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ABSTRACT 

An ansatz yielding propagating wave solutions of pure SU(3) gauge 

theories is exhibited. The solutions are self-dual and-have a super- 

position property like their SU(2) analogues. Possible generalizations 

of the ansatz which may be used to obtain additional irreducible SU(3) 

solutions are also suggested. 
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1. INTRODUCTION 

"SU(2) Yang-Mills theories provide the simplest examples of theories 

with a non-Abelian gauge symmetry and hence have been the focus of most 

investigations. However, since the strong interactions may be mediated 

by an octet of colour SU(3) gauge fields, it is also important to con- 

sider classical solutions of SU(3) gauge theories. Apart from the pos- 

sibility that such solutions will be relevant to the quantum theory, the 

study of SU(3) solutions is attractive for a number of other reasons. 

Firstly, results obtained for SU(2) theories generalize readily to higher 

rank gauge groups since it is always possible to embed known SU(2) solu- 

tions. Secondly, because SU(3) has an inherently more complex structure 

than SU(2), it is possible that some non-trivial generalizations of SU(2) 

solutions exist, apart from the straightforward embeddings. Finally, 

unlike the SU(2) case, it is possible to construct a stable solution to 

the pure SU(3) gauge field equations without the introduction of explicit 

scalar fields Cll. 

A large number of SU(3) solutions have now been discovered. These 

include generalizations of the 't Hooft-Polyakov monopole Cl-63and the 

Prasad-Sommerfield monopole C71, as well as SU(3) dyons CSI. Models of 

SU(3) monopoles coupled to fermions have also been considered C91. 

SU(3) instantons with topological charges of +1 and +4, corresponding 

to the two inequivalent embeddings of the group SU(2) inside SU(3) [lO,ll] 

have been obtained. Irreducible SU(3) solutions have resulted from an 

O(3) symmetric ansatz C12,131 corresponding to an SU(3) generalization 

of Witten's cylindrically symmetric multi-instanton solution C14l. SU(3) 

versions of meron Cl51 and multi-meron Cl61 configurations also exist and 
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investigation of complex SL(3,C) self-dual fields Cl71 has yielded a 

numb; of interesting non-trivial solutions. 

The Corrigan-Fairlie- 't Hooft-Wilczek (CRtHW) ansatz C181, however, 

has not yet been generalized to SU(3) due to the difficulty of finding an 

analogue of the 't Hooft tensor, n apv' We have utilized a particularly 

simple version of this ansatz for the investigation of propagating wave 

solutions in SU(2) gauge theories [19]. In addition to the natural 

interest in SU(3) versions of these solutions, we might hope to gain 

some indication of possible generalizations of n aF.lv appropriate to SU(3). 

In Section II we exhibit a generalization of the O(3) symmetric an- 

&itze used by other authors C8,131 to find SU(3) solutions. This general- 

ization is shown to yield the SU(3) version of the wave solutions mentioned 

above. The self-duality properties of the ansatz are considered in detail 

in Section III and possible generalizations which may be useful for find- 

ing the SU(3) analogue of the CFtHW ansatz are discussed in Section IV. 

II. SU(3) WAVE SOLUTIONS 

We begin by writing the gauge potential A and field strength Fllv as 
u 

matrices in the space of infinitesimal group generators 

with 

A 
APaTa 

=- 
- 1-I 2i ' 

aa F T 
F 1.IV = 

PV 2i ' 

F =aA 
I.lv WV 

- av$ + [A p, AJ l 

(2.la) 

(2.lb) 

(2.lc) 
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The equation of motion may thus be written as 

DvF = aVF 
UV 

+ [A', Fuv] = 0 . 
UV 

(2.2) 

For SU(2) gauge theories the matrices Ta are given by the 2 x 2 

Pauli matrices, oa, a = 1 ,...,3 whereas for SU(3) gauge theories they 

are chosen to be the usual 3 x 3 Gell-Mann matrices, A a , a = 1,...,8. 

