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ABSTRACT 

The correspondence between topologically stable kinks of scalar 

$4 theory, vortices of the Abelian Higgs model, monopoles of the 

't Hooft-Polyakov model and instantons of SLJ(2) Euclidean gauge theories 

is exhibited. The use of multi-instanton ansatze for finding multi- 

monopole and multivortex configurations is then investigated. A partial 

is solution of the N-vortex configurat .ion for the Abelian Higgs model 

obtained. 
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1. Introduction 

Solutions of Yang-Mills theories with topologically non-trivial 

properties have been known for sometime. The investigation of models 

with an SU(2) gauge theory coupled to a Higgs triplet led to the dis- 

covery of the 't Hooft-Polyakov monopole,l a static, finite energy, 

spherically symmetric extended object in three spatial dimensions with 

the important property of a topologically conserved magnetic charge. 

Subsequently, the Prasad-Sommerfield (PS) monopole, representing an 

exact solution of the field equations in the special case of vanishing 

Higgs potential was discovered. Further work also revealed the existence 

of dyons.3 

As a result of these successes many investigations concerned with 

the topological properties of Yang-Mills theories in general were 

initiated. It was realized that the behavior of the Higgs field on a 

sphere at infinity, Sz, essentially determines the magnetic charge of 

the monopole by defining a mapping from S E onto the unit sphere in group 

space. 4 Such a mapping can be characterized by an integer N, the 

winding number, corresponding to the number of coverings of the sphere 

in group space. All mappings with the same value of N are continuously 

deformable or homotopic to each other and the value of N for a particular 

mapping is a gauge invariant quantity. - 

Hence, the mappings fall into a group of disjoint classes (the 

homotopy group) labeled by the winding number which thus provides a 

convenient way of classifying monopole solutions. In fact, it is easily 

shown that the magnetic charge of a monopole is precisely l/e times the 

winding number N, where e is the gauge coupling constant. The 't Hooft- 



Polyakov monopole corresponds to a mapping with winding number equal to 

one an> is thus the lowest finite energy, topologically stable solution 

possible. This result is not surprising in view of its high degree of 

symmetry. 

Topological considerations have not ruled out the existence of 

solutions with higher magnetic charges since the winding number can 

assume any integral value. However, despite much effort, no such 

solutions have been found to date. In fact, as a result of these un- 

successful searches it has emerged5 that there are no finite energy 

spherically symmetric field configurations with magnetic charge greater 

than one. So, if higher charged solutions exist they will have a more 

complex structure. 

A similar state of affairs exists in two spatial dimensions for 

the Abelian Higgs model, or equivalently Landau-Ginzburg theory. For 

certain values of the coupling constants, topological arguments indicate 

the possible existence of stable vortices with quantized magnetic flux.6'7 

The behavior of the Higgs field is, as before, the factor determining the 

number of units of magnetic flux. In this case the relevant mappings are 
. 

from a circle in real space Si, onto the group U(1) which may also be 

parameterized by a circle. The mappings from Si to s1 thus fall into 

equivalence classes labeled by the winding number N, which may again take 

on any integral value. The mangetic flux is then equal to 27/e times the 

winding number, where e is the gauge coupling constant of the theory. 

De Vega and Schaposnik8 have found an exact series solution for 

this model provided that e, and the quartic coupling for the scalar 

potential X, satisfy the relationship 2X=e2. In Landau-Ginzburg theory 



this corresponds to the transition between type I and type II super- 

conductors. They have explicitly exhibited the solution for the case 

N= 1, and in principle the exact solution for a multicharged vortex is 

also calculable. To date, no explicit multivortex solutions, that is 

stable configurations of separated vortices, have been found. 

In one spatial dimension the kink7 (or antikink) of scalar $4 

theory is an exact topologically stable solution. The topological 

charge may only take on values of +1 corresponding to the trivial 

mapping of the vacuum field values +=fF onto the points x=+m, so in 

this case there are no stable solutions with higher topological charge. 

Attempts to solve Yang-Mills theories in four Euclidean dimensions 

have met with considerably more success. Just like their one, two and 

three dimensional counterparts, these solutions exhibit topological 

stability. In this case however, it is the behavior of the gauge field 

at infinity that plays the crucial role in determining the topological 

quantum number, q. This quantity again can be shown to assume integral 

values. The first solution discovered, the Belavin-Polyakov-Schwarz- 

Tyupkin (BPST) instanton,' is spherically symmetric (in four dimensions) 

and has q=l. Subsequently, WittenlO found multi-instanton solutions 

consisting of N instantons arranged along the time axis. Multi-instanton 

solutions with instantons located at arbitrary spacetime points have also 

been found using the Corrigan-Fairlie-t' Hooft-Wilczek (CFtHW)11-13 ansatz. 

Despite the apparent diversity of the theories considered above, 

the topologically stable solutions which they admit show remarkable 

similarities. In all cases the solutions satisfy a set of first order 

equations which imply the equations of motion.14 They exhibit bounded 
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action (or energy), the bound being proportional to the topological 

charge, and all appear not to interact with each other although in cases 

where no explicit higher charged solutions have been found this has not 

been verified directly.15 The similarities between the properties of 

these solutions points to a relationship between them. 

