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ABSTRACT

An ansatz yielding propagating wave solutions of pure SU(3) gauge
theories is exhibited. The solutions are self-dual and have a super-
position property like their SU(2) analogues. Possible generalizations
of the ansatz which may be used to obtain additional irreducible SU(3)

solutions are also suggested.
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I. INTRODUCTION

“SU(2) Yang-Mills theories provide the simplest examples of theories
with a non-Abelian gauge symmetry and hence have been the focus of most
investigations. However, since the strong interactions may be mediated
by an octet of colour SU(3) gauge fields, it is also important to con-
sider classical solutions of SU(3) gauge theories. Apart from the pos-
sibility that such solutions will be relevant to the quantum theory, the
study of SU(3) solutions is attractive for a number of other reasons.
Firstly, results obtained for SU(2) theories generalize readily to higher
rank gauge groups since it is always possible to embed known SU(2) solu-
tions. Secondly, because SU(3) has an inherently more complex structure
than SU(2), it is possible that some non-trivial generalizations of SU(2)
solutions exist, apart from the straightforward embeddings. Finally,
unlike the SU(2) case, it is possible to construct a stable solution to
the pure SU(3) gauge field equations without the introduction of explicit
scalar fields [11].

A large number of SU(3) solutions have now been discovered. These
include generalizations of the 't Hooft-Polyakov monopole [1-6] and the
Prasad-Sommerfield monopole [7], as well as SU(3) dyons [8]. Models of
SU(3) monopoles coupled to fermions have also been considered [9].

SU(3) instantons with topological charges of *1 and #4, corresponding
to the two inequivalent embeddings of the group SU(2) imside SU(3) [10,11]
have been obtained. Irreducible SU(3) solutions have resulted from an
0(3) symmetric ansatz [12,13] corresponding to an SU(3) generalization
of Witten’s cylindrically symmetric multi-instanton solution [141. SU(3)

versions of meron [15] and multi-meron [16] configurations also exist and



investigation of complex SL(3,C) self-dual fields [17] has yielded a
number of interesting non-trivial solutiomns.

The Corrigan-Fairlie-'t Hooft-Wilczek (CRtHW) ansatz [18], however,
has not yet been generalized to SU(3) due to the difficulty of finding an
analogue of the 't Hooft temsor, napv. We have utilized a particularly
simple version of this ansatz for the investigation of propagating wave
solutions in SU(2) gauge theories [19]. In addition to the natural
interest in SU(3) versions of these solutions, we might hope to gain
some indication of possible generalizations of nauv appropriate to SU(3).

In Section II we exhibit a generalization of the 0(3) symmetric an-
sitze used by other authors [8,13] to find SU(3) solutions. This general-
ization is shown to yield the SU(3) version of the wave solutions mentioned
above. The self-duality properties of the ansatz are considered in detail
in Section ITI and possible generalizations which may be useful for find-

ing the SU(3) analogue of the CFtHW ansatz are discussed in Section IV.

II. SU(3) WAVE SOLUTIONS
We begin by writing the gauge potential Au and field strength Fuv as

matrices in the space of infinitesimal group generators

AuaTa
~ Au = 53 . (2.1a)
,uvaTa
P T 721 (2.10)
with
Flo = 34 — 3 A + A, A ) (2.1c)



The equation of motion may thus be written as

v PR v -
D Fuv = 23 Fuv + [A7, Fuv] 0 . (2.2)

For SU(2) gauge theories the matrices T2 are given by the 2 x 2
Pauli matrices, ca, a=1,...,3 whereas for SU(3) gauge theories they
are chosen to be the usual 3 x 3 Gell-Mann matrices, Aa, a=1,...,8.

As discussed in an earlier paper [19], a suitable ansatz for wavelike
solutions of SU(2) gauge theories characterized by a propagation vector

ku is given by

. v
Au = 1Guv k” f(k-x) ’ (2.3)

where k*x = kMx . Equation (2.3) is just a special case of the CFtHW
u

ansatz. The antisymmetric matrices OUV satisfy the 0(4) commutation

relations and are defined as usual by

o =L [o o.]
ij 41 i* 75 ’
and (2.4)
o = ;-o
i4 2 i ?
or
a
o - nau\) ,
uv 2
with
B nau\) = Eauv a,p v 1,2,3 ,
= 6au , Vv = 4 . (2'5)

The CFtHW ensatz may be extended to Minkowski space1 by defining

io,
o] = —=
i0 2

1Our metric is gtV = diag (+ - - -).



