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ABSTRACT 

In this paper we discuss the intuitive picture of the matrix 

element of composite particles, which has been represented in the 

field theory of composite partic1es.l In addition, we discuss the 

ratio of $ and $' particle decays under a reasonable assumption and 

obtain some interesting results. 
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1. Introduction 

I-t is well known that hadrons are composite particles and that they 

are composed of quarks. Because hadrons have the phenomena of creation 

and annihilation, the composite particle model of hadrons should be 

discussed in the field theory of composite particles. 

We proposed previously a quantized field theory of composite 

partic1es.l In this field theory hadrons are regarded as the excited 

quanta of a composite field, composed of quark fields. For example, 

a composite field operator of a meson can be defined by: 

B (xl ,x2> = T($(xl) ;j;(x2)) (1) 

where $(x) is the quark field. The method used in establishing the 

composite fields theory essentially follows the formulation of the LSZ 

quantum field theory. Since we hope that many energy levels are involved, 

we have introduced some different assumptions: an asymptotic condition 

and completeness. Under these assumptions we have obtained many kinds 

of representations of S-matrix elements. Here we will discuss one of 

them; it shows that there is an equivalence relation between composite 

particle field and quark currents for any physical matrix element. We 

call it the field-current relation. 

In this paper we will discuss the field-current relation from an 
- 

intuitive picture. It will be seen that it is natural and-is a kind of 

projection process. The quantized field theory of composite particles 

puts this intuitive picture in the framework of the field theory. 

Therefore we can discuss any physical matrix element of hadrons. When 

it is combined with current algebra, we can discuss many concrete processes. 
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The IJ.J' particle is the radially excited state of I/J; they have the 

same $trinsic quantum number. We will see that according to the field- 

current relation, there is a similar form in the matrix element. If we 

calculate their decay rate to the same final state, then the same Green 

function should be calculated. With a reasonable assumption about 

analytic continuation, we may suggest that their ratio does not depend 

on the final products. Using this assumption, we have analyzed a series 

of radially excited states and obtain some interesting results. 

2. A Brief Review of the Field Theory of Composite Particles 

At first, the wave function of mesons may be defined as 

Xk, rCX1’ x2> = <o I T(ICl(xQ T(x2)) 1 iI,r; > 

1 ikX 
= zFe X%3 (4 (2) 

where Ig,<>is the bound state of the meson, 5 labels the quantum numbers 

of the meson including spin and isospin indices, and 

x = + (x1 +x2) 

x = x1-x2 . (3) 

X+ (x x ) satisfies the Bethe-Salpeter equation.2 k,q 1' 2 

The method essentially follows the formulation of the LSZ quantum 

field theory. Here we do not restate those fundamental principles 

discussed elsewhere. In the following we shall give two different 

assumptions: 
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(a) We introduce an asymptotic condition by means of the orthogonal 

and no-rmalized condition 

iSp 
s 

d3X d4x xc, A+ 
,3, (X,x) Q,, 

o k,c 
x+ (X,x) = 62 z, 63 3, (4) 

, , 

where 6 is the weight operator of the orthogonal and normalized condition, 

which is given by Ref. 1 from the Bethe-Salpeter equation. 

(b) We suggest the concept of completeness so as to cover all the 

bound states including the higher excited states, but not including 

scattering states of quarks. 

Under these assumptions the reduction formula and S-matrix of 

hadrons may be obtained. For example, the form factor of the r-meson 

may be written as1 

z,n> = - s 4 4 4 4 ,ikX-ik'Y x 
dXdYdxdy 

JZGF 
p ,$X;x) S(+-0,) 

X (m:-Oy)IO/T~(X+~)~(X-~)J~(z)$(Y-~)j;(Y+:)) IO) 4X,,, (Y,y> (5) 

where Ju(z) is the electromagnetic current and the wave function may 

be written as 
. 

Xg n(xl,~2) = <OIT($(xl) $(x2))ld,rr> = i 
, J d4Yd4y ~~~,$Y,yI6(m~-~) 

x jOjT($(X+;)G(X-;)$(Y-$(Y+;))/O) . (6) 

According to the definition of Mandelstam:3 

CO IT($(xl) $(x2> J,,(z) +(Y,) ;(Y+) IO> (7) 

= J d4u1d4u d4vld4v2 2 K x1,x2;u2,u1 ( > ( GFc u1,u2;v2,v1 )X(vl,v2;~29~1) 



where the four point Green's function is 

ax, ,x 
.I. 

2 ; y,,q> = <OIT($(xl) $(x2) $(y2) &Y~))IO> . 

From Eqs. 

