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ABSTRACT 

We suggest that the breaking of a symmetry unifying the families 

of fermions occurs in stages. We consider the total Lagrangian to be 

invariant under the group SU(2) xU(1) x G, where G is a discrete group. 

The Higgs potential is, however, invariant under SU(2) xU(1) xE, where 

E 3 G. In a first stage c is broken to a subgroup H C 5, but H is not 

contained in G. The u and d quarks are naturally massless at the tree 

level, and we discuss how they could acquire mass through radiative 

corrections. 
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1. Introduction 

One of the outstanding problems in the unified gauge theories of 

weak and electromagnetic interactions is the understanding of the 

fermion mass spectrum and the flavor mixing angles. It has been shown 

that the unification of the various fermion families through a discrete1 

or continuous2 symmetry can lead to calculable Cabibbo-like angles. 

Motivated by the smallness of some of the fermion mass ratios, we 

suggest that the spontaneous breakdown of the family-symmetry occurs in 

stages. 394 More precisely, we are envisaging a situation such that in 

a first stage the discrete symmetry is broken to one of its subgroups, 

with the heavy fermions acquiring mass and the light ones remaining 

massless. At a second stage, the symmetry would be further broken and 

as a result the light fermions would acquire mass. The hope is that in 

the correct unification, these steps of symmetry breaking would occur 

in a natural way.5 In general, in order to obtain a natural hierarchy 

of symmetry breaking, some rather strict conditions have to be satisfied. 

For definiteness, consider a gauge theory invariant under GxSU(2) xU(l), 

where G is a finite discrete group. The constraints of renormalizability 

and gauge invariance may lead to a classical Higgs potential with a 

higher symmetry E 3 G. Consider now the exact effective potential 

written as: 

v(+) = ,(O) ($1 + AV($) (1.1) 

where V(O) is the tree approximation to the effective potential and AV 

are radiative corrections. Assume that the minimum of V (0) ($1 1 eaves a 

subgroup HC G invariant: 

rx(vO> = v” (1.2) 
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where v ' are the vacuum expectation values of 9 in the tree approximation 

and X'stands for the matrices of group H. We seek a situation such that 
h 

rX'(Av> # Av (1.3) 

where Av is the change in the vacuum expectation values produced by AV. 

In order to find under what conditions (1.2) and (1.3) may be satisfied, 

it is convenient to consider the following two cases: 

(a) H is a subgroup of G. In this case the Georgi and Pais 

theorem6 gives a necessary condition to achieve a hierarchy of symmetry 

breaking. The theorem states that if a Lagrangian is invariant under a 

(discrete or continuous) symmetry and if the vacuum expectation values 

respect this symmetry in the tree approximation, then the symmetry will 

still hold in higher orders, provided that at the tree level there are 

no massless scalar meson fields which are not Goldstone bosons. A well 

known situation where this necessary condition can be satisfied is when 

the Higgs potential has a larger (continuous) symmetry than the total 

Lagrangian, in which case pseudo-Goldstone bosons7 occur at the tree 

level. It is clear that this necessary condition is unlikely to be 

satisfied if the unification of fermion families is done through a 

discrete group. 

(b) H is not a subgroup of G. This is probably the most 

interesting case.- Since H is not a symmetry of the total Lagrangian, 

quantum corrections to the effective potential will in general produce 

a breaking of H, even if there are no massless non-Goldstone bosons at 

tree level. In the sequel, we will consider in detail an example in 

which G in chosen to be the tetrahedral group8 T and we show that the 
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first step of symmetry breaking naturally leads to a subgroup D2 

(a dihedral group) which is not a subgroup of T. 
h 
This paper is organized as follows: In section 2 we present some 

general results about patterns of symmetry breaking and their implications 

for the fermion mass spectrum and the Cabibbo-like angles. In Section 3 

we work out in detail a specific example where the total Lagrangian is 

T-invariant while the Higgs potential has an Oh symmetry. We analyse 

the various patterns of symmetry breaking of Oh and consider in detail 

the case in which the tree approximation minimum has a D2 symmetry. 

