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ABSTRACT 

An estimate of quark mass parameters suitable for the study of 

chiral symmetry breaking effects is made using exact Goldberger- 

Treiman relations for the Goldstone bosons which appear in the Weinberg- 

Salam theory when the gauge coupling is set to zero. The numbers 

obtained are m 
U 

= 13.75 5.9 MeV, md = 24.7t12.9 MeV, and ms = 4972 299 

MeV. Consistency of the various Goldberger-Treiman relations with 

current algebra mass ratios is discussed. The relationship (or other- 

wise) of these parameters to those obtained in previous evaluations is 

discussed. 
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1. Introduction 

In this paper, I relate the current quark masses to the deviations 

in the usual Goldberger-Treiman relations in the context of the standard 

QCD/Weinberg-Salam-Higgs model. A connection between quark masses and 

the Goldberger-Treiman relation is hardly surprising in light of the 

fact that Goldberger-Treiman would be exact in the absence of chiral 

symmetry breaking; the mass terms in the Lagrangian are primarily 

responsible for breaking the chiral flavor symmetry. I reestablish 

this connection but, now, from a different and, hopefully, more insight- 

ful viewpoint. The point of view to be presented here was first stressed 

several years ago by M. Weinstein.l 

The treatment of quark masses to be presented below is based on the 

observation that the Goldstone states eaten by the electroweak gauge 

bosons are not pure Higgs states: they have quark content as well. 

To see this, let us first imagine a world where Higgs and quarks are 

decoupled from each other. This means that the quarks interact only 

through color gauge interactions whereas the Higgs interact strictly 

through the usual $4 couplings. Any interactions that link the two 

sectors in the standard strong interaction/electroweak model -- electro- 

weak gauge couplings and Yukawa couplings -- are turned off. Each 

sector possesses a global chiral symmetry: the quarks are invariant 

under flavor chiral SUL(N) x SUR(N) transformations (N standing for the 

number of quark flavors), and the Higgs fall into representations of the 

chiral SUL(2) x SUR(2) group (the Higgs sector has the same structure as 

a pion-sigma system without fermionic couplings). Both global symmetries 

are spontaneously broken. In the Higgs case, a negative mass term drives 
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the spontaneous symmetry breaking while, in the quark sector, the 

breaking is assumed to be dynamical and leads to the formation of a 

quark-antiquark condensate. The chiral SUL(N) X SUR(N) symmetry of the 

strongly interacting sector spontaneously breaks to SU(N) and is accom- 

panied by the existence of N pion-like Goldstone particles. At the same 

time, the Higgs sector breaks to SU(2), which implies the existence of 

three Higgs Goldstone states. 

In actuality, the quark and Higgs sectors are locked together through 

Yukawa and gauge boson couplings. The coupled world does not possess as 

much symmetry as the unlocked world: it is no longer possible to rotate 

the Higgs degrees of freedom independently of the quark degrees of 

freedom. The conserved currents in the combined theory now have both 

quark and Higgs content. The standard model is SU(2) xU(1) symmetric. 

When this symmetry is spontaneously broken down to U(l),'the three 

resulting Goldstone states will, to zeroth order in the Yukawa and gauge 

boson coupling constants, be admixtures of the Higgs and pion-like 

Goldstone states of the uncoupled worlds. This follows from the fact 

the Goldstone content of the theory is uniquely fixed by the form of the 

conserved currents associated with the spontaneously broken symmetries. 

It needs to be emphasized that the degree of mixing between quark and 

Higgs in the formation of the Goldstone states is not determined by the - 

Yukawa or electroweak gauge boson couplings; rather, it is -the relative 

sizes of the Higgs vacuum expectation value and the pion decay constant 

that determines the magnitude of the mixing. The truth of this last 

comment will become apparent in the next section. Those Goldstone 

degrees of freedom present in the uncoupled worlds but, up to this point, 
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unaccounted for in the coupled world gain mass and appear as low-mass 

pseudoscalar states -- pions, kaons, etc. 

The quark-Higgs Yukawa couplings lead to fermion masses. The values 

of these couplings at q 2 =0 are estimated in this paper using exact 

Goldberger-Treiman relations: exact relations can be written down for 

the true Goldstone bosons that exist in the coupled theory of scalars and 

quarks. The introduction of gauge bosons and gauge couplings are assumed 

to affect the results only by finite higher order corrections. The 

Yukawa couplings at q2 =0 multiplied by the scalar vacuum expectation 

value, f 
X' 

define the quantities referred to in this paper as quark 

masses. These parameters are of interest because they set the scale of 

chiral symmetry breaking effects; however, they cannot readily be com- 

pared with other definitions of quark mass since perturbative renormali- 

zation group arguments cannot be used to relate a q2 =0 coupling to coup- 

lings defined at some higher momentum scale. 