As discussed in an earlier paper [19], a suitable ansatz for wavelike 

solutions of SU(2) gauge theories characterized by a propagation vector 

kp is given by 

AV = ia uv kV f&*x) , (2.3) 

where k-x = kVx . Equation (2.3) is just a special case of the CFtHW 
u 

ansatz. The antisymmetric matrices o !JV 
satisfy the O(4) commutation 

relations and are defined as usual by 

0 =- 1 bi, ajl , ij 4i 

and (2.4) 

1 0 i4 
z-(-J 

2 i , 

or 

rl oa 
0 = aw 

UV 2 ’ 

with 

- 
11 = E 

auv wv 
a,p v = 1,2,3 , 

= 6 
au , v=4 . (2.5) 

The CFtHIW ansatz may be extended to Minkowski space' by defining 

ia i cl =- 
i0 2 - 

1 Our metric is g pv = diag (+ - - -). 
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The set of u 
l-IV 

matrices thus obtained satisfy O(3,l) commutation rela- 

tie; and yield complex solutions in Minkowski space. In the particular 

case of ansatz (2.3) one class of self-dual solutions with a restricted 

superposition property is obtained provided that k2 = k k' = 0. Since 
1-I 

the function f(k*x) remains completely arbitrary, these solutions may 

be regarded as non-abelian generalizations of electromagnetic plane waves. 

The Euclidean space version of these solutions with k2 = 0 is of course 

trivial. 

In order to obtain SU(3) versions of these SU(2) wave solutions, we 

begin by defining a generalization of the O(3) symmetric ansgtze used by 

Horvath and Palla [8] and Bais and Weldon t131. As in the SU(2) case it 

is possible to exhibit the ansatz in either Euclidean or Minkowski space. 

A. Euclidean Space Version 

We choose the SU(3) gauge potentials to be 

Ai = ie k.L H(v) ijk J k 
f ic s Q ijk k kp G(v) + iLik4D(v) 

+iQ.. kjk4 E(v) + ikjLjkiA(v) + iQrs krkski 
=J k 

k B(v) . (2.6a) 

kakb F(v) A4 =- iL,k, C(v) - iQab k . (2.6b) 

where v = k x 
I-Iv -11 

= k x + k2x2 + k3x3 + k4x4 , 

k = $1 , 

(Lalij = kiaj , 

(Q,)ij = Sai ‘bj ' 6aj 'bi - ~ 6ab 'ij, i,j,a,b = 1,3 , 

and H, G, D, E, A, B, C, F are unknown functions of v. It can be seen 

that ansatz (2.6) corresponds to the most general form of the potential 
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which can be constructed from La, Q ab and the vector k 
u' 

and reduces to 

the simple SU(2) embedding if 

G=D=E=A=B=F~O . 

La and Q, satisfy the commutation relations: 

ILay $1 = iEabc Lc , (2.7a) 

[La, Qbcl = i (E cna 'bn + sbna Qcn) ' (2.7b) 

[Qaby Qcdl = i(6ad 'bCs + &bd EaCS + 6bc Eads + 6ac Ebds) Ls - (2-7c) 

The Lorentz condition, anAY = 0 is satisfied if 

D’ + it2 A’ - c~ 

k4 
, (2.8a) 

(2.8b) 

where the prime denotes differentiation with respect to v = k x . 
1-I u 

It is straightforward to calculate the field strengths from 

Eq. (2.1~) 

F k4 ' E2 

ij = iC(c 
jrski 

- E irskj) D&O-I' + 
k2 

+ k4AD + 2k4BE) 

+ Qpskpkr 
k - (G' - HG + k4AE + 2k4BD)] 

'mnkm 2 -E.. k k L (Hz + G2) - cijpLpk42(D2 + E2) - 2E.. - iJr r s s iJn k k4 DE 

+ (k.L. - kjLi) [k4D' - k4(HD + 2GE) - ii2 (AH + ZBG)] 
iJ 

-2~ k 'np knkp 
ijs s k HG 
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Q ' mkmki Q imkrnk. 
+(k - k '1 [k4 E' - k4(2HE + DG) - Tt2 (AG + 2BH)] 

- (&irm Qnj - "jrm 
kr +2 Qmi) k (k HG + k42 DE)] , (2.9a) 

Q 
F4i = i (E k.L (H' ijk J k - CD - 2EF) k4 + s.. ijkkjkp + k4 (G' - CE - 2FD) 

Q..k. 
+ Li[kq2D' + c2(HC + 2FG)] + y [k42 E' + d2(2HF + CG)] 

+ ki[Laka(C' + k4.A' - HC - 2FG) 

+ 
Qrskrks 

k (F' + k4B' - 2HF - CG)]} . (2.9b) 

Equations (2.9) may now be inserted into the field Eqs. (2.2). In 

order to illustrate the simplifications required to obtain the field 

equations in a suitable form it is convenient to consider 

From Eq. (2.9b) it follows immediately that 

ai Fqi + [A,, F4i] = 0 . (2.10) 

aiF4i = i {Liki(k42Dtt + z2C" + z2k4A") + Qabkakb k (k42E" 

+ z2F" + k4z2B")} . (2.11a) 

The Lorentz condition (2.8) may be used to simplify this expression to 

- 

aiF4i = i (Liki k k 2 F,, ] 
, (2.11b) 

1-1 

where k 2 
Ft 

= k42 + z2. 