It turns out that the correspondent mass matrices for the up and down 

quarks contain each a zero eigenvalue. The masslessness of the light 

quarks in the tree approximation is thus obtained in a natural way, 

being the result of a particular pattern of symmetry breaking. We 

further show how a small perturbation about the D2 symmetric minimum 

(and along a particular irreducible representation) leads to a realistic 

mass spectrum and calculable Cabibbo-like angles. Finally we discuss 

the possibility of obtaining the breaking of D2 through radiative 

corrections. 

2. Patterns of Symmetry Breaking 

Consider the standard SU(2) xU(1) gauge theory,9 with the families 
- 

of fermions unified through a finite discrete group G. We.will assume 

that G commutes with SU(2) xU(l), thus insuring that all members of 

irreducible representations of G are identical representations of the 

gauge group. The fermions are assumed to appear in n families, where 

the left handed components 
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U. ; Li= l ( 1 d. 
IL 

. , i= 1 ,**., n 

behave as SU(2) doublets whereas uiR, diR and eiR are singlets. We 

further assume that Li, Ri as well as the right handed components form 

n-dimensional irreducible representations of the horizontal symmetry G. 

Given the observed fermions, this assumption (which is primarily based 

on asthetical reasons) restricts the choice of G to groups with 3- 

dimensional (or higher) irreducible representations. The Yukawa inter- 

action can be expressed as: 

(2.1) 

=T 
= gut c c1 i ;';u~~$~ + h.c. 

, 

with similar expressions for the down quarks and leptons. In expression 

(2.1), 0 denotes the Higgs doublets which form an irreducible multiplet 

u,R under G and Ci k are Clebsch-Gordan coefficients. The label a takes as 
, 

many values as the number of times the representation of $ is contained 

in the.irreducible expansion of the product cxu R' After spontaneous 

symmetry breaking (SSB) the mass matrix reads: 

(2.2) 

where v R = <olm,Jo>. The quark mass matrices are diagonalized through 

biunitary transformations UL u+MUU;, L Ud+Md Ud R' and the generalized 

Cabibbo matrix is given by C = UL utUd L. The calculability of flavor 

mixing angles crucially depends on the number of independent parameters 
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in the mass matrix. The sources of independent parameters are: 

(i) the number of independent Yukawa couplings, which equals the number 

of times the representation 4 appears in the Clebsch-Gordan expansion 

of Lxu R and cxdR; (ii) the number of independent vacuum expectation 

values (v.e.v.> which depends on the pattern of symmetry breaking. The 

Higgs potential is constructed to be G-invariant, but since it only 

contains terms that are quadratic and quartic in 4, if often has a 
higher symmetry E 3 G. The SSB will not, in general, break E completely 

and the minimum of V(4) will still be invariant with respect to a non- 

trivial subgroup HC E (not necessarily a subgroup of G). In order that 

a given subgroup H may be an invariance of the minimum of the potential 

for a given 4, it is necessary that the Frobenius decomposition of the 

induced representation of 6 (with respect to the subgroup H) contains at 

least one singlet scalar representation. In most cases,- one has only one 

independent vacuum expectation value (v.e.v.) and further steps of 

symmetry breaking (obtained, e.g., through the introduction of additional 

Higgs multiplets) are required to have more than one independent v.e.v. 

Some of the features of the fermion mass spectrum and Cabibbo-like matrix 

can be deduced on group theoretical grounds, without explicit calculation. 

For simplicity, we will assume that Li, UiR' d iR form equivalent irreduci- 

ble n-dimensional representations I' of E, and consider H to be the largest 

subgroup of c which is left invariant after SSB. Assume further that the 

reducible representation r (s) of H induced by r, decomposes with respect 

to H in the following way: 

r(') = (d(l),...,d(k)) (2.3) 
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where d(i) 
k 

denotes the dimension of the representation and c d (i> =n. 
i=l 

Then Ohe structure of the mass matrix will depend on the properties of 

the d(i). For example, if I' contains R scalars, i.e., d (l) = dc2) = . . . = 

d(R) =1 while d(i) fl for i> 9, , , the mass matrix will be block diagonal: 

M= . ..---+--- (2.4) 

where A and B are Rx R and (n-a) x (n-a) matrices, respectively. The 

two blocks completely decouple, i.e., the generalized Cabibbo angles 

between the two sectors vanish. The matrix B can have a special sub- 

structure depending on the properties of the representations d (i) , 

Rlisk. If for example d (a+l) has dimension (n-a), then B will be 

diagonal and the corresponding (n-a) masses will be degenerate. It 

often happens that in the breakdown of E with one Higgs multiplet, 

there is only one independent v.e.v. In the case of simply reducible 

groups all fermion mass ratios will then be given by Clebsch-Gordan 

coefficients, which is likely to be unrealistic, given the known 

fermion spectrum. In order to obtain more independent parameters, 

without proliferation of Higgs bosons one has to look for not simply 

reducible groups. 