2. Formalism 

In light of the above scenario, the Goldstone bosons of Weinberg- 

Salam theory -- i.e., those states eventually eaten by the W and Z 

bosons -- are seen to have both quark and Higgs content. As an example, 

let us consider the following charged weak current: - 

J"lti2 = ;y'(?) dcose ssin0 
C 

(1) 

+ 3 a+’ + i$3)($1 - i$2) - f<u’ + f?+ i+,)a’(+, - Q2) 

I have dropped any terms involving the charmed quarks in the interest 

of staying within the realm of flavor SU(3). The 4 's are to be i 
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identified as the real parts of the complex SU(2) Higgs doublet: 

This current couples to one of the three Goldstone bosons in the theory. 

The magnitude of the coupling of the charged Goldstone state, Ix->, to 

the current is measured by the matrix element of the conserved,current 

taken between Ix-> and the vacuum: 

<O I Jyti2 1 x-> = iq’f Jz = iql-l dm iZ 
x 2 x 2 (2) 

To interpret Eq. (2), a few definitions are required. The constant, 

f', is related to the pion (r) and kaon (k) decay constants, f, and fk", 
T 

which, in turn, are defined by the matrix elements: 

<0 1 $'v5d 1 ';;-> = iq'f'fi = iquf++fi/cosOc 

(3) 

<0 1 Lv'y5s I 'i;-> = iquflJz = iqilf-kfi/sinOc 

Tilda's indicate quantities defined in the absence of Yukawa and electro- 

weak gauge couplings. Furthermore, the Higgs vacuum expectation value, 

<a> = f?, can also be defined by the matrix element: 

<0 ( i(o'7fF)a'(@1- iQ, > - iaFla1(@1-i$2)1 T-> = iq"fxJz 

(4) 

The true Goldstone state, consistent with Eq. (2),is given by: 

f, I?-> 1 
Ix-> = J* + p&z (co%l~>+sin?m (5) 
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This relation is really only correct up to higher order corrections: 

in the coupled theory the field operators and decay constants are 

renormalized by the interactions. It is of interest to note that the 

degree of mixing between the Higgs and quark sectors is controlled by 

the ration of f' to f? and not by the size of the Yukawa or gauge 

coupling constants. For the sake of completeness, I point out that the 

pseudoscalar meson states, /IT-> and /km>, are linear combinations of 

17% I';;'>, and I<-> orthogonal to Ix-> and totally decoupled from the 

conserved currents. 

The Goldstone particle Ix-> satisfies an exact Goldberger-Treiman rela- 

tion. I will outline the derivation of this relation; the final result will 

be an expression for the quark mass parameters in terms of physically known 

quantities. The derivation begins with the insertion of the conserved cur- 

rent between baryon states; the divergence of this quantity is zero. 

0 = a,,<B'(p')l 2J;ti2 I B(P)> = iq,c <B'(p') ( .2~!$2 I a><a I B(~)) 
R 

(6) 

where, in the second part of the equality, a complete set of physical 

states, -IL>, has b een inserted. The current operator can be separated 

into a piece that contains pole contributions and one that does not: 

iq 
1-I t c <B'(p')(2JuL 

m,B' 
l+i2~B"(~"),mXm,B"(p") IB(P)> 

\ 

+ <B'(p')/23&2/B(p)> = 0 
i 

Here I have used the fact that the only intermediate states contributing 

involve either pseudoscalar meson poles or a Goldstone pole; any member 

of this set of states is represented by the symbol, m. j?JL 
l+i2 stands for 
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the nonpole part of the current operator. Since Jyki2 couples only to 

the physical state, Ix->, Eq. (7) becomes 

0 = iqp <O\2Jiti2 tx-(q)><x-(q),B'(p')(B(p)> + <B'(p')/2?&2/B(p)>} 

(8) 

where q = p'-p. The axial vector and vector parts of (8) can be 

separated. The axial part of the nonpole term on the rhs of (8) is the 

usual axial-vector form factor piece: 