Similarly, the inhomogeneous term in Eq. (2.10) becomes 
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IAiL 4i F ] = i {kjLj[-k42 (2CD2 + 2CE2 + 8EFD) + 2DH' - 2HD' 

-z2(2CH2.+ 2CG2 + 8HGF) + 2EG' - 2GE'] 

Qi.kik. 
+ J k J [- k42 (6FD2 + 6FE2 + GECD) f 3DG' - 3GD' 

- ii2 (6FH2 + 6FG2 + GGHC) + 3EH' - 3HE' 1) . (2.12a) 

Upon choosing D = ( and E = ( z 1, Eq. (2.12a) simplifies to 

[Ai, F4il = i 1-k L k j j p2 (2CH2 + 2CG2 + 8HGF) 

Qi.kik. 
' k 2 (6FH2 + 6FG2 + GCHG)} 

k 1-1 . (2.12b) 

The important point to note in Eqs. (2.11b) and (2.12b) is that 

2 they are now multiplied by a factor k . 
u 

When these solutions are con- 

tinued to Minkowski space, the class of solutions with k 2 = 0 will 
1-I 

automatically satisfy the equations of motion and represent the W(3) 

analogues of the self-dual propagating SU(2) wave solutions obtained in 

earlier work. 

The field equations for the field strengths F.. may be simplified 
=J 

by the methods described above, and after much tedious algebra, the 

equations of motion finally become 

ik 1-12 CkjLj(C" - 2H2C - 2CG2 - 8HGF) 

Qi.kik. 
+ J 

k J (F" - 6FH2 - 6FG2 - GCHG)} = 0 (2.13a) 

and 
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2 k4Lj 
ik 

1-I c kL + 
a P Q.nknk4 

I) 
[H" - H3 - 7HG2 - 4GFC - 4HF2 - HC2] 

k 

jan k I I) k [G" - G3 - 7H2G - 4CHF - 4GF2 - GC2] 
k4L. 

J 

kaksQsn + 
Qjnknk4 

k4 +-k.Lk 
k2 Jaa 

- 2H2C - 2G2C - 8HFG 

I H3 + 7HG2 + 4GFC + 4HF2 + HC2 
+ 

G3 + 7H2G -I- 4CHF + 4GF2 + GC2 

k'Qimkik,k4 
+ J k3 

+ H3 + 7HG2 + 4GFC + 4HF2 + HC2 

G3 + 7H2G -t 4CHF + 4GF2 + GC2 
I=0 . (2.13b) 

where the terms in braces correspond to choosing D = {-G H],E=@. 

Hence solutions of Eq. (2.13) are obtained if 

(i> c" - (2CH2 + 2CG2 + 8HGF) = 0 , (2.14a) 

(ii) F" - G(CHG + FH2 + FG2) = 0 , (2.14b) 

(iii) H" - (H3 + 7HG2 + HC2 + 4GCF + 4HF2) = 0 , (2.14~) 

(iv) G" - (G3 + 7H2G + GC2 + 4HCF + 4GF2) = 0 . (2.14d) 

or k2=0 
lJ - 

The trivial SU(2) embedding is recovered by setting 

H=C , 

G=F=O . 

B. Minkowski Space Version 

(2.15) 

By analogy with the SU(2) case, the ansatz for the Minkowski space 

version of the above solutions may be written as 
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kJLkH + is.. 
kJkPQk G Q kjk"E . . 

Ai = iE.. 
vk 1Jk k 

p - LikoD - lJk 

+ kJLjkiA + 
QrskrkskiB 

k I (2.16a) 

kakb A0 = LakaC + Q,, 7 F . (2.16b) 

Inserting ansatz (2.16) into Eq. (2.1~) yields the field strengths: 

kjkPQ k" 
F =(iE kJLk(H' + CD + 2EF)k' + is kp 

oi ijk ijk k 
(G' + CE + 2FD) 

+ Li[ - ko2D' 
kj 

- z2(HC + 2FG)l + Qij 7 [-ko2E' - g2(CG + 2HF)] 

+ ki[Ljkj(koA1 - C' - HC - 2FG) 

+ Qabk”kb 
k (koB' - F' - CG - 2HF)]) , (2.17a) 

and 

k2 
F ij = ((i.5 jrski - is irskj> [Lskr(H' + - ,"2 E2 + k"AD + 2k'BE) 

kPkr 
+Q - ps k 

(G' + HG + k"AE + 2k"BD)] - isijrkrLSkS(H2 + G2) 