The set of OUV matrices thus obtained satisfy 0(3,1) commutation rela-
tiogg and yield complex solutions in Minkowski space. In the particular
case of ansatz (2.3) one class of self-dual solutions with a restricted
superposition property is obtained provided that k2 = kuku = 0. Since
the function f(k+x) remains completely arbitrary, these solutions may
be regarded as non-abelian generalizations of electromagnetic plane waves.
The Euclidean space version of these solutions with k2 = 0 is of course
trivial.

In order to obtain SU(3) versions of these SU(2) wave solutions, we
begin by defining a generalization of the 0(3) symmetric ansdtze used by
Horvath and Palla [8] and Bais and Weldon [13]. As in the SU(2) case it

is possible to exhibit the ansatz in either Euclidean or Minkowski space.

A, Euclidean Space Version

We choose the SU(3) gauge potentials to be

k.k
_ . ip .
Ai lgijkkijH(v) + 1Eijk m QkpG(v) + 1Lik4D(v)
kjk4 krkski
+1Qij . E(v) + 1kijkiA(v) + 1QrS — B(v) . (2.6a)
k2,
s . a
A4 1Laka c(v) 1Qab . F(v) . (2.6b)
where v = kuxu =Aklxl + k2x2 + k3x3 + k4x4 s
k = ‘k! s
(La)ij N 1€iaj >
Q ) = § § + 6 8 - 2‘6 § i, b=1,3
ab’1j ai °bj aj "pi ~ 3 %ab “ij’ 1>3,8,0 = 4 »

and H, G, D, E, A, B, C, F are unknown functions of v. It can be seen

that ansatz (2.6) corresponds to the most general form of the potential



which can be constructed from La’ Qab and the vector ku, and reduces to

the simple SU(2) embedding if

[La’ ch] - (ecna an + ®bna an >
+ 6bd facs + Gbc €ads + 6ac ebds) Ls
The Lorentz condition, auAu = (0 is satisfied if
>2 '
D' + k}(A = C' ,
4
>2 '
E' + kkls = F' ,
4
where the prime denotes differentiation with respect to v = kuxu.

It is straightforward to calculate

Eq. (2.1c)
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(2.8a)

(2.8b)



Q. k k Q. k k

+ (Jmkm L Ammdy (g E' - k, (2HE + DG) - B2 (AG + 2BH)]
k 4 4
- ( € i %2 HG + k,% DE)} (2.9a)
®irm Qmj T Tjrm Ui’ % ( 4 ? -0

' Qkp
_ 1 — — ' — —
F4i i {Eijkkij (H CD 2EF) k4 + eijkkjkp K k4 (G CE 2FD)

v Q..k,
+ Li[kAZD' + B2HC + 2FG) ] + —117(—1 [k42 E' + R2(2HF + CG)]

+ k,{L k (C'" + k,A'" - HC - 2FG)
it7a"a

4

Qrskrks
+ 555 (5 4+ k

" B' - 2HF - CG)1} . (2.9b)

4

Equations (2.9) may now be inserted into the field Egs. (2.2). 1In
order to illustrate the simplifications required to obtain the field
equations in a suitable form it is convenient to consider

3. F,. + [A.,

1 Fus i F4i] =0 . (2.10)

From Eq. (2.9b) it follows immediately that

Q .k kb
. 2 u >2 ab a 2 _n
3.F,, = 1 {Liki(k4 D" + k 5% (k4 E

Y] -+2 n
Fui c'+ k kéA ) +

+ BAFT + k4KZB")} ) (2.11a)

The Lorentz condition (2.8) may be used to simplify this expression to

_ Q .k
3.F,. =1 {L,k, k % ¢" +—@—b—ik—b-k Zgny (2.11b)
i 44 i7i T k
where k 2 =k 2 + Kz.
u 4

Similarly, the inhomogeneous term in Eq. (2.10) becomes



. 2 2 2 . .
[Aith4i] i {k,L;[-k,” (20D” + 2CE” + 8EFD) + 2DH' - 2HD
-2 (2cu® + 206 + SHGF) + 2EG' - 2GE']
Qs ksk, 2 2 2
+ ~—1E——l [~ k,” (6FD” + 6FE” + 6ECD) + 3DG' - 3GD'
- ﬁz (6FH2 + 6FG2 + 6GHC) + 3EH' - 3HE' ]} . (2.12a)