<B'(P') 1 2i;ki2 1 B(p)>] 
axial .-* 

<~'(p')l Gy'v5 dcosOclB(p)> if 
B' = proton (p) 

B =neutron (n) 

= -4 

<B'(p')I;y'y5 ssinOclB(p)> if 
B' = neutron 

B=C- 

or B' =proton 

B =A 

y'-r5uC-sinec 
A 

(94 

(9b) 

Line (9a) follows from the fact that the neutron and proton, for all 
- 

practical purposes, contain no valence s-quark as well as no Higgs 

component; hence, only ;yiiy5dcos8 c can make a nonpole contribution if 

B=neutron and B'=proton. Similarly, there is no nonpole overlap 

between the neutron state and ;y"y5dcos0clZ-> or between the proton 

-?J5 state and the state, uy y dcosOclA>. 
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The evaluation of the axial part of the pole term on the rhs of (8) 

yields: 

[ <0 1 2J;ki2 ( x-(q)><X-(q),B'(P')IB(P)']axial 

(10) 

The second factor of fi is convention (it can be absorbed into the 

definition of grxB,B(q2)). Using Eq. (5), the form factor, grxB f ,(q2) 

can be rewritten (to o(g2), where g is the Yukawa coupling or the 

electroweak gauge coupling) as follows: 

grxBtBcq2) = (f2+fz,2)i grD,B(42) ' 
f'COSeC 

(f;+fl2)$ 
case 

Cg r?B'B(q2)) 

+ 
f'sinec 

(f&+f'2)+ 
sinec grEB ,,(s2)) (11) 

Combining Eqs. (8)-(11) the results are: 

fg 2g 
[ rTpn(q2)] = case c(mp+mn)gA~pn(q2) - f'cos20c2grTpn(q2) 

z case A 
c pn 

(124 

= sinec ( mn+mx- gAEnC- > 
(q2)- f'sin20c2g rI%ZS(q2) 

z sine A c nC- (12b) 

fjy 23 
[ 

r'i('nc- hi21 1 
- 

f? 2g 1 rjipA(q2)] = sinec(mp+mn) gAEpn(q2) - f’sin2ec 2gr~p,iq2) 
z sine A 

c PA 
(12c) 

These equations have been simplified by recognizing thatdY5sandwiched 

between spinors iB, and uB gives GB,Y5uB(mBr+mB); moreover, in the 
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standard version of the quark model, g r%pn(42) = gr~nz-(q2) = gryp*(q2) = 0. 

The axial vector form factors, gAFpn(q2), gAEnx- (q2>, and gAEpA (q2), are 

the same, to within corrections of order (f'/fX)2 and g2,as the form 

factors derived using the physical pion or kaon currents. There is a 

Higgs component in the physical pion and kaon current that is down by 

only a factor of (f'/f?); however, as was seen earlier, the Higgs current 

makes no nonpole contributions. The other form factors, g rTpnk12), 

g rgnc- (q2), and grEpn(q2), are the same as their physical counterparts 

up to factors of (f'/fp)2. This can be seen from a decomposition of the 

physical currents in terms of the unmixed currents. 

Finally, the form factors, gN XB'B(qL) 9 are related to the Higgs- 

quark Yukawa couplings (see Weinberg2 for Lagrangian). The relevant 

interactions in the Lagrangian are: 

$+m case 

(id/ 2) 

C 

r N v 
X 

or 

- 1+y5 
( ) 

U- 2 d 
$+mucosi3 

(fp) 
g rTpn(q2) 

J 
(13) 

g+mssin8 c - 1+y5 
( ) 

$+musin8 

(f@ 

U - s - 2 
(f$fi) 

_ l-y5 
U- ( ) 2 s for g rxnC-(q2) 

i 1 
or g rjipA(q2) 

and where $I + 
= (9, + +,I IJi and <@O> = f$fi. The matrix element that 

enters into the definition of the form factor involves the source current 

for the fields, c$]. and $,, sandwiched between the appropriate baryon 

states: 

<B'(p')[ji(O) IB(p)> = ;(B')y5u(B) 2G4BlB(q2) (~01)~' (14) 
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The (volume) -1 factor is present because the quantization procedure is 

carried out with box normalization and periodic boundary conditions. 