3. A Special Example 

In order to illustrate the statements of the previous sections, 

we consider the tetrahedral group T which has been recently proposed by 

Wyler.lO We restrict ourselves to the case of three generations (n=3), 

and put L, uR, dR in triplets. Since ?x 3 contains the 3 twice, $ is 



chosen to be a T-triplet as 

a SU(2) x U(l)x T invariance 

3 v(0) = P2 ( ) c 
i=l 

dr~i + 

-8- 

well. The most general Higgs potential with 

is given by: 

2 

r/ + t t 2 + X21(2+i+3 - +;@I - 9242 ) ( t 2 + 3 +1;+1 - 2 2 41 
+A K 40, + o;+, 

2 

> ( + t t 2 
+39, + @ylJ3 ) ( + t t 2 

3 $4, + 0201 >I 
+A 4 K o;+3 - 4+m2)' + (m;m, - m;43)2 + (Q2 - s;4J2] (3.1) 

The Yukawa interaction is given by: 

(3.2) 

where Ciyi = (l/fi)I~~~~/ and Ci'E = (l/&?)~~~~ with similar expressions 
, , 

for the up quarks. The actual symmetry of V(4) turns otit to be much 

larger and it can be shown to be SlJ(2) xU(1) X Oh. The group Oh8 is a 

48 element subgroup of O(3): Oh = OXCi, where 0 denotes the octahedral 

group which is isomorphic to S4. 

We first investigate the possible minima in a group theoretical 

language. According to our strategy, this corresponds to looking at 

the maximal subgroups that contain a scalar in the induced representa- 

tions in one of &he four Oh triplets (there is an ambiguity that these 

four triplets coincide with the T-triplet on T). These maximal subgroups 

and the corresponding Frobenius decomposition turn out to be (in the 

notation of Hamermesh8): 
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(i) S3 = D3 corresponding to 31 -f (1,2) 

Gi> D2CC; D2 d: T for 31 -t (1 , 1' , 1") 

(iii) C 4 
for 32 + (1 , 1" , 1"' ) 

(iv) D2 Gf 0 for 32i3 (1 , 1" , 1') 

(VI c3 e 0 for 31i+- (1, 1' , 1") 

From these results one can read of, that in all possible patterns of 

symmetry breaking corresponding to a $-triplet, there is only one scalar 

in the decomposition of the subduced representations. This in turn 

implies that there is only one independent v.e.v. and it is then possible, 

for each case, to choose a basis such that the minima of the classical 

potential correspond to <Ol$lO> = (v,O,O). In a different basis, the 

non-vanishing v.e.v. will be related. The expression for V(4) in (3.1) 

is written in the T-triplet basis which coincides with the natural basis 

for the SO(3) triplet. In this basis the minima of the potential are: 

(a> (v,O,O); (O,v,O); (O,O,v) 

These solutions have a remaining D2(C4) invariance for 31(32) breaking. 

There are three D2(C4) subgroups of 0 which correspond to these three 

solutions. The fourth D2 subgroup of 0, which is simultaneously a 

subgroup of T, cannot be reached by triplet breaking. 

(b) (~0~; (v,O,v) ; (O,v,v) 

These solutions correspond to D2 symmetries which are not subgroups of 0. 

If the Higgs potential would have had only an O-symmetry these minima 

would correspond to a C2 subgroup. The decomposition of 31 with respect 

to C2 contains two scalars and therefore if it were not for the accidental 

Oh symmetry, this C2 subgroup would be a maximal subgroup and allow for 

two independent v.e.v. 
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cc> (v,v,v) ; (-v,v,v) and permutations. These minima have a 

remaizing S3 symmetry and correspond to pattern (i). 