<G ,lT 

(5)-(8) it follows that 

lT( x2 ,x1) 5,(x1 ,x2 

(8) 

(9) 

; z ; Y~,Y~)X~ $y1,y2) d 
4 4 4 4 

x1 d x2 d y1 d y2 
, 

which is the Mandelstam representation3 of the transition matrix element 

for the bound state. However in the field theory of composite particles 

any matrix element of composite particles may be discussed; the transi- 

tion matrix element is given here as an example. 

Notice that the Green's function K(x1,x2;y2,y1) has the following 

representation (near the pole p2+m2 = 0) 

iP(X-Y) 
K(x1,x2; y23y1 )=A 

/ 
d4P e 

X,(x) sip(y) 

ad4 2p0 pO -w+ic 

+ terms regular at PO = w 1 . 
From Eqs. (7), (9) and (10) it may be proved easily that 

Xk, $d<h 1 Jn(z) 1 ~T>;z T(y) , , 

= 
cm:- OxXmf- OY > 

(10) 

(11) 
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<& 1 JU(z) 1 g,~> 

s 

d4x d4y ,ikX-ik'Y 

t&iP 

’ (olT[Sp~~(X+~)~(X-~))J11(z) Sp@(y-$)$(Y+$))]/G) (12) 

where 

f&p = SP(rX$,*w) 

f{,,(Y) = SP(qgY)) 

(13) 

and r is the specific Dirac y matrix. It may be seen that the left 

hand side of Eq, (12) does not depend on the variables x and y; formally, 

we may take the limit x,y + 0. The singularity of the composite operator 

$(Y) q(Y) will be cancelled by the singularity of n-meson wave function 

at the origin f-t k,=(O) . Therefore we have 

<&IT 1 JU(z) 1 &TI> 

d4X d4Y e 
ikX-ik'X 

= lim 
x+0 vaiiz- 

.Y + 0 
spacelike 

Comparing Eq. (14) with the LSZ field theory, it may be seen that there 

is an equivalence relation: 

CPJY) - lim v(y++) w(Y-$) (15) 
Y-f0 

spacelike 

where r may be selected as y5, Ky5, . . . . Here we call the equivalence 
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relation in the physical matrix element the "field-current relation." 

It does not depend on the Lagrangian model4 and the above discussion 

has been extended to any type of meson and has been extended to any 

baryon. Therefore for any composite particle there is an equivalence 

relation, and it is correct for any physical matrix element of composite 

particles. 

3. An Intuitive Picture 

It should be noted that from Eq. (14) any process, in which hadrons 

participate, is calculable by the corresponding Green's function of 

quarks, using an equivalence relation of this type. Of course, the 

Green's function depends on the model for dynamics. Here we don't 

discuss how to calculate the Green's function, it is a difficult problem; 

however the procedure can be understood by an intuitive‘picture. 

At first, as an example of the physical matrix element, we consider 

the wave function X+ k,ncxl' 2 x ) (see Fig.1). From Eq. (10) it may be seen 

that the wave function may be represented by a Green's function 

K(xl,x2,y2,y1) given in Eq. (8) and 

J d4y eiky 
- mz-Oy)<O 
VG ( I T($(x~)?(x~)$(Y,)?(Y~))/ 0) 

where k is on mass shell, i.e., k2+m2 = 0. This equation may be 

represented by the intuitive picture shown in Fig. 2, where 

(16) 
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is an (unnormalized) projection operator. It projects the Green's function 

K(xl,x2,y2,y1) into the product of two wave functions. In general, 

K(x1,x2,y2,y1) satisfies the following equation (.see Fig. 3), 

K = V + VSV + . . . (17) 

where V(x 1,x2;y2,y1) .is the sum of all the irreducible parts, S is the 

propagator of quark and antiquark. If 2~ .(y)were a scalar, it could be 
, 

transferred to the left-hand side, but it is a spinor. However by 

multiplying on both sides of Eq. (16) by a I? matrix and taking the trace 

we can obtain a representation of the wave function: 

(0 I T(Hxl) $(x2)) ( <Jr> 

(18) 

rilr(+)Ji( (19) 

Equations (18) and (19) may be represented diagramatically as shown in 

Figs. 4a and 4b, respectively. In particular, for the pseudoscalar wave 

function we have the following form - 

ik x 
xg $4 

ilc 
, 

= y5fT(x) + q Y5fl(.X) + yx) $y5f;(x) + -+ y50Uvf;(x) 
Tr Tr 

(20) 

Obviously, we have 
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f; n(O) = 4f;(O) if 
, r = y5 

f-b k T(O) = -4if;(O) if r 
, = KY5 

-h (21) 

Thus the field-current relation can be understood through this intuitive 

picture. 

Similarly, we may apply the projection method to any physical matrix 

element. As an example, we consider the electromagnetic form factor of 

the T-meson which has been studied in Eq. (11) and (14) by using two 

projection operators; the diagram is shown in Fig. 5. 

