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Abstract: In this paper we modify the phase and energy behaviour of 

conventional weak cut absorption. We parameterize the double 

scattering amplitude of the Regge-Gribov scheme to include low and 

high mass inelastic intermediate states. This is done through the 

introduction of azimuthal correlations between the Reggeon and the 

regular Pomeron and reverses the anticlockwise rotation induced by 

absorptive cuts. For precision we include Regge-Regge cuts and 

achieve accurate fits to the vector and tensor amplitude analysis 

at 6 GeV/c. Polarization and line-reversal symmetry-breaking 

deficiencies in charge and hypercharge exchange processes are thus 

remedied at this energy. Crossover and polarization show a very 

weak dependence against variations over a wide range of energy. 

Inelastic and elastic polarization of TN scattering are reconciled 

for ItI 2 ap = 0. The clockwise rotation included in isoscalar 

exchange arranges for rising cross sections without assuming ap(O> > 1. 
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1. Introduction 

-Gribov's Reggeon Calculus (l> is the only known theory of soft 

hadronic two-body reactions. It is based on the consistent 

implementation of multiperipheral ideas and unitarity. Through 

unitarity colliding hadrons become extended objects and form virtual 

constituents in a cascade of decays. The corresponding constitutents 

of both hadrons interact causing the simultaneous production of multi- 

peripheral showers, which in turn correspond to Reggeons. 

The Reggeons scatter with the external hadrons in the same way as 

ordinary particles. S-channel unitarity is thus manifested in the 

Reggeon particle scattering amplitude through the presence of 

inelastic intermediate states. A variety of cut prescriptions can be 

extracted, among them eikonal cuts (2) and their derivatives (3,4) 

and pole-enhanced cuts (5,697) The latter produce the energy 

dependence of differential cross sections. However, eikonal and pole- 

enhanced cuts possess only elastic pole singularities and give 

incorrect phases, manifested in polarization deficiencies. To overcome 

this we parameterize the inelastic low mass intermediate states, and 

then combine with the elastic pole singularities to achieve more 

subtle phase effects. 

We would emphasize that it is the false assumption of independent 

rescattering adopted in conventional eikonal models which is responsible 

for the poor description of the helicity nonflip vector and tensor phases. 

(1) M. Baker and K. A. Ter-Martirosyan, Phys. Rev. 28C (1976) 1. 
(2) K. A. Ter-Martirosyan, Sov. Journ. Nucl. Phys. 10 (1970) 600. 
(3) K. G. Boreskov et al., Sov. Jour. Nucl. Phys. 14 (1972) 457. 
(4) Sh. S. Eremyan, Sov. Journ. Nucl. Phys. 21 (19%) 195. 
(5) K. A. Ter-Martirosyan, Sov. Journ. Nucl.Phys. 10 (1970) 715. 
(6) Bipin A. Desai and P. R. Stevens, Phys. Rev. Dll(1975) 2449. 
(7) P. D. B. Collins and A. Fitton, Nucl. Phys. B91 (1975) 332. 
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We parameterize by introducing azimuthal correlations between 

Pomeron and regular Reggeon. We use a correlation modified exponential 
h 

which includes the mutual orientation of the Reggeon transverse 

momenta. This is more general than the elastic Gaussian model adopted 

in eikonal cuts. We thus introduce a new element in cut models: 

a correlation parameter c which governs a Itl-dependent modified cut 

phase and a corresponding cut strength, both sensitive to exchange and 

helicity. We find that the correlation parameter c of the helicity 

nonflip vector and tensor amplitudes is real and negative in the 

presence of a moving Pomeron pole. 

2. Formalism 

We represent the amplitudes as vectors in the complex plane 

To,1 
R,el,C,tot,exp (It]> = IToy (Itl)l ew[imoyl (It\)] , 

R= Reggeon, i.e., the p, A2, f, P 

el = elastic amplitude 

tot =-total theoretical amplitude obtained as sum of pole and cut 

exp = amplitude as extracted by amplitude analysis (8yg) 

0,l indicate helicity nonflip and helicity flip, respectively. 

- 

A. The o,A,, Regge Pole Amplitude 

The modulus of the helicity nonflip pole amplitude at fixed s is 

parameterized (assuming the presence of nonsense wrong signature zero 

(8) I. Ambats et al., Phys. Rev. 9D (1974) 1179. 
(9) G. Girardi et al., Nucl. Phys. __ B76 (1974) 541; G. Girardi and 

H. Navelet, Nucl. Phys. B83 (1974) 377. 



(NWSZ) for the p as 

I T~=R(O / = 2$(O) sin 
1 

$a(cl,m - aR ’ ItI)> l ew [- xiltl] J 

and for the A2 as 

0 0 
with B,(O) the residue in forward direction; hR the slope of the 

assumed exponential fall-off of the.?residue and a,(O) and c$ intercept 

and slope, respectively, of the linear Regge trajectory. 