(d) (v,veiK'3,vei2r'3) and permutations correspond to (v) and 

have a C3 symmetry. 

The first stage of symmetry breaking: Among the patterns of symmetry 

breaking previously considered, we are specially interested in the 

solution that corresponds to a D2 invariance. In particular we will 

show that it is a good candidate for a first stage of symmetry breaking. 

First of all, one has to make sure that this first stage can be achieved 

in a natural way, i.e., it has to be shown that for a range of values of 

the free parameters of the Higgs potential the D2 solution corresponds 

indeed to an absolute minimum of the classical potential. From (3.1) 

it is straightforward to check that <Ol$lO> = (v,O,O) is a stationary 

point of the potential. In order to find the conditions for being a 

minimum, we have to examine the corresponding Higgs scalars mass matrix. 

It turns out that after we make the replacement <Ol+lO> = (v,O,O) the 

Higgs-scalar mass matrix is diagonal, with diagonal elements given by 

(we denote (p. = Rj +iIj): 
J 

2n2 + 12(X1+4X2)v2 = S(Al+4h2)V2 

a2v =- 
aIf 

2p2 + 4(5+4X2)v2 = 0 

a2v= &J= 

aRt 4 (2x3 - 612)~~ 

a2v= a2v= -4(6A2+2X4)v2 (3.4) 
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where we have used that 2v2(Al+4X2) = -u2. In order for (v,O,O) to be 

a minimum the following conditions must be satisfied: 

p2 < 0; A1 > -4A2; x2 < A3/3; A2 < -x4/3 (3.5) 

Next we will analyze the fermion mass matrix. Next we will analyze the fermion mass matrix. Using (3.2) and <Ol$lO> = Using (3.2) and <Ol$lO> = 

(v,O,O) one obtains: 

Md Mdt = 
2 

i i 0 0 0 0 0 0 (g, (g, + 0 0 g,) + 0 0 g,) 2 2 (81 (81 - 0 0 - 0 0 

(3.6) 

82) 82) 2 2 i i 

and similarly for the up quarks. The mass matrix is diagonal and all 

Cabibbo angles vanish. This is to be expected from our analysis in 

Section 2, since the decomposition of 31 with respect to D2 is (l,l',l"). 

Furthermore, the u and d quarks are naturally massless at this stage. 

We now consider the next stage of symmetry breaking, in which D2 is 

further borken. This could in principle be achieved by either taking 

into account quantum corrections to the Higgs potential (if they lead 

to a further breaking) or more modestly by adding extra Higgs particles. 

But independently of the mechanism which produces the breaking of D2, 

we will consider an example in which a "perturbation" along a given 

irreducible representation of D2 leads to a calculable Cabibbo mixing 

matrix. We recall that the nontrivial elements of 0, which leave the 

vacuum (v,O,O) invariant are: 

1 0 

( i -1 . , 

0 -1 ( 
100 

0 o-1 

o-1 0 

. , 
II 

( 
100 

0 01 

010 
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We exchange now to a basis allowing for a direct decomposition into D2 

representations. This is achieved by performing a n/4 rotation in the 

2-3 plane. In the new basis the matrices (3.7) are given by: 

i 1-l-1) ; (:-1+” ( 
1 0 

1 

0 -1 

(3.8) 

The decomposition 31 -+ (l,l',l"> is transparent. Now we assume that the 

breaking of D2 is along a given irreducible representation, say l', i.e., 

the new minimum is given by 

<olqllo> = (v, fiEV,O> ; E << 1 (3.9) 

or, in the previous basis: 

<ol+lo> = (v, EV,-EV) 

Using (3.2), (3.10) one obtains for the fermion mass matrix: 

MdMdt = 2 5- 

<g:+ 92)E2 g-g+E -g-g+E 

g-g+E g:+ c2g2 -g-g+c2 

-Eg+E -g_g+E2 92 + E2g: 

(3.10) 

where we have introduced g+ = gl+ g2. The eigenvalue equation can now - 

be used to relate the quark masses to the parameters in the mass matrix. - 

22 22 22 
mbrnS 

+ mbmd + mdms 

rl = 
> 

= 64(1-4~2) + 4c2(2+e2) 

2 4(1+2E2)2 
(3.12) 

2 2 2 
mb md ms = E4(lf S2>(2- 62)2 

4(1+2E2)3 
(3.13) 
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where 6 2 = (9; - i$)l(g:+ g;). Assuming now that ~<<l one obtains: 

ls4 
m2 

M 4rl M $ 

% (3.14) 

2 "d"s E k-i- 
2 

Using the Kobayashi-Maskawal' parametrization one obtains for the angles: 

2 
1 (3.15) 

U with similar expressions for si. 