The current j:(x) is determined from the equations of motion for r$l and 

$2' Using translational invariance of the operator, j:(x), and integra- 

ting over the appropriate space-time box that encloses the baryon, it 

follows that: 

m 

/ 
dt <(B') y5 u(B) 2GxB,B(q2) 

-co 

(B' (p'> I( ;;;I) /B(p)) (15) 

The matrix elements <B'(p')l;y5dlB(p)> and <B'(p')I;y5sI~(p)> can 

only be calculated in the context of a specific model. Since the MIT 

bag model has met with considerable phenomenological success, I choose 

it. Hence, "bag" should be substituted for "box" in the integral. 

I will assume that the quarks inside the baryons are in the lowest 

eigenmodes. The lowest mode solution of the massive Dirac equation 

with the MIT bag model boundary conditions is given in Ref. 3. It should 

be emphasized that the mass parameter occurring in the wave function is 
- 

the current quark mass. This identification is justified in work done 

recently by Donoghue and Johnson.4 In the q,+O limit (I am assuming 

%' -m,>, th e exponential can be expanded. The lone surviving term in 

this limit is the one linear in I<]. For simplicity, I will assume that 

the vector < points in the z-direction: 
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lim u(B') y5u(B) 2GN 
4 +o 

XB'B (q2) 

u 

= lim 
q -to u 

m+m u d - c0se 

4, z 
fji 

C 

mu+m 
S ------sine 

f? 
C 

Next, the pseudoscalar operator uy5d (or ;y5s) is inserted between the 

B(P)) (16) 

wave functions of reference 3, and the integral is carried out. The 

resulting relation (for xBl #x,) is: 

lim ;(B')y5u(B) 2GzBIB(q2) = lim q 
-+O "0 z 

qF.r 9lJ 

N(xB, )N(xB) 

3 

X (Clebsch factor)[ [~(UB'~~'~(~~+ --$?(y,' 

sin(xBl- xi) sin(xBl+xB) COS(XB r+ XB> 
X 

2(xBl-xB) - uxBl+xB) 2 (XB r+ XB) 

+ 
R4sin(xBl+xB) R4sin(xBl-xB) 

2xB’XB(XBl+XB) 
2- 

2XB 1 XB (XB I - XB) 

2 
I 

R4sin(xBl+xB) R4sin(xB-xB,) 

2XBlXBhBl+xB)2 2XBrXB(XBI-XB) 
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(NbB) , uB, and xB are all defined in Ref. 3). The subscript B' (B) 

labels the quark state in baryon B' (B). The Clebsch term is given by 

<B* IB~'&z~uB~\B>, where o z is the zth component of the spin operator; 

U is a 2-component Pauli spinor; and Bi destroys a quark of flavor f in 

the lowest mode state. R is the dimension of the bag. 

Equation (16) reduces to a considerably simpler expression if f' =u 

and f=d; then, to good approximation, me-=m,, and the integral can be 

written as: 

u U 

lim u(B') y5 u(B) 2GW 
9 -to 

XB'B (q2) 

11 

= lim q j& (4a+2X- 3) 
z 6 2a(a-1) + A (Clebsch factor) 

9 -to 1-I 

mu+m d ___ c0se 

f? 
C 

mU+m 
S -----sine 

'Y 
C 1 (18) 

with u2 = X2+x2 and A=mR. However, if f' = u and f = s, the two quark 

masses can no longer be considered equal, and the integral does not 

reduce to such a simple form. 

The numbers arising from relations (17) and (18) are relevant for 

discussions of chiral symmetry breaking. The masses appearing in these 

equations as well as in the Lagrangian are products of the Higgs vacuum 

expectation value and the appropriate Yukawa coupling constants. The 

quark mass, therefore, is a hidden coupling parameter in the quark- 

quark-Higgs Goldstone three-point vertex function and is renormalized 

just like a Yukawa coupling constant. Since the Yukawa coupling will 

"run" with the momentum, it is necessary to choose an appropriate momentum 

scale for defining the masses. The form factors in Eq. (12) and, hence, 

masses in Eqs. (17) and (18) are all defined at q p=o. This is an 
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appropriate choice, since the low momentum region is the domain of 

chiral symmetry breaking. Moreover, on the basis of the PCAC of K h LL3 

decays it can be argued that the results at q2 =0 carry over to q2 

values as high as 4. 

A final question remains: what effect does the introduction of 

gauge bosons -- the Higgs phenomenon -- have on these arguments? 