(Parameter values are in Table 1.) 

The point eRZA2 = 0 which was a wrong signature point for the P 

is now a right signature point. Thus there is no zero in the Regge 

pole amplitude at oRA = 0. 

The Regge phase, rising linearly, is then 

@ItI) = o;(o) + @$I ) 

with an initial phase angle for the p and A2 of 

o;(o) = $ naR(o> = 43.20' and -27' 

and a rotation velocity of the angle per ItI of 

0 .- OR = +’ R = 72.36' and 67.5' . 

B. The Elastic Amplitude 

We use a helicity-conserving elastic amplitude and parameterize 

with one exponential. It has a complex radius of interaction 

T:,$lt() = B;;(O) expk*zg exp[- hty\tl ] , 
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where the modulus 6:;(O) and the phase 6.:: are real while the radius 

of interaction X "0 
el 

is complex due to the Regge-like ItI-dependent phase 

a such that 

is approximately determined from the observed slope of the elastic 

scattering. 

and 6 *0 
el 

is the effective initial phase angle of the full elastic 

amplitude. *0 *o *o The final values of Be,, 6el and Xel are obtained from 

amplitude analysis (8) at 6 GeV/c. The * indicates that the elastic 

amplitude is obtained as 

TJC 
el = f+P+fBP+PBP. 

C. The Double Scattering Amplitude 

Our correlation modified cut stands effectively for Gribov's 

full double scattering amplitude (') l 

im = - .-s, 
1 
t* (sOdsl)/mlj-smt* (sods2)hs2~:,s/ 62(&a+kb-k) 

2 

x d2ka d2kb . disc Fl(&,,~,k,sl)discF2(ka,k+,k,s2) 

’ ?la(ifa> ribGb) (s/so) 
aa (ka>+ab (5) -2 

, 

lea and lcb with ki b= Ita b(2 = -ta b are the two dimensional Reggeon 
, 

momenta and k2 = 'La+ ,;, =II ’ t is the total momentum transfer. 
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The linear Reggeon trajectories are cla b = cla b , (0)-a: bk2. The 
, , 

energy scale is set so= 1 GeV. n a' nb are the signature factors 
h 

where 

n ab(kab) = ioab , , , 

The Gribov vertex N factorizes into N1* 
N2’ These are the absorptive 

parts of the Reggeon-particle scattering amplitudes F1 and F2. 

ds, 3 
N1,2 = s -mm F 1 2(ka9!Zb’k’sl 2) 2aiiyL , , 

192 

m 
dsl 2 z s 

G,2 
disc F1 2(ka,~,k,~1 2) 71s 9 , , 

132 

where s~,~ are the subenergies and s;,~ the threshold values. The 

subenergy planes s' and s2 1 are divided into low and high mass regions 

such that 2 2 s 1,2 < M and s~,~ > M , respectively. A special low mass 

unenhanced diagram where s1 < M 2 and s2 < M2 is Gribov's high energy 

approximation of the Mandelstam cut. 

With the high mass region taking on its Reggeon behaviour, the 
- 

full amplitude splits into four parts (5) These are unenhanced 

(fig. la), semi-enhanced (fig. lb,lc) and fully enhanced(fig. Id) diagrams. 

Here the low mass and the triple Reggeon couplings are depicted as 

non-planar. 
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Our two body cut amplitude takes account of low and high mass 

inelastic intermediate states in the vertex N of Gribov's full double 

sca;ering amplitude. The traditional eikonal or absorption model (2> 

is based on a Gaussian form of the Gribov vertex N(ka,kb) and allows 

only for the elastic intermediate state. The quasi-eikonal model 

allows for the formation of low mass showers in the intermediate states 

after each rescattering. The showers enhance the cut strength for 

elastic scattering at forward direction by a constant factor. The 

phase and energy behaviour, however, suggest a more subtle parameteri- 

zation of N. The vertex N has to depend on the angle between ka and 

kb' Since the high mass peripheral nonelastic intermediate states are 

Regge-approximated, N also has to depend on s. This leads to the 

diagrams in fig. 1. 

The sum of these diagrams gives the cut a pole-like shrinkage at 

high energy, with the enhanced diagrams b, c and d at rising energies 

taking the lead over the unenhanced diagram a. Thus, the Gribov 

vertex N is parameterized as 

N(!za2&s) = “cut(k> BR(S> BP(S) 

X exp -(cl+c2 Rn s)$ -lc2)* - XK(s)kf - hp(s)ki 1 
- 

D. The Correlation Modified Cut Amplitude 

We convolute pole and elastic amplitude by introducing the 

correlation kernel K(c'(l?n s)). We write down the s-channel helicity 



sum over the Gribov cut integral for the process A + B -+ A' + B' 

T;$)(s,~*) = ~U1"21m(p),o?'2(s,~2) 

3 
= 

c U1U2(i/2n') JI_ d2kl d21c2 Ti'(s,l$) Tg*(s,ki) 

x Km(P+s,lcc,~2,y s2(If-5+k21 

The helicity sum splits into net helicity nonflip and net helicity 

flip indicated by m(p) as a function of the individual helicities 

vi (i=l,*) carried by the exchanged Xeggeons. They take on the values 

O,l,and p= c i ui defines the net helicity such that even p results in 

net helicity nonflip and odd p in net helicity flip. 