Upon choosing D = { g } and E = { g }, Eq. (2.12a) simplifies to

2 2

[A., F,.] = i {-k,L,k 2 (2c8% + 2cG% + 8HCF)
4i J 3w

1

Q..k.k,

- 2L kuz (6FH® + 6FGZ + 6CHG)} . (2.12b)

The important point to note in Egs. (2.11b) and (2.12b) is that
they are now multiplied by a factor kuz. When these solutions are con-
tinued to Minkowski space, the class of solutions with ku2 = 0 will
automatically satisfy the equations of motion and represent the SU(3)
analogues of the self-dual propagating SU(2) wave solutions obtained in
earlier work.

The field equations for the field strengths Fij may be simplified
by the methods described above, and after much tedious algebra, the

equations of motion finally become

ik 2 {k,L,(C" - 28%C - 2¢G% - SHGF)
TR Y
Qy5ksky 2 2
+—L2d pr - erm” - 676% - 6CHE)} = 0 (2.13a)

and



2 ffe., w1 Af;k [H" - 1> - 7HG® - 4GFC - 4HFZ 2
M japap an n 4 = GHFT - HCT]
k
k anknk4
Q
+ le, 23780 4 k (6" - G - 7H2G - 4CHF - 4GF® - ec?]
Jan k kL
473
k. HH
+‘—-é k.L k [C" - 3 " s - 2H2C - ZGZC - 8HFG
2 77 a G
k
i 13 + 7HGZ + 4GFC + 4HFZ + HC? i
+ G3 + 7H2G + 4CHF + 4GF2 + GC2
k,Q, k.k k H"
o idmima [F" - 3 " ‘ ~ 6FH’ - 6FGZ - 6GHC
3 G
k
3 2 2 2
+ + 4GFC + +
N % . 7H(2; 4GFC 4HF2 ch g]} . (2.13b)
G~ + 7H"G + 4CHF + 4GF~ + GC
. . H G
where the terms in braces correspond to choosing D = {'G }, E={ 1 .
Hence solutions of Eq. (2.13) are obtained if
* " 2 2
(i) c" - (2CH” + 2CG™ + 8HGF) = 0 s (2.14a)
.. " 2 2
(id) F" - 6(CHG + FH™ + FG™) = 0 s (2.14b)
‘s " 3 2 2 2 _
(iii) H" - (H” + 7HG™ + HC™ + 4GCF + 4HF") =0 . (2.14c)
) " 3 2 2 2.
(iv) G" ~ (G7 4+ 7H"G + GC” + 4HCF + 4GF™) =0 (2.144)
2
or k=0 (2.15)
The trivial SU(2) embedding is recovered by setting
H=C s
G=F=0
B. Minkowski Space Version

By analogy with the SU(2) case, the ansatz for the Minkowski space

version of the above solutions may be written as
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3 WKOE
j 1JiFq Q..
= L.H+ 4 kp _ 4]
Ay 13kk k “ijk __”__—LL' L k D k
- , Q k'k°k. B
+ kJijiA + Lk—l— , (2.16a)
a,b

A =L X%+ Q, k ;‘ Foo. (2.16b)

Inserting ansatz (2.16) into Eq. (2.1c) yields the field strengths:
j.P o]
k'k Qkpk

Foi = 18y ijk k-

k| '
oi kk L (H + CD + ZEF)k + ie

(G' + CE + 2FD)

J
-k Zpr - 32 kKo 2o _ 72
+ Li[ kO D k" (HC + 2FG)] + QlJ m [ kO E k“(CG + 2HF)]

+ k,[L.k)(k A" - C' - HC - 2FG)
it7j o}

Qabkakb
LA T (kOB' - F' - CG - 2HF) ]} R (2.17a)

and

2
k
— (1 o T,y o 2 o )
1j {(1€jrski leirskj) [Lsk (' + k2 E” 4+ k AD + 2k BE)