+ ie Lk2(D2+E2)+ 2is 
Qmnkm 

UP P o 
---- ijn k ko2DE 

-2iE 
knkP 

ijs kS Qnp k HG 

+ (k.L. - kjLi) [- k"D' - k'(HD + 2GE) - c2(AH + ZBG)] 
IJ 

kmk. kmk. 
+ (Qjm ~ - Qim + ) [-k"E' - k"(GD + 2HE) - z2(AG + 2BH)] 

-(E. Q urn mj -E jrmQmi) -$ (ig2HG - ik 
0 

2 DE)) . (2.17b) 
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Substituting these expressions into the field equations it is 

four&that just as in the SU(2) case, solutions are obtained if the 

Eqs. (2.14) or (2.15) are satisfied, where now k 
2 = k 2 _ g2. Hence 

1-I 0 

the fields (2.17), with the functions C, F, H and G remaining arbitrary 

and depending on a propagation vector k such that k 2 
1-I u 

= 0, describe the 

SU(3) analogues of SU(2) non-Abelian plane waves. Clearly for these 

solutions just as in the SU(2) case, it is possible to superpose gauge 

fields of the form (2.16) and still obtain a solution of the field 

equations. 

As expected, the properties of SU(3) plane wave solutions do not 

differ significantly from those for SU(2) gauge theories. 

The important result of this section is not the investigation of 

these properties, but rather the construction of the ansatz (2.6) or 

(2.16) in such a way as to ensure that the equations of motion reduce to 

2 expressions multiplied by an overall factor of k . 
1-I 

III. SELF-DUALITY PROPERTIES OF THE SU(3) WAVE SOLUTIONS 

It is interesting to examine the consequence of demanding that the 

field strengths (2.9) satisfy the self-duality condition. For conve- 

nience' the Euclidean space solutions are considered; however, analagous 

results may be derived for the Minkowski space solutions. 

To obtain the duals of the field strengths (2.9) it is much more 

convenient to express them in a covariant form. Accordingly, the gauge 

fields (2.6) are written as 
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G+i( kak$ - A,, = ir,,vkVH + i S4uaB ka kg k -KB 
44a8 k k4 1-1 

A 
+iT4,&Kp 5 , (3.1) 

where KM = 6 
114 krkV - k,,k4 , (3.2a) 

k = 191 , (3.2b) 

T =rl L I-lV avv a Z a= 1 , ’ - l , 3 (3.2~) 

5 uvclfl = -'apa nbvB 'ab , a,b = 1,...,3 , (3.2d) 

and n 
aw 

is the 't Hooft tensor defined by Eq. (2.5). 

The tensors -c fl\, are seen to correspond to the embedding of the SU(2) 

tensors u uv inside SU(3) which yields instantons with charges of q = 24. 

The tensors S,,eB have no analogue in SU(2). With the aid 

what cumbersome commutation relations given in Appendix A, 

strengths may be evaluated: 

3 7 7 

of the some- 

the field 

F =i(('c k --T 
I-1V VP lJ ,,&I kp (H' - HL - G') + -cukYkr(H' + G2) 

K G2k 
-+(T K -r 

VP u 
K ) $- (AH + 2~x3 -t -$) 

WV 4 k 

+ + (Kv k - kv Ku) ~~~ kp (A' - AH - 2GB - G2k4/t2) 
4 1-I 

- 

+ ts 
kaks 

4uaf$ kp - S4pi3 kv) k 
(G' - 3GH) - 354uav 5 GHkVkr 

k 

+ Wvkll 
kaka 

- KPkv) C44eB r (B' - GA -- 2HB) 
4 

Kk 
-!- (5 = (GA + 2HB)) 

4vaB K~ - ‘4pctB Kv' kk4 
. (3.3) 
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It is trivial to check that Eq. (3.3) is identical to the field strengths 

(2.g for D = H and E = G. 

The dual of Eq. (3.3), *Fuv = i &uvaB FaB, may now be calculated 

using the formulae given in Appendix B: 

* 
F 

I-rV 
= i (- (rvo k 

1-I 
- TPakv) ku(H' - H2 - G2) + Tvvkyky H' 

- ('va 
Kci k4G2 

KP - ruaKv) c (AH + 2GB + -+2 > 
4 k 

-+2 G2k 

- -%v Y Y k4 
k k k (AH + 2GB + + ) 

k 

+& kkk- 
G2k4 

vva4 a Y Y k4 
- AH - 2GB - T ) 

k 

kk 
- (5 4vy6 klA - F;4pys kv) 

krG' + (G' - 3GH) - 541Jyv k 

- 5 
kYc2 
- (GA + 2HB) k,k, 

4iiyv kk4 

- (E !Yk (GA + ~HB) 
4vy6 ‘p - ‘4uy6 Kv) kk4 

+& 
kaks 

uvcx4 kakyky ‘44afi kk4 (B’ - GA 
- 2HB)) . (3.4) 