The Gribov integral describes the two-body scattering amplitude 

as a two-dimensional phase space integral in the exchange plane 

perpendicular to the relative momentum of the incoming hadrons. The 

cut expression contains the kernel K(s,kl,k2,k) which is the essential - - 

difference between our approach and the absorption model. The correla- 

tion kernel is parameterized as 

Km(P) 
(s,~l,~2,~) = A:$)(&) exp -c(s)~(~)(~,- lc2)* 1 - 

where ,m(p) 
cut is the scale factor. This results in the helicity 

nonflip cut (note that the cut consists of nonrotating and 



-9- 

rotating parts) 

T;&It/) = - @w B@,s) h;Jltl) 
*J;; (#s) +4c0(s)+ g!(s)) 

x exp 

[ 
x;w h;(s) + co(s) (x~cs, + X,0(s)) 

- 
x;(s) + 4c0(s) + x;(s) 

ItI 
I 

We set for the cut amplitude: 

The helicity flip* cut again consists of non-rotating and 

rotating parts. We write 

1 fAO,s) &O,s) 2 
T;&, [tl> = - (ItI)’ ’ 

cut(ltl) (h;(s) + *h) 

- *J?; (x;(s) + 4cQs) + X,0(6,) 

xexp - 

[ 
A;(s) x;(s) + 2(x;(s) + x;(s)) 

x;(s) + 4&s) + x;(s) 
ItI 1 

= 5; =p [-@A It I] exp [ i(OiCO) + PEifl)] 

The helicity flkp poles possess an addit,ional angular,momentum factor 

1 

ItI 2 
c ) 

4m 
N2 

and different residues and correlation parameter. 
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and the Regge-energy dependence is given by 

B O;l,(s) 
, 

= +; cxR p(o) - 1 
, , 

x;:;(s) = q; + cx; p Rn s 
, , 

E. Observables 

1 - i7F cli,P 2 
- 

The differential cross section, with our normalization factor 

N= 1 is defined as 

da -= 
dltl 

(1~~1~ + (T112) , 

and the polarization of the recoil nucleon produced in a 0 
- 1+ - 1-k 

-2 +O 7 

reaction is 

p(t) = 27r Im (To T'*) 
pq da/dlti 

where q and p are the c.m. three momenta of the incident and scattered 

pions respectively. 

3. Discussion and Results 

3.1 Vector Exchange 

A. Helicity nonflip amplitude 

In the cut-pole Argand diagram (fig. 2) the correlation parameter 

c delays the critical point in ItI (180' line) at which cut and pole 

are completely out of phase, until a more favourable cut modulus ratio 

is reached. The cut reverses the pole's anticlockwise rotation, moving 

the polarization zero out in Itl. Figure 3 shows the Argand diagram for 

continuous ItI values. The real correlation model is in perfect 
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agreement with the amplitude analysis (8). This is again to be compared 

with the traditional c= 0 absorption model. For comparison we show the 

polzamplitude corrected by the correlated and uncorrelated cut. Away 

from ItI = 0 the polarization is determined by the relative 'velocity' 

with which TE(ltl) rotates through the Argand diagram relative to 

T;(ltl). In the c= 0 model the cut rotates slowly with QE N 5' per 

unit in ItI compared with the fast @i N 72' pole. Thus, pole and cut 

are already completely out of phase at small ItI e From this point the 

anticlockwise rotation of To tot(ltl) increases. The helicity flip pole 

phase remains virtually unaffected in the region 0.0~ ItI 50.35 (GeY/c)'. 

The phase difference Atot $I 10 (It\) between the two helicity amplitudes 

changes sign from positive to negative when the relative phase between 

helicity nonflip cut and pole passes through 180'. We find, due to the 

large trajectory slope of the pole for ItI=O.075 (GeV/c)* that 

“~&I) > aiole (It]). Although atot( apole we find already for 

small ItI, atot((tl) > apole(ltl). A real correlation model with moving 

effective Pomeron with real part at It\ = 0 

9 + 90’ , a”,; # 0 , Ret’ # 0, Tmc' = 0 

provides a good-description of the helicity nonflip isovector amplitude. 