P T
kk ' r. .s,.2 2
+st X (G +HG+kAE+2kBD)] 1€jkLSk(H + G7)
ankm ,
k "DE
o

+ ie 13p . o (D + E ) + 2ie, iin K

n, p
. s kk
_21€ijs k an k

HG

+ Oyl = kL[ OD' - KO(HD + 2GE) - K2 (AH + 2BG)]

il ki °E' - k°(GD + 2H %2 (AG + 28H
+ (Qjm — - Yp R ) [-k E' - k (GD + 2HE) - k" ( )]
k" 2
- (e, Q. - L) — (4 k HG - 1k DE)} . (2.17b)

1rm mj er mi
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Substituting these expressions into the field equations it is
founé that just as in the SU(2) case, solutions are obtained if the
Fgs. (2.14) or (2.15) are satisfied, where now ku2 = koz - iz. Hence
the fields (2.17), with the functions C, F, H and G remaining arbitrary
and depending on a propagation vector ku such that kuz = (0, describe the
SU(3) analogues of SU(2) non-Abelian plane waves. Clearly for these
solutions just as in the SU(Z)'case, it is possible to superpose gauge
fields of the form (2.16) and still obtain a solution of the field
equations.

As expected, the properties of SU(3) plane wave solutions do not
differ significantly from those for SU(2) gauge theories.

The important result of this section is not the investigation of
these properties, but rather the construction of the ansatz (2.6) or
(2.16) in such a way as to ensure that the equations of motion reduce to
expressions multiplied by an overall factor of kuz.

IIT. SELF-DUALITY PROPERTIES OF THE SU(3) WAVE SOLUTIONS

xt is interesting to examine the consequence of demanding that the
field strengths (2.9) satisfy the self-duality condition. For conve-
nience the Euclidean space solutions are considered; however, analagous
results may be derived for the Minkowski space solutions.

To obtain the duals of the field stremgths (2.9) it ié much more

convenient to express them in a covariant form. Accordingly, the gauge

fields (2.6) are written as
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- AT LT g LA Ky ke kT 1 840 2Bk B
k k4
+it, kK K 2 (3.1)
4v v T k4 ’ .
where Ku = 6u4 kYkY - kuk4 s (3.2a)
k=k (3.2b)
Ty = Mapy s ’ a=1,...,3 (3.2¢)
guvaB = Naya Thvg Qab ’ a,b =1,...,3 s (3.24d)

and Mauv is the 't Hooft tensor defined by Eq. (2.5).
The tensors Tuv are seen to correspond to the embedding of the SU(2)
tensors O v inside SU(3) which yields instantons with charges of q = 4.

The tensors & have no analogue in SU(2). With the aid of the some-

Hvop

what cumbersome commutation relationms given in Appendix A, the field

strengths may be evaluated:

F =1{(t k -1 k)k (B - H: -G + 1 kk (H + G?)
uv Vo U wp v p VHY Y
Kp G2k4
‘ _ , o + T
+ (TVQKu TupKv) k4 (AH + 2GB + ﬁz )

1 v _ _ _ 2 >2
+ k, (R, k, =k, K) 7, k (A" - AH - 208 - C7k,/k")
k Ko .
o~ L. -
¥ (E4VUB kU E4uu8 kv) k (G 3GH) 3£4uav jg'GHkYkY
k ko
Kk = KE) €00 35;:-(3' - GA - 2HB)
L
+ Chonp ¥ 7 Eapas K e, (GA + 2HB)) . (3.3)

4
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It is trivial to check that Eq. (3.3) is identical to the field strengths

(2.9 for D = H and E = G.

1

*
The dual of Eq. (3.3), Fuv =2 fuvas FuB

, may now be calculated

using the formulae given in Appendix R:

%
F =1{-(t k -t k) k (8 -—H -G +1 kk B
Hv vo Y Ha Vv o VY Y
K k4G2
- (Tva Ku - ruaKv)-E~ (AH + 2GB +-f;5— )
4 k
Kz sz4
-1t k k -— (AH + 2GB + )
w oy v k >2
4 k
2
T, k : Gk
__l*_E_ﬁ ' __.é*_
+ € ool k y kY K, (A AH - 2GB =7 )

k

kyk6 . kx G
- _ RGP _ Y
(54\)\(5 o Sauys k) o (@ 3GH) Sauyy K
kyﬁz

- - k

E4uyv kk4 (GA + 2HB) ka o

Kok
= Eupys K 7 Ehuye &) —lkk4 (GA + 2HB)
k kg
' — —

* e 0k S5y Sanop TE, (B - GA - Z2HB)} . (3.4)