It is assumed that the Higgs phenomenon does not alter any of the above 

results in a non-smooth way: the Goldstone particle is absorbed by the 

vector mesons, but, otherwise, all results following from the Goldstone 

structure of the theory are left intact. 

3. Discussion of Results 

To extract actual numbers for the quark mass parameters defined by 

Eqs. (17) and (18), I use the Goldberger-Treiman relation for the IT-N 

system and the current algebra mass ratios. The current algebra mass 

ratios are obtained from the pseudoscalar meson mass formula. Though 

the individual mass parameters are functions of the momentum -- as pointed 

out above, they run like Yukawa couplings -- the ratios are taken to be 

renormalization invariants. This is true as long as flavor breaking 

weak and electromagnetic interactions are negligible; numerical estimates 

indicate that this is indeed the case. Following Weinberg,5 I set - 

m /m d u = 1.8 and ms'md = 20.1 

I choose to study the n-N system since, for this case, the result 

of the bag model calculation assumes a relatively simple form (see Eq. 

(18)): all the mass dependence, to a good approximation, lies in the 
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coefficient term, (mU+md). The numerical results and relevant numbers 

are either presented in the accompanying tables or can be found in 

Ref. 6. The result is: 

mu+m d = 38.46 + 14.63 (19) 

The error factor includes only the experimental error in A 
pn 

(see Eq.(l2a)). 

Combining this result with the current algebra mass ratios yields: 

m g 13.7 f 5.9 , md g 24.7 t 12.9 
U 

(20) 

and the prediction: 

m s 497 If: 299 
S 

(21) 

The errors include both the uncertainty in A 
pn 

and a 30% uncertainty in 

the current algebra mass ratios: the 30% uncertainty represents the 

unreliability of kaon PCAC. 

It is interesting to test whether the value for ms is consistent 

with the Goldberger-Treiman relations for the p-A (see Eq. (12~)) and 

the n-C- (Eq. (12b)) systems. With ms=497 MeV and mU=13.7 MeV, the 

calculated value of the lhs of Eq. (12~) is 924 MeV, which is within 

the error range for the Goldberger-Treiman deviation, A 
AP' 

given in 

Table II. There is considerably more uncertainty associated with An,-. 

The main uncertainty lies with the axial vector form factor, gAkzsn. 

The most recent results, from the Yale-NAL-BNL neutron spectrum experi- 

ment, disagree by roughly three standard deviations with the value 

obtained from the Orsay-Ecole Polytechnique neutron-spectrum data. 

The Orsay value for gAkC-n leads to consistent quark mass predictions 

whereas the Yale value does not. It should be pointed out that the Yale 

value is actually closer to the SU(3) prediction for the axial vector 



-15- 

form factor: using the n-p and n-p axial vector form factors to 

establish the D and F coupling constants, I find: 

( gAkC-n > 
= 0.65 +_ 0.15 

predicted 

There are several approximations that enter into the definition of 

quark masses proposed in this section and the previous section. It is 

important to understand these approximations and how they differ from 

those used in other definitions of the quark mass. I am defining a 

quark mass to be the product of the Higgs vacuum expectation value and 

the Yukawa coupling constant that appears in the Lagrangian. This 

defines the current quark mass; for it is this combination of parameters 

that enters into the pseudoscalar meson mass formula and any other 

current algebra formula involving Lagrangian mass terms. The numerical 

estimates of these quark masses (cf. Eqs. (20)-(21)) should be quali- 

tatively correct: they are considerably larger than one might expect 

on the basis of baryon mass splittings alone. 

There are three major ingredients that play a role in the estimates. 

The first ingredient is the "error" -- A 
pn 

-- in the proton-neutron 

Goldberger-Treiman relation at q =O. This "error" 
IJ 

is known to only 

fair accuracy: the experimental errors in the physical measurements 

of the relevant form factors are quite small; however, A involves the - pn 
difference of two large numbers. The second ingredient is the quark 

mass ratios deduced from the pseudoscalar mass formula. The relevant deri- 

vation of the ratios has been carried out by Weinberg,' who is careful to 

take into account the virtual photon contributions. The largest errors in 

the derivation stem from SU(3) symmetry considerations: the accuracy 

of kaon PCAC and the assumption that <O/qfqflO> is the same for f=u, d, 
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or s. The resulting errors are probably no worse than 30% -- as 

suggested by the kaon Goldberger-Treiman relations. The final ingredient 

is the model-dependent calculation of the overlap factor: 

<P(P’) l&5dln(p)> at qu = 0. The bag model wave functions used in this 

calculation are not sensitive to the small up and down quark masses; 

this implies that <pl;y5dln> is independent of the quark masses, a fact 

that greatly simplifies the calculation. Moreover, the integral in 

Eq. (18) is proportional to the axial-vector form factor, which turns 

out to be 1.09 in the MIT bag model. This number is within 1.09/1.24 

of the observed number; so one expects the calculation of the overlap 

factor to be good to this accuracy. All in all, the errors in the 

estimates of the quark masses seem under control (or, at least, known). 