From the above discussion it may be seen that there are three 

general features: 

(a) In order to get the physical matrix element of hadronic 

processes, we may transform it into the above mentioned representation 

in which the corresponding Green's function (off mass shell) should be 

calculated. For example, for the form factor of the v-meson we may 

discuss the following Green's function 

(22) 

Then taking the projection, we may obtain the form factors of the n- 

meson. Of course, it is as difficult to calculate as the matrix element. 

(b) Comparing these formulae with the LSZ field theory, it may be 

seen that there is a correspondence between the quark current 

( l/fg = 
, Co>> JI W w (y) and the field quantity of the v-meson, q,(Y), i.e., 

there is an equivalence relation (15). It is correct only on the mass 

shell of the r-meson. In other words, it is correct only for physical 

matrix elements of the r-meson after taking the projection. In this 
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relation Y is the coordinate of the center of mass. The equivalent field 

quantity or(Y) may be regarded as a description for the motion of the 

center of mass of the n-meson. 

(c) If the r-meson is replaced by any other meson, the above 

mentioned projection method can still be used. For example we may con- 

sider the vector meson, p. Similarly after using projection operator for 

the Green's function we may write its wave function as 

. 

<OIT(+(xl)?(x2)) 12,~) = sp(rvy$o)v) 
s 

d4Y g (mE-Oy) 

x <OjT($bl)~b2) Sp(r,,JI(Y)$(Y)))IO>e~ (23) 

where 

x$,p(x> = (x2,, (x,,,e; (24) 

Notice that the general form of the vector meson wave function can be 

written as 

kA +xx -cJ 
uvm 

&x) + $ E x k Y Y go(x) 
P 

p pvpavpa56 

1 
By taking In = y 

u 
, then 

w+J(x1)~(x29 l&P> 

(25) 

(26) 

1 = 
4g"1(0) 

-(m~-Oy)<O(T(j(x1)~(x2)Sp(y~~(Y)~(Y)))IO>ef; 

which means that on the mass shell of the p-meson there is an equivalence 
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relation 

- 
CPJY) - l 

4gy (0) 
Tm Yp $(Y) (27) 

Equations (15) and (27) are satisfied by any physical matrix element. 

It may be seen that PCAC and VDM are particular cases of the field- 

current relation. There are field-current relations not only for meson 

but also for baryons.5 By similar arguments we may obtain the following 

equality 

(28) 

where J, 
$,B 

(x,x') is the wave function for baryon B with the momentum p 

and spin A 

e-t A ‘lx p,B 19X2,X3) = ~0/T(~(x,)~(x,)~(x,)) I;,B,X> 

= J- 2 ,iPX $X 
E 0 

(x,x') (29) 

x = f (X1+X2+X3) 

x = x-x 12 

X '= + (x1 +x2) - x3 (30) 
- 

The problem that remains is how to project the wave functions. In other 

words, how to get the inverse form of the wave function, since the wave 

function of baryons is more complicated than that of a meson. Following 

the method suggested by A. B. Hemigues et a1.,6 we can deduce the -- 

following general form of the baryon wave function: 
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( 

abc 
- JI M 

p,k 
(x,x'> 

[( ) 
4; abcx;By + (~$bc$,B,3 (31) 

aBY -c. 

where cj$ and 'pi are the bases of the symmetry operators O1 and O2 

separately in SU(3) space, 

(32) 

Xx and 5' are the wave functions in spin space and the bases of the 

symmetry operators O1 and 02, 

( ) XX = 
UBY 

(h-f)(y5C)ByU;6) + [(h - f E)c] 

BY _ 

+ (h-f)(g YPY5C)By(Y,Uh(9a 

+ [(g+f -h ~)Y,,c]8y(Y1'Y$(~))~ 

+ other term including x,x' 
f 

( > sx 1 
&Y =J? -2g- 3h+3f *yc ) 1 “B 5 ux <if> 

BYa 
- 

+ (2g- 3h+3f)(C) Bv(y5uA(q, 

+ other terms including x,x' . 

(33) 

(34) 
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where C is the charge conjugation operator. U(s) is the spinor wave 

function, f,g,h are the invariant functions of P,x,x'. Substituting -h 

Eqs. (32)-(34) into Eq. (31) and noticing that the proton wave function 

1 
in SU(3) space is h2, we may obtain an equivalent representation 

<a;&Xl@> = &j- Edbc(X:):(CY5)yB fi4X ewipxe ~u,(~)(m,+i#)u,u 

(35) 

From Eq. (35) it follows that if one introduces an equivalent proton 

field quantity Y,(X), then we have 

'P(') N & Edbc 2 a (A1>d lim 
x-to 

{(cY5) T($~(xl)i~(x2)$~(x3))} 
aB 

x1+ 0 
(36) 

B(O) = $ (g(O) + + h(0)) 

It may be seen that there are different field-current relations 

for particles with different quantum numbers, and even for the same 

particle there are different field-current relations, because one may 

take different spinor operators, e.g., yVy5' y5' cy5, c, . . . . 