4

Comparing Eqs. (3.3) and (3.4) it is easy to see that the anti-self-

%
duality condition, F = -F , is satisfied if
v Hv

kk =0 R (3.5)
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or

2 2 B2
(1) H' + B + 267 + 1= (AH + 26B) = 0 ; (3. 6a)

4
(ii) A' - (AH + 2GB + sz4/K2)= 0 : (3.6b)
(iii) G' + 3GH + .~ (GA + 2HB) = 0 ; (3.6¢c)

4

(iv) B' - GA - 2HB = 0 (3.6d)

It is not difficult to check that the self-duality Eqs. (3.6) imply

the equations of motion (2.14), by

the ansatz (3.1) is satisfied if

m
+

= | =Y
«

[p}
+
pr'?\"*l’
ws]

remembering the Lorentz condition for

Hence, as expected the ku2 = 0 solutions for SU(3) gauge theories

are anti-self-dual, just like their SU(2) analogues. The system of

Eqs. (3.6) gives a set of first order equations for wavelike SU(3)

solutions, which although simpler than the corresponding equations of

motion, are still not trivial to solve.

IV.
(i) The form of the ansatz (
suitable choice of the functions G

of the CFtHW ansatz inside SU(3).

REMARKS
3.1) is very suggestive. With a
, B and A it reduces to an embedding

From a generalization of Eq. (3.1),

a possible candidate for an SU(3) version of the CFtHW ansatz may be

written as
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A =it 3 + i
it 9, Inh + i gupaB [(3p lnC)(BaBlnf)

- (ap 1nf) (amB 1nC) ] , (4.1)

where h, f and C are some superpotentials, It is not difficult to show
the Eq. (4.1) satisfies the Lorentz condition.

The field strengths and their duals resulting from ansatz (4.1) have
been evaluated. The algebra is rafher involved and unfortunately apply-
ing the self-duality condition does not lead to the nice simplification
which occurs for SU(2). However, it is still possible that (4.1) results
in some simplification of the equations of motion, so further investiga-
tion of this ansatz is indicated.

(ii) We have recently obtained the most general self-dual SU(2)
plane wave solutions [20] by the use of Yang’s R-gauge equations [21].
Yang’s formulation has also been extended to the gauge group SU(3) [22].
Just as in the SU(2) case, it is not difficult to see that the most
general self-dual SU(3) plane wave solutions may be obtained by simply
requiring that the functions used in the R-gauge ansatz be dependent

on the Lorentz scalar ke-x.
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APPENDIX A
The commutation relations for the tensors Tuv and Euvpc as defined

by Egqs. (3.2c¢)-(3.2d) are given by

[Tuv, TDG] = i (Tup 6v6 - Tus Svp + Tos Gup - Tvp 6u6) s (A1)
(8 vag Tood = Cluep 80 = Buvaos %8e T Eugas Svp T Fusap Cuo
+ Equp aac - Equo Gap t gvocBo 6up - E‘;\)ou‘Bp auc) s (42)
[guvaB gpcySJ = (Gpo 6&6 - Gué éac)[TvB’ TpY]
+ (6vo 685 - své 680)[Tpu’ pr]
By Sy 7 Sy Sppd [Tuas Tos!
+ (sup aow - aw ‘Sap)“vs’ Tog) c (A3)
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APPENDIX B

~Using the well-known identity

E\)kcs naué = Tavk Guc + nac:\) Guk + nakc; suv ’ (BL)
the duals of the tensors T and £ may be evaluated:
HVY uvafB
l-e T = T 8 + T 8 + T S (82)
2 "uvaB Bp VI ap av pu ua pv ’
le £ =_}.(g § +E 5§ + £ s ) (B3)
2 “uvaB "Bpyd 2 “Cupvs Tya apud yv vpas yu >
L, £ = ¢ (B4)
2 uvaB “Bpad Hp VS ’
1 - _1 -1 =1
2 “uvas F’ozcc‘SB 77 fuveB gBO’(SOL T 7% fuvaB EcBGa T2 Euc\)é - (85)
The following formulae are also useful
1 | ’
feudl - = - - + B6
5 euvaB (TBp ka po kB) kp (Tva ku Tua kv) kd TVu kY k.Y , (B6)
L. G kK - & k) k k
2 "pvafB 4ByS o bay8 B Ty 78
= ~Chuys By 7 By B By Ks T B By Ks Ks (B7)
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