It is of interest to compare the mass estimates summarized by 

Eqs.(20) and (21) with numbers obtained in other schemes.' In a scheme 

proposed by Weinberg,5 the renormalized quark masses (m:) are given by 

J; 
m. 1 = Zmmi, where Zm is a universal renormalization factor, defined by 

the equation: 

<H(p) ) 4iqi ) H(p)> = ZrnNHi (22) 

N Hi is the number of quarks of flavor i in the hadron, H. Attributing 

the mass splittings in various unitary multiplets to the terms msss and 
- 

next applying the mass ratio quoted earlier, Weinberg finds: 

k 150 MeV it m 2 ; md g 7.5 MeV 
9; 

; m 2 4.2 MeV 
S U 

(23) 

These numbers are unreliable because of the uncertainty involved in 

estimating rn: from mass splittings. Not only is there considerable 

variation in mass splittings from multiplet to multiplet (110 MeV to 
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S 

is being defined. 

An even more telling argument is provided by the kaon vector Goldberger- 

Treiman relation. Using arguments similar to those used in the axial 

case, one finds: 

-17- 

( m -m u s > lim 
J 

3 dxe -i~*~<p/;sjn>(u(p)u(*))-l 
9 -to !J bag 

= ( mn-mp gvi?pfl > (0) (gvI;p,(O) - -1) 

Doing the bag integral, I find: m z 
S ( m*-mp)/.61. Hence, the mass 

values recorded in Eq. (23) probably are not the relevant parameters 

to use in estimates of chiral symmetry breaking. Finally, the Weinberg 

mass values cannot be compared directly with those presented in Eqs. 

(20)-(21), since the g rTB",(") f orm factors, on which the estimates in 

this paper are based, involve the quantity <B'(qf,Y5qf]Bj, not 

<BliqlW. Hence, for the sake of comparison, I need to know Z m' but, 

for now, Zm can only be calculated in the context of a model. 

In the MIT mode1,3y4 Zm has been calculated and is roughly equal 

to 0.5. In addition, the MIT group finds: 

* 1 -m +m* mq= 2 u ( 
* 

d > = 17 MeV (to be compared with Eq. (23)) 

and 

1 -m+m mq= 2 u ( d > = 34 MeV (to be compared with Eq. (19)) 

On the other hand, rnz is taken to be one of the parameters fitted to the 

light hadron mass spectrum. The MIT result is rn: = 165 MeV, which is 

close to the Weinberg value. It should be noted that the mass ratios 

in the MIT scheme are very different from the current algebra ratios. 
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TABLE II 

Errors (A,,,) in Goldberger-Treiman Relations. (1) 

A B'B Numerical Value 

A -125.38+ 47.70 
pn 

AnP 
867.08+138.33 

A 
717.62t 193.19 (for gAkC-n = 0.435+0.035)(2) 

nC- 151.342 247.14 (for gAkzyn = 0.17 _+ 0.0S)(2) 

(1) In the computation of ABrB, I set: 

0.93m + - f' = = 91.79 MeV 
, 

Jz case case 
C 

C 

with Bc = 0.232+ 0.003. 

(2) cf. footnotes (la) and (lb) in Table I. 
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TABLE III 

System G(B')y5~(n)(l) Clebsch Factor 
(see text) f? 2GN [ xB'B(o)](2) 

1 
p-n 2m 'z -513 (mU+md)(-3.26) 

P 

A-P 1.16 
4--- z 2m h 

m (mU+ms)(1.81) 

n-C- 1.22 
q------- z 2m _ c 

l/3 (mU+ms) (1.50) 

(1) This factor is derived under the assumption that p =0 and 
pzr -+ 0, where p is the initial baryon momentum, 5,, is 
the final baryonzmomentum, and 4, = P,-P,r. _ 

(2) The bag radius for each system is taken to be l/200 (MeV)-'. 