Since there are many kinds of field-current relations, one may 

select what one needs according to the actual problem. By -combining 

the above discussion with current algebra techniques, we may discuss 

some concrete processes. For example, using Eqs. (15) and (36) we can 

discuss the vertex NNn. Under the soft IT approximation we obtain a 

relation which is very much like the Goldberger-Treiman relation. From 

the process IT+~V, we may obtain g2/4a = 15.4, which is in agreement 

with the experimental value.5 



-14- 

4. The Decay Ratio of $ and $' Particles 

;ow we will discuss some phenomenological relationships between the 

ground state and the radially excited states with the same intrinsic 

quantum number. For example, we can consider JI and $', if they have 

the same decay products, i.e., 

1c, + f 

$I-+ f 

Then according to the field-current relation for vector mesons we have 

(k2+m2 = 0, k12+rn12 = 0) 

<flJ,,X>= l 
4gJ;(O) / 

d4y eiky 2 

al ( m+- Oy)<f IT,(Y)Y,$,(Y) 10) ei (37) 

<f/&V> = f 
49; (0) s 

d4y eikIY 2 
-7zFrn~' ( 

-o,><f I Tc 03 Yu+, (0) 0) et ' (38) 

where $,(Y) is the field quantity of the charm quark. It may be seen 

that the Green's function which one wants to calculate has the same form 

for the two kinds of processes, the only difference being projection 

onto different mass states. In general, there may be many poles in the 

matrix element <f/$c(Y)yp$c(Y) IO>, and certainly there are at least two 

poles, $ and $'. As an example, in the case of the two poles we may 

change the above matrix element into another form 

s 
d4y ~(m;~~y)(m+$f /s,(;)y,%;y' l">e; 

mJII - m$ 

(39) 
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and 

tiIk',A',$'> = 1; 
4g; (0) 

X 
<fl~,(y)Y,~,(Y)lo>e~’ 

2 2 . 
mlCl - meI 

(40) 

It may be seen that the function, 

I d4Y eiky 2 
&pYb;, -Oy)<fl~e(Y)YuJlc(Y) IO> , 

does not have any pole. Hence we might assume that it is a smooth function 

of k2. Under this assumption we may obtain an approximate equality for 

their amplitude 

TJI'+f 

T$ +f 
= c(J/J,$') (41) 

where c($,$') only depends on $ and $', but not on f. Once the constant 

c($,$') is determined from I7 JI + ee and r $' -fee' one may calculate r rl,'+f 

from h- 
Theoretical values are listed in Table I (we have considered 

the phase space correction). 

For four particle decay, ignoring the phase space difference, it 

may be expected that 

r 
J11+2n+2+- +K+K-IT+V- 

% 
% 5' 

-+2lT+2lT- 5 + K+K-T+V- 

The experiment result is 
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%’ +271+2?l- 
= 0.68 + 0.32 n 

- IJ, -+ 2lT+2lT- 

5 +K+JClT+?l- = 0.66 2 0.34 
5 -+ Id-K-Tr+.rr- 

Similarly, it may be expected that for T, we have 

TT'+ f 

TT + f 
- c'(T,T') 

where c'(T,T') only depends on T and T', but not on f. This prediction 

will be checked by experiments. 

Following a similar method we have discussed a series of the 

radially excited states, for example, N*(1470) and N*(1780), N*(1535) 

and N*(1700), h(1520) and A(1690), C(1670) and C(1940), :.. . At present, 

the experimental measurements for these decay processes are not accurate. 

But it seems that the theoretical results agree with the experiments.8 

All the above analyses show that the amplitude ratios for the 

radically excited states only depend on the different radially excited 

states themselves and do not depend on final products (or the ratio is 

only slightly dependent on final states). The reason is that they have 

the same intrinsic quantum numbers, except for the radial quantum number. - 

Probably they have the same decay mechanism. It seems that these decay 

processes can be factorized into two parts. The problem about the decay 

mechanism may be investigated in the future. 
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TABLE I 

Two Particles Decay of $' 

0.023 t 0.007 

B($' -t wf) 0.04 

B($' + d2) 0.12 

B($' -t BIT) 0.048 

B($' -t @-I) 0.013 

B($' -f $f'> _ 0.011 

I a Ref. 7. 
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FIGURE CAPTIONS 

1. T^he wave function of the TT meson. 

2. The diagrammatical representation of Eq. (16). 

3. The Bethe-Salpeter equation of K(x1,x2;y2,y1). 

4. (a) The diagrammatical representation of Eq. (18). 

(b) The diagrammatical representation of Eq. (19). 

5. The diagrammatical representation of the form factor of the r meson. 
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