- 
Comparing Eqs. (3.3) and (3.4) it is easy to see that the anti-self- 

duality condition, *iF Ilv = -FVv, is satisfied if 

kk=O , 
YY 

(3.5) 



- 14 - 

or 

+2 
(i> H' + H2 + 2G2 +& (AH + 2GB) = 0 

k4 
; (3.6a) 

(ii) A' - (AH + 2GB + G2k,/z2)= 0 ; (3.6b) 

+2 
(iii) G' + 3GH + &- (GA + 2HB) = 0 

k4 
; (3.6~) 

(iv> B' - GA - 2HB = 0 . (3.6d) 

It is not difficult to check that the self-duality Eqs. (3.6) imply 

the equations of motion (2.14), by remembering the Lorentz condition for 

the ansatz (3.1) is satisfied if 

H+p=C , 

G+e=F . 

Hence, as expected the k 2 
u 

= 0 solutions for SU(3) gauge theories 

are anti-self-dual, just like their SU(2) analogues. The system of 

Eqs. (3.6) gives a set of first order equations for wavelike SU(3) 

solutions, which although simpler than the corresponding equations of 

motion, are still not trivial to solve. 

IV. REMARKS 

(i) The form of the ansatz (3.1) is very suggestive. With a 

suitable choice of the functions G, B and A it reduces to an embedding 

of the CFtHW ansatz inside SU(3). From a generalization of Eq. (3.1), 

a possible candidate for an SU(3) version of the CFtHW ansatz may be 

written as 
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AV = i-r 8 lnh + i 5 
?Jv v I.lpaB [tap 1nC) (a,glnf) 

- cap lnf) (aaB 1nC) 1 , (4.1) 

where h, f and C are some superpotentials. It is not difficult to show 

the Eq. (4.1) satisfies the Lorentz condition. 

The field strengths and their duals resulting from ansatz (4.1) have 

been evaluated. The algebra is rather involved and unfortunately apply- 

ing the self-duality condition does not lead to the nice simplification 

which occurs for SU(2). However, it is still possible that (4.1) results 

in some simplification of the equations of motion, so further investiga- 

tion of this ansatz is indicated. 

(ii) We have recently obtained the most general self-dual SU(2) 

plane wave solutions C2ol by the use of Yang's R-gauge equations C211. 

Yang's formulation has also been extended to the gauge group SU(3) c221. 

Just as in the SU(2) case, it is not difficult to see that the most 

general self-dual SU(3) plane wave solutions may be obtained by simply 

requiring that the functions used in the R-gauge ansatz be dependent 

on the Lorentz scalar k*x. 
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APPENDIX A 

me commutation relations for the tensors T 
I.lV 

and 5 as defined 
?JVPU 

by Eqs. (3.2c)-(3.2d) are given by 

[T l.lV’ ~~~1 = i ~~~~ 6v,6 - TV6 6vp + TV6 6up - Tvp “v~) y w-1 

[C llvaB ’ =(J = i (&ip $3 - ~pxm $p + &Kr %p - s,aa, Gvu 

+5 6 
VI-& a.0 - E VlmJ ap 6 + %k$s $lp - svai3p $Ju) , W’) 

15 !Jvaf3 $syd = ($KJ % - 6p6 6c!“a) %3 9 =pyl 

+ (6 vu $36 - % $3cl) Q *pyl 

+ (6 
VP %Y 

- 6 
vy $I? [*jxP To61 

+(6 6 -6 
).ty ?qp) $3 9 w l 

(A3) 
UP aY 
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APPENDIX B 

-Using the well-known identity 

6 EvkoS 'ap6 = 'avk PO f rl aov pk 6 + nako 6 
lJV , (Bl) 

the duals of the tensors T 
?JV 

and 5 
VW3 

may be evaluated: 

1 
-z E~vc4$ $3Pcxs = -5 

VPVA ’ (B4) 

The following formulae are also useful 

1 
2 EI.IVaP CT fsp ka - Lp 

ks) kp = 4~~~ k - = 
v w 

kV) ka + T 
w kY kY 

, (B6) 

1 
2 Epm13 (6 48y6 ka - 54ay6 ks) ky k6 

= -ts 4vy6 kp - 5 
41-lY6 

ku> ky k6 - 5 4?.lyv ky k6 k6 - (B7) 
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