In Section 2, we consider in turn, each of the models discussed 

above and show how they are related.16y17 Whilst interesting in its 

own right, this relationship motivates the use of successful techniques 

developed for finding multi-instanton solutions in the search18 for 

multimonopoles and multivortices. 

In Section 3, the most general cylindrically symmetric ansatz for 

the gauge potential" motivated from Witten's solution is used to obtain 

a set of first order non-linear equations describing a cylindrically 

symmetric monopole in the PS limit of the 't Hooft-Polyakov model. The 

use of the CFtHW ansatz in the search for cylindrically symmetric mono- 

poles is also discussed. 

In Section 4, Witten's technique for finding multi-instanton 

solutions is also shown to give a partial solution of the N-vortex 
n 

configuration of the Abelian Higgs model when 2A=e". The paper concludes 

with a summary of the work in Section 5. 

- 

2. The Correspondence between Instantons, Monopoles, Vortices and Kinks 

Table I summarizes the properties of topologically stable solutions 

in one, two, three and four dimensions as outlined in Section 1. 

To make the transition from four dimensional Euclidean Yang-Mills 

theory to the PS limit of the 't Hooft-Polyakov model we begin with the 
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usual SU(2) gauge potentials, A: and define the field strengths by 

Fa = aAa 
VV lJ v 

- avA: + ee abcA; A; . (2.1) 

The Yang-Mills Lagrangian density given in Table I may then be written 

as 

gyM = + Fa.Fa. +LFa a 
=J 1J 2 oiFoi , 

1 2 
= z Ftj ?- sijkF;k * E;B; , 

(2.2a) 

(2.2b) 

where E T and BT are the electric and magnetic fields, respectively. 

When the term in brackets in Eq. (2.2b) is set to zero, the familiar 

self-duality condition is obtained. The second term in Eq. (2.2b) then 

gives a lower bound for the action and is of course proportional to the 

topological charge density as given in Table I. 

Now, choosing time independent fields and replacing AZ by r)a,18 

the Higgs field, remembering that FtO becomes Dk$a with this replacement, 

we see that gyM becomes precisely the expression for the Hamiltonian 

density of the PS model as obtained by Bogomol'nyi.14 That is 

2 
2 

YM 
-bsv = 

ijkDkQa T B;Di$a . (2.3) 

The first term in brackets, when set to zero, is the static limit 

of the self-duality condition in four Euclidean dimensions1.7y18 and is 

identical to the first-order Bogomol'nyi equations for the PS monopole. 

The second term in Eq. (2.3) is proportional to the static limit of the 

four dimensional topological charge density and is easily shown to be 

proportional to the magnetic charge of the PS monopole. 
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Hence PS monopoles are mathematically equivalent to static 

Euclidean instantons. The properties of quantized topological charge, 
-cI 

bounded action and absence of instanton interactions in four dimensions 

are seen to have a precise correspondence with quantized magnetic charge, 

bounded mass and absence of PS monopole interactions in three dimensions. 

The fact that the static limit of Euclidean Yang-Mills theory is 

equivalent to the PS limit of the 't Hooft-Polyakov model has been known 

for some time and exploited by a number of authors. In particular, Ju16 

has shown that choosing the most general static, spherically symmetric 

ansatz for the gauge potentials yields the PS monopole as the only 

regular, finite energy solution. This result thus provides a nice 

demonstration of the uniqueness of this solution. MantonI has used 

the CFtHW ansatz to search for static self-dual field configurations 

and obtained the PS monopole in the spherically symmetric case. He has 

also shown that the PS monopole may be recovered by searching for time 

independent solutions of Witten's multi-instanton equations. This 

result is not surprising in view of the fact that the static limit of 

Witten's ansatz is spherically symmetric in three spatial dimensions. 

Furthermore, recent investigationsl' of the symmetry properties 

of multi-instanton solutions have revealed that even the two instanton 

version of Witten's solution, with both instantons located at the origin - 

is not, contrary to expectation, spherically symmetric. It is therefore 

tempting to conjecture that the result5 concerning the absence of higher 

charged spherically symmetric monopoles is also true for self-dual 

solutions in four dimensions. 
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To obtain the Hamiltonian density for the Abelian Higgs model, it 

is firzt necessary to renormalize the energy scale by adding a constant 

term to Eq. (2.3) giving 

&@ = mi Fa Fa ’ 2 F4 
4 ij ij + qDir$aDiQa+e 8 , (2.4a) 

2 1 e2F4 = 5 cijk Dk$a T y ~~~~~~~ Dk$a + 8 , (2.4b) 

where F is the magnitude of the vacuum expectation value for the Higgs 

field. Making the substitutions 

A: = Vm6 a3 
, m = 1,2 , (2.5a) 

cpq oq 
A;=- , P,q = I,2 , (2.5b) 

3 A3 = 0 9 (2.5~) 

c$P = QP/fi , (2.5d) 

c$3 = -jF2 , (2.5e) 

we shall see that Vm and 0' may be identified as the usual electromagnetic 

gauge field and two component scalar field respectively. Now, assuming 

all fields in Eqs. (2.5) to be independent of z, Eq. (2.4a) becomes 

i%= IF F 1 2 

-4 mp mp + 2 DmQPDmOP + $ QmQm-