(3.5) 

with 

8 = $ z (l+JK) ; + (l-Y)K a: l ?i) 2 
vc 

+ y(K+-&) y] 

(3.6) 

2 

i ) 

- '5 
y= l-l+ 

C 

The classical polarization vector, P, is defined by 

From Eq. (3.5) it follows that 

(3.7) 

(3.8) 

which is the correct classical precession equation. 20 

IV, DISCUSSION 

We have found approximate WKB solutions of the matrix Schroedinger 

equation, ,Hx = EY', of the form 

.L u(N) (Z) 
ycN)(g) = gk(Nr(g),$)/pm e' $N)(Z)k3 [l+O(+J] l (4.1) 

This factors the problem into (1) an overall rotation E in internal 

coordinate space which locally diagonalizes the Hamiltonian matrix, 

H, (in phase space), (2) a problem of the dynamics of a scalar particle 

(i.e., one with no internal degrees of freedom) with a WKB wave 
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function J;;; e (i/Mu , and (3) a problem of the dynamics of the vector z 

which lies in the subspace spanned by all eigenvectors of the classical 

(N) 25 Hamiltonian with degenerate eigenvalues equal to HD . We note that, 

for bound-state problems, the derivatives of E appearing in the equation 

of motion, Eq. (2.39), for x(t), in general breaks the degeneracy of 

energy levels in-the classically degenerate subspace. 

The general solution for x would then be linear combinations of 

the '4(N) (g) for all N. We set our problem in a region where all U (N) ,s 

were real so that there were "plane waves" in all L channels. Were some 

U(N) imaginary throughout the region, we would obtain the usual type of 

increasing or decreasing exponentials, replacing iU (N) (3 in the 

exponent by V (N) (2) , where 

H(N) 
D 

-i$ VcN) (z> ,z) = E (4.2) 

However, we have not studied the question of turning-points 

in detail. Nevertheless, we believe there is cause for optimism that 

the problem is no worse than for a single-channel WJCi3 problem. 

In a companion paper,26 we will discuss one dimensional bound state 

problems with two turning points and present analogues of the Bohr- 

Sommerfeld conditions for the energy levels, as well as the wave 

functions. In the general bound-state problem, we could also obtain 

Bohr-SommerfeldPules by the Einstein prescription.3s27 quantize the 

(N) classical actions U . 

Because our method can accommodate any number of spatial 

coordinates, it should be possible to go to the continuum limit and 

construct semiclassical limits of field theories within a canonical 

Hamiltonian formalism. 
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Our method might also be applied to classical wave equations in 

slowly varying media.12'17,28 

Keller and Keller have shownll that the WKB approximation is a 

special case of an approximate solution of the first order, single 

variable, matrix equation (dX(x)/dx)= g(x) x(x). In an analogous way, 

our result may be applied1g'25 for approximate solutions to equations 

of the form 

L, (+$ x-j) X(“i> = O 

when the equations 

p(vi,xi) = 0 

have solutions for v.. _ 
1 

Finally, there is the question of how good our approximation is. 

We simply don't know. We could obtain some hints if we could find a 

reliable way to iterate our method and get higher order terms. Short 

of that, we can only be guided by the results for single-channel WKB 

problemslo and matrix WKB problems of the simpler form 

H, = (p2/2m)&+V_(x).11*17 Without going into detail, we are led to 

expect that higher order terms would involve integrals of rapidly 

oscillating exponentials of the form exp(i/)l) (UCN) -UCM)). This would 

make these terms-small, certainly no larger than %/(UCN) -UCM)). 

Basically, the problem is one of estimating the probability of a 

transition from the Nth channel where the classical particle would 

have momentum pCN) to a distinct Mth channel where the classical 

particle would have momentum p CM) . This is not too different from 
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the usual WKB problem of a calculation of the reflection coefficient 

from a smoothly varying potential, 

( 
. i.e., spontaneous transition from 

packet to leftward (-p) motion > . 

away from a turning point 

rightward (+ P) motion of a wave 

This is a subtle calculation, even 

for a single-channel one-dimensional WKB problem,2g but the answer 

is indubitably .&nall-typically2g of order e- const./% . Thus it is 

quite plausible that amplitudes of inter-orbit transitions are of 

similar magnitude. Even transitions at a turning point, from the 

channel undergoing reflection to another which is not undergoing 

reflection appear to have rapidly oscillating phases, hence are 

comparably small. However, a detailed analysis of all these issues 

is well beyond the scope of this paper. 
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