B. Helicity Flip Amplitude 

In fig. 4 we draw the Argand diagram for the helicity flip pole 

plus the correlated cut and compare with uncorrelated cut. 
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We divide the momentum transfer of the helicity flip amplitude 

into two regions: above and below Itl= Ito\ where aR=O. This 

amplitude shows Regge behaviour for ItI 5 Ito]. This is not established 

for ItI 2 ItO] and might be violated. One can extract both helicity 

isovector amplitudes for (t( ;s It 0 ( from inelastic differential cross- 

section and elastic polarization data alone. The symmetric part of 

the elastic polarization for IT'P is 

= 4 llTzy 11 l~Lot 1 sin [Ao14*z: tot ( I t I) 1 
do(rr+p) + d&-p) 

dltl dltl 

with 

Ao 1+*0 el,tot(lto = o+:,;(ltl) - y,,(ltl) * 

The left upper indices 0,l stand for isoscalar and isovector exchange 

respectively. 

On the basis of the Tel ' *‘(ItI> model, the phase of the helicity 

flip isovector amplitude can be determined. It is constrained by 

lT;ot(lt/) / 5 da(T-p -+ ‘On) - 
dltl 

Switching the cut off produces the double zero structure in IT'P 

polarization (lo), although the rise of the theoretical curve at large 

ItI remains weak. Setting c equal to zero produces an elastic 

(10) M. Borghini et al., Phys. Letts. 31B (1970) 405. 
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polarization reminiscent of the traditional weak cut absorption 

model (11) To provide a simultaneous description of elastic Ir?;p (10) 
- 

and inelastic 1~~p + Ton polarization (8p12*13) we choose the helicity 

flip shower factor Aiut such that for ItI 2 0.6 (GeV/c)* the 

destructive tendency of the cut is reversed 

cut = (X1 + X2 ltl) exp(Al + X2 ItI> ltl . 

The imaginary part of the helicity flip amplitude is prevented from 

becoming negative, fig.5, The parameterization of l:ut plus 

correlation parameter c produces an excellent quantitative fit for 

the polarization of ~-p + Ton (fig. 6a) and a qualitative description 

of ?r'p elastic scattering, fig.6b. This shows mirror symmetry out to 

ItI = 2 (GeV/c>* without a crossover at NWSZ. The describing of both 

71-p -+ Ton polarization and n'p polarization has always-posed a problem 

More elaborate models for the Pomeron (14) show, for inelastic pion- 

nucleon charge exchange, a deep negative dip, or polarization zero 

too early in It], reminiscent of conventional absorption, fig. 7.. 

The differential cross section is shown for 6 GeV/c and 200 GeV/c. 

in fig. 3 (15) . The effective trajectory (16) of 6 GeV/c and 200 GeV/c 

is shown in fig. 9. The weak energy dependence of the inelastic 

polarization, fig. 6a, reflects a stable crossover position. 
- 

(11) S. A. Adjei et al., Annuals of Phys. 75 (1973) 405.' 
(12) P. Bonamy et al., Nucl. Phys. B52 (19z) 392. 
(13) D. Hill et al., Phys. Rev. Letts. 30 (1973) 239. -- 
(14) B. J. Hartley, G. L. Kane, Nucl. Phys. 57B (1973) 157; 

G. L. Kane, A. Seidl, Rev. Mod. Phys. 48 (1976) 309. 
(15) P. Sonderegger et al., Phys. Letts. 2071966) 75. 
(16) A. V. Barnes et al., Phys. Rev. Lettz 37 (1976) 76. -- - 
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3.2 The Isoscalar Exchange 

-The elastic p and A2 absorbing amplitude is the isoscalar 

amplitude as extracted by amplitude analysis at 6 GeV/c (8). We have 

drawn this amplitude as Tzl in the Argand diagram of fig.10 at ItI = 0. 

The amplitude has been parameterized in Regge-pole form. Its phase of 

101' corresponds to a:%(O)= 0.878 and its slope to az;=O.6. The bare 

f and Pomeron pole P are also shown. Their intercept and slope are 

af (0) = 0.38 , a,(O) = 1.00 , 

a; = 0.85 (GeV/c)-* , a$ = 0.25 (GeV/c>-* . 

Both f and P are convoluted to produce f* 
* 

and P . The correlated cuts 

are shown as fC and PC in fig. 10. Thus the Tzl absorbs the Regge 

exchange as follows 

T = R@K@f+R@K@P+R@K@f@P+R8K8P8KBP , 

where K indicates the correlation kernel which rotates the amplitude 

clockwise. In the case of the Pomeron-Pomeron cut we have 

T pep(ltl =O) = 5iip exp i 4iip 
[ I 

The modulus 

5 
00 
P@P = 

-i 
-{ 

(2&)-l Xzut p p !3O f3O (s/so) 
*up(O)-2 

i 

hi + a; Rn (~/~~)]-!-4Re(c~~~~ f cipBp Rn (s/so)) 1 * 

[ II 
1 

+ 
0 

4 Im(cYp,, + c2P8P Rn (s/so))- ICY,' * - ' . P 
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The phase angle 

0 00 = P@E? l- a,(O)- arctg i[ 4 Tm(c;P!8P+c*Pp?P 0 Rn (s/so)) - 7r.G 1 
xp" + c$ &n (s/so)) + 4 Re(cypgp + cipBp Rn (s/so)) -' 1 I 

We give in Table 1 the parameter values which lead to a consistent 

description of f*, P*, compatible with 

a(a+p) = Re T* el(s,O)/Im Tzl(s,O) 

and otot(r'p) and T* el with the amplitude analysis (17), figs. l.la, llb. 

Full eikonalization will dampen the sharp rise of our theoretical 

curve. We leave the correlation parameter c purely real but energy- 
* 

dependent. To obtain the energy dependence of f* and P we use the 

energy phase relation for [tl =O. Since ci Rn (s/so) cancels the 

energy dependence in the cut denominator, the power behaviour of cut 

and pole plus cut corresponds to their phase behaviour 

Pf 
ap.jpbl 0 

= i(s/s,) 6,,(O) exp 
[ 

*-I-*(1 = 2 - a,,(O)) 1 , 
* f = 

af*wl 0 
- *(s/so) f3 f* (0) cos{7rafx(0)/2} exp[-inni*(O) 9 

J( 

and we obtain for the effective f and P* intercepts respectively 

ap*(0) = 1.1 and a,*(O) = 0.63 , 

giving the effective s 
-0.37 power fall-off due to f* and the so-l rise 

due to P*. 

(17) D. Bogert et al., Phys. Rev. Letts. 31 (1973) 1271. 
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3.3 Tensor Exchange 

By setting the correlation kernel equal to one (i.e., co= 0) in 

thesribov integral we obtain weak cut absorption. The same problems 

occur here as with vector exchange. The cut model accelerates 

the anti-clockwise rotation of the pole. We again introduce a 

correlation modified cut. The correct evolution in ItI of the 

helicity nonflip pole-cut and total amplitudes is shown in fig.12. 

A. Helicity Nonflip Amplitude 

In fig.13a we show the modulus lT12(lt()( and in fig.13b we show 

the phase angle c$' A2(ltl)' The real part Re To A2(ltl) is given in 

fig.13~ and the imaginary part Im To A2(ltb is given in fig. 13d. The 

data are taken from amplitude analysis (q>. In these figures we have 

drawn the total amplitudes obtained by the correlation modified cut. 

For parameter values see Table 1. Figure 13b also shows the phase 

obtained by cuts with increasing polarization, and with and without 

Regge-Regge cuts, and illustrates the amount of phase gained by 

introducing the correlation parameter. An additional cut strength 

parameter Xzut kept within reasonable limits can help in further fine 

tuning. See Table 2. 

B. Helicity Flip Amplitude - 

The Tl expw h s ows Regge behaviour up to aR= 0. Dealing with 

It\ I up= 0 we employ the first of two model variants. To achieve \ 

the Regge-like behaviour we choose the correlation parameter ciensor 

with the same numerical values as found in the case of vector exchange. 

We gradually suppress this cut with growing ItI with the help of an 

exponential damping factor 

~f,,(ltl) = exp . 



I 
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Model Variant I results in a good fit of the modulus in fig.l4a, and a 

qualitative account of the Regge phase fig.14b for ItI zaR= 0. The Regge- 
s. 

pole features of the helicity flip amplitude are preserved. The modulus 

is hardly affected by the cut, and the phase angle is rotated initially 

at (tl = 0 by a few degrees clockwise. The anticlockwise rotating 

amplitude is only very slightly accelerated. But as we see from the 

data ('), a cut which preserves the Regge-pole is bound to fail further 

out in ItI. The Tixp(/tl) is somewhat puzzling, since it shows Regge 

behaviour only up to aR= 0. Beyond this point Regge behaviour is 

violated. We have encountered similar helicity flip amplitude charac- 

teristics in the case of vector exchange. The strong rise and fall of 

the elastic pion-nucleon polarization beyond the NWSZ, fig. 6b, implies 

that a Regge-pole-like helicity amplitude for ItI > ap= 0 is incompatible 

with the assumed Pomeron a;# 0. The parameterization of the helicity 
. 

flip cut scale factor Xtut(\t]) d escribes inelastic and elastic 

polarization of ~FN scattering in the range of momentum transfer for 

0.00 5 ItI 5 2.00 (GeV/c)* 

in co-nnection with c~~~ror # 0. 

We employ this parameterization in Model Variant II. 