The purpose of this example was to illustrate how a small pertur- 

bation around the D2 symmetric vacuum leads to physically interesting 

results. 

We now address ourselves to the following question: Can quantum 

corrections generate this second stage of symmetry breaking, thus making 

the smallness of the parameter E (or equivalently the smallness of mu, 

md) a natural feature of the model? We first note that the D2 symmetry 
of the minimum (v,O,O) is not a symmetry of the total Lagrangian. In 

particular, it can be easily verified that the Yukawa interactions 9 
Y 

are not invariant under (3.7) transformations. This is due to the fact 

that g, is only T invariant and the particular subgroup of 0 
h 

considered 

here is not a subgroup of T. Since D2 is not a symmetry of the total 

Lagrangian, the Georgi-Pais theorem 6 does not apply and this raises the 

hope of generating light quark masses through radiative corrections. Un- 

fortunately it turns out that in the present example that is not possible. 

This can been seen in the following way: among the D2 matrices in (3.7) 
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only the first belongs to T. Together with the identity it forms a C2 sub- 

group of T, to which the Georgi-Pais theorem applies. From (3.4) it is 
-c. 

apparent that there are no non-Goldstone massless scalars (I1 is the 

Goldstone boson needed to give mass to the neutral vector meson Z) as 

long as one doesn't choose nonnatural values of the Xi, and therefore 

one concludes that the C2 symmetry will be respected by higher order 

corrections. On the other hand this C2 invariance is sufficient to 

guarantee the form (v,O,O) for the minimum of the Higgs potential. 

In view of previous analysis, we examine now the other tree approxi- 

mation minima listed in (3.3). Among these, only the one corresponding 

to 

<ol+D = 2 (v,v,O) (3.16) 

leads to massless u, d quarks in the tree approximation.. In this case, 

Oh is broken to a D2 subgroup whose nontrivial elements are given by: 

( 
010 

100 

0 o-1 i 

(3.17) 

This case has the interesting feature that none of these matrices belongs 

to T. Before pursuing, we have to investigate if (3.16) can be obtained 

in a natural way. The Higgs scalar mass matrix corresponding to (3.16) 

is given by: 
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&= a2v= 
aR; aR; 

4v2(h1+4h2) 

- 

a2v = 
aRlaR2 4v2(hl- 2X2+2X3) 

82v= a2v= 
ac: aci 

-4v2(X3fh4) 

a2v = 
aclac2 4v2(h3+X4) 

&J= 
aR; 

4v2(h3- 3x2) 

&v 
ac!j 

= -4v2(3X2+ A3+2X4) (3.18) 

where 2v2 (Al + x2+ x3) = -lJ2, and the other nondiagonal elements vanish. 

Diagonalizing (3.18) gives the following scalar masses: 

Ml = 8v2(hl+ X2+ X3) ; M2 = 8v2(3X2- X3) 

M3 = -~v~(x~+A~) ; M4 = 0 

M5 = 4v2(X3- 3X2) ; M6 = -4v2(3h2+ x3+2X4) (3.19) 

As in the previous case, there is one massless scalar which is a Goldstone 

boson. In order that (3.16) is a minimum all the other eigenvalues in 

(3.19) should be positive. It happens here by accident, that this cannot 

be achieved in a natural way (i.e., for a finite range of the free para- 

meters of the theory) since M2 2 0 and M5 1 0 lead to:12 

3x2 = x3 (3.20) 
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From the previous discussion, we conclude that in the present example 

it issot possible to generate a hierarchy of symmetry breaking through 

radiative corrections in a natural way. However we feel that the 

possibility of avoiding the Georgi-Pais theorem through a first stage 

breaking into a group which is not a symmetry of the total Lagrangian 

is sufficiently attractive to deserve further attention. 
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