$&I) = 01+ qt - I) exp(Y1+ y2 ItI) I4 - 

This parameterization converts the destructive cut around ItI = 0.45 

(GeV/c)-* into a constructive one. The ':ensor assumes the same values 

as in Model Variant I. The cut causes the phase Q&(]tl) in fig. 14b 

to "swing" around the linear rising phase of $b(/t/) giving a good fit 

to e;xp(ltl) l 
Real and imaginary parts are drawn in figs.l4c, 14d. 
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Regge-violating behaviour of helicity flip amplitudes beyond 

oR=40 is not atypical, and has to be accounted for by models describing 

regions not too small in It]. We have plotted in fig.15a the differen- 

tial cross section and in fig. 15b the polarization for IT-P -t nn. The 

polarization data have been taken at 5.0 GeV/c (12) and at 8.0 GeV/c 

P8> , and averaged. 

Once the helicity flip amplitude has been fitted to the amplitude 

analysis one can see that a negative real c 
0 describes the shape of 

the polarization. By increasing the magnitude of the parameter, see 

Table 3, the theoretical polarization curve is shifted in the positive 

region of the diagram. The data of the differential cross section ('). 

take account of the branching ratio 

R 
Y = r(rl + y> / rtoth) = $ * 

4. Conclusion 

We have successfully described phase and energy dependence of 

vector and tensor exchange plus polarization and rising cross sections. 

The cross-over position shows only weak energy dependence. Conventional 

absorption rotates vector and tensor exchange anticlockwise. Our 

approach, using correlated Reggeon exchange, reverses this trend. 

Regge-Regge cutsmake our fits quantitative. 

Further work indicates that a full implementation of the Regge- 

Gribov scheme with non-planar couplings may ultimately describe the 

phase and energy behaviour of all two-body reactions. 

(18) SACLAY-ORSAY Collaboration, Nucl. Phys. B16 (1970) 335. 
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Table 1. Parameter Values 

Exchange 
Parammer 

P f P A2 
Type 

Units 

Nonflip Flip Nonflip Flip Nonflip Flip Nonflip Flip 

a(O) 1.00 0.38 0.52 0.3 

a' 0.25 0.85 0.804 0.75 (a) 

B 5.14 - 19.834 - 0.431 2.348 0.236 2.07 (b) 
x 2.20 - 1.58, - 4.99 1.99 1.99 1.99 (a) 

Reel -0.685 - 0.046 - -0.685 -1.0 -0.75 -1.0 (a) 

Imcl - - - - ‘.- -1.0 - -1.0 
I 

(a) 

Rec2 -0.1225 - -0.275 - -0.1225 - - - (a) 

Imc2 - - - - - (a> 

x cut 0.5 - 1.64 - 1.00 - 1.25 - (4 

Y - 2.44 . 

x1 1.0 - 2.2 (a) 

12 -1.8 - -4.84 (a) 

Yl a; 5 2.5 

y2 -1.0 - -3.0 (a) 

sO 1.00 I0 
a 

- 
GeV/c 
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Table 2. Dependence of Helicity Nonflip Tensor Phase 

On Various Cut Parameter Values ("1 

Pole 

plus 

cut 

Curve Label co tensor (GeV/c)-2 

0 

0 

-0.75 

-0.75 

-0.75 

0 

0.6 

0.6 

0.6 

0.6 

6 *0 
el 

9o” 

lOlO 

lOlO 

1Ol0 

lOlO 

ca) fig. 13b 

Table 3. Dependence of Polarization of ITP- -t nn 

On Various Cut Parameter Values Ca) 

Curve Label 

Cal f 2. 5b 

0 
C tensor (GeV/c) -2 

0 0 

0 0.6 

-0.25 0.6 

-0.50 0.6 

-0.75 0.6 

A0 cut 

1.0 

1.0 

1.0 

1.0 

1.25 

6 *0 
el 

9o” 

lOlO 

lOlO 

lOlO 

lOlO 



-22- 

Figure Captions _I- 

Fig. 1. Gribov's full double scattering amplitude with non-planar -h 

couplings: (a) unenhanced; (b) and (c) semi-enhanced; 

(d) fully enhanced. 

Fig. 2. Cut pole Argand diagram: P is pole amplitude; - - - 180' is 

critical 180' line, where polarization zero occurs; NRC is 

non-rotating cut amplitude; RC is rotating cut amplitude; 

TC is total cut amplitude; -*-•TA is total pole + cut amplitude. 

Fig. 3. Argand diagram for helicity nonflip isovector amplitude 

'T'(ltl>. Labelled divisions on curves indicate values of Itl. 

Crossover has only slight energy dependence. - - - is pole 

amplitude; - is total amplitude, uncorrelated cut; 

--. .-- is total amplitude, correlated cut; -0-o is centre points 

of data at 6 GeV/c; l *** is extrapolation of correlated cut to 

200 GeV/c (amplitude values scaled up by factor of 10). 

Fig. 4. Argand diagrams (a) f or helicity flip isovector amplitude 

'T'(/t\) for small ItI values: - - - is pole amplitude; 

- is total amplitude, uncorrelated cut; -*-• is total ampli- - 

tude, correlated cut; (b) for large ItI values on enlarged scale. 

Fig. 5. Argand diagram for helicity flip isovector amplitude lT1(ltl> 

in 0.45 5 ItI 2 2.00 (GeV/c)2 region, on enlarged scale: 

-.-. is correlated cut with ItI dependent scale factor. 
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Fig. 6. (a) Inelastic polarization with correlated cut: - - - is 6 GeV/c; 

- is with t dependent enhancement factor 6 GeV/c; 
-h 

-0-0 is 200 GeV/c; l *** is conventional absorptive cut with 

c= 0, 6 GeV/c; 

(b) Elastic n' polarization: - - - is 6 GeV/c and -*-* is 

200 GeV/c. 

Fig. 7. Kane Model: - is HK (Hartley and Kane) 6 GeV/c , and 

l *** is KS (Kane and Seidl) 4.9 GeV/c. 

Fig. 8. Inelastic differential cross section: - - - is 6 GeV/c, and 

-0-o is 200 GeV/c. 

Fig. 9. Effective p-trajectory: - - - is 6 GeV/c, and -0-v is 200 GeV/c. 

Fig. 10. Argand diagram for elastic amplitude Tel with t = 0, 

at 6 GeV/c: f,P indicate bare f and Pomeron poles; 

fC,PC indicate correlated f and P cuts; f*,P*and TEl indicate 

cut rotated amplitudes 

Fig. 11. (a) Ratio of real to imaginary part of the ~'p elastic 

amplitude; (b) the utot measured in mb up to Batavia energies. 
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Fig. 12. Evolution in ItI of helicity nonflip pole-cut and total 

-r. amplitudes: P,C is pole, cut; RP is rotating pole; NRP is 

non-rotating pole; RC is rotating cut; NRC is non-rotating 

cut; T is total amplitude. 

Fig. 13. Helicity nonflip tensor exchange amplitude: (a) modulus; 

(b) phase; (c) real part; (d) imaginary part: l -.-* is pole, 

-- is cut, -0-e is total, and - is uncorrelated cut. 

Fig. 14. Helicity flip tensor exchange amplitude: (a) modulus; 

(b) phase; (c) real part; (d) imaginary part: l ..* is pole, 

-- is cut I, -0-o is total I, --•-- is cut II and 

--. .-- is total II. 

Fig. 15. (a) Differential cross section of IT-P + nn. 

(b) Polarization for ~-p + nn. 

(For a,b,c,d,e curves see Table 3.) 



I 

k2 

MAB-A’B’ s 
ob ( k 9, 

A A’ 

) = 

B B’ 

( 1 C (d) 
2-80 

3777Al 

Fig. 1 



0.4 

0 2 

2-80 

I 
180” 

I 
I 

I 
I 

I 
I I -0.1 

Jm(GeV/c )] 
3777A2 

Fig. 2 



2 -80 

0.24 

0.1 6 

0.08 

-0.08 

0.32 

I 

I 

- 

- 

I I ’ I ’ ,I ’ 

0.05 /’ A’, 

3777A3 

Fig. 3 

-w+?+..- -._-,,- 9- 



0.6 I I I 1 I 

0.05 

t. 

lirto.9 
"'"d,yj, 8 

I . i 

-0.2 1 I 1 I I I I I I I 

-0.2 0 0.2 0.4 0.6 

0.08 

-0.08 -0.04 0 0.04 0.08 0.12 

Re’ T’ [ ,/%/CGeV/c,] 1777.4 

Fig. 4 



0.12 

0.10 

E 
H 

0.04 

0.02 

0 
0 

2 - 80 

I /’ . . 

’ ‘0.55 ?- . 
‘0.65 

.O 

I- 
0.02 0.04 

Re’T’ [Jm?;/(GeV/c)] 

0.06 

3777A5 

Fig. 5 



0.8 

0.6 

g 
0.4 

iI 0.2 
h 
N 
E 

0 

z: LO.2 
8 

-0.4 

-0.6 

-0.8 

- I .o 

I I I I I 
---A C”-& t 1 (a) 7T+Q-- T+Q / --A (b) 

-s-200 GeV/c / \ 

* - l l Conventional Absorption 1 

. . . . . . 
. . 
. . 7r-Q -- 7T"n 
. . . . . * . . . . 
I I I 

0 0.5 I .o 1.5 2.0 0.5 I .o 1.5 2.0 

2 - 80 1 t 1 [(GeV&] 
377786 

Fig. 6 



l.0 

0.8 

c 
0.6 

1 Q 0.4 I 
I= 
/ 0.2 
0 - 

-0.4 

-016 

-0.8 

. 

Ill1 1 I I I I I I I I I 

l -• Kane 8r Seidl 
4.9 GeVk 

0 Drobnis 
A 8onamy (5.9) 

Bonamy (4.9) 
I I I I I I I I I I I I I I I II I I 

0 0 I I 2 2 

2 -80 
-4 ~GeV/c,*] 377767 

Fig. 7 



. 

IO-2 

IO-8 

I I I 

r-p - Ton 
- ” 

t 
\ 

“< 
. 

. 

t 

y200 GeV/c 
l \ . . 

\ 
. 

t 
\ . 

\ 

0 0.5 I .o I.5 

It 1 [(GeV/c)*] 

2.0 

3777A0 

Fig. 8 



, 

0.6 

0.4 

0.2 

-0.4 

-0.6 
-T 

- 1.2 0 

2 -80 3777A9 



Im - 
IO 

&W(GeV/c 1 - 

2 - 80 

1 t 1 =O[GeV/c)*] 

f& = 6(GeV/c) 

P 
- 

3777AlO 

Fig. 10 



0. I 

23 
0 

w 

; -0.1 
E - 

2 -0.2 
v; 
z -0.3 

t-, GE 
II 

- 
a 0 +I 

& 
a -0.1 

-0.2 

I ’ ’ ’ I ’ ’ ’ ’ 

.- 
.’ .-* 

.’ .’ 

Id 
9 

.’ 
/ r+P 

-iy 
I I I I I I I I 

---- -- 
I 0 

/ 
/ 

-I 
f-P 

4 t + 
I I I I I 1 I 

27 

26 

2 25 

24 

23 

II I I I I”11~ I I Ill 

-- 
\ 

*--r-p 

\ 
v-o-- Tr+P 

t 

A n--p NAL 

\ 
A lT+p NAl.m 

\ 
\ 

2-80 PI& (GeW 3777811 

Fig. 11 



(a) 
Im 

0.2 

F 

O[(GeV/c)2] 

- RC 
-0.2 \ 0.2 0.4 Re 

-0.4L RPi 1 

(b) 
Im 

0.2 r 0.1[(GeV/c)2] 

(4 Im 
0.05 

0.6[(GeV/c)2] 

RP P 

-0.05 - 

Im 

(f) 

-0.05 L 
Tm 

0.1 r 0.25[(GeV/c)2] 

0.05 
0.8[(GeV/c)2] 

id) Im 
0.1 . 0.5[(GeV/cJ2] 

-0.1 RC 

CT 
NRC 

2 -80 -0.1 

0.1 Re 

'P- 

fT 

(9) Im 

3777A12 

Fig. 12 

,.^ .-. ._ ,, _.. , .- 



. 

I ’ 
I 1 

0.5 (0) 

I I I I 

,....... pale 

--- cut 

IT& (ItI) -*- Total 
c” = -0.75 
a;; = 0.6 

s*,;=lol” 

-180 

-0.2 

*.................... . . . . . . . . 
- -. 

3 

t 

.~~~~~~~:~~_.~,=.=i=.~~= 

./;* .* ,' +f- 
/' I 

0 0.2 0.4 0.6 0.8 0 0.2 0.6 

It I [CGeV/c)2] I tl [kF] 
- 

Fig. 13 



0.6 

0.5 

0.4 

0.3 

k-O.1 

-0.2 

-0.3 

-0.4 

-0.5 

11 1 T;, (ItI) (a) 

. . . . . . . . . . . . . . PO le 

---cut I 

se---**Total II - 

Re T& (cl 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

2-W ItI 

90 

-i 45 
b 0) 
E 

IO 
Y 
t$ -10 

& 
P 
a -40 

-90 

0.6 

0.5 

0.4 

0.3 

g 0.2 
a, 

-? 0.1 

i. 
e 

0 

I-- -0.1 

-0.2 

-0.3 

-0.4 

-0.5 

L’ I ’ 1’ I’ I ’ I ’ I ’ II-1 

t +$ltl) (b) I I. i 

:, 

. ...--* ,- 
. . ..- *..... 

. . . ..- .A : 
..-*. I * 

, 
+...... 

.H’ 
---I ..’ 

+ f 
/” t 

. . 

I I I I I II I, /,I, 1, 

_ Im T&, Cd) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

[ (GeV/c P] 37,1C,. 

Fig. 14 



I. 

0.1 

0.01 

0.00 I 

t 
‘t 

‘i \ 
O\ 

(a) 
I I I 

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 

I tl [(GeV/c12] 1 t 1 [(GeV/c12] 3777815 

lr-p -7i-l 

Theoretical Results at 
6 GeV/c 

Fig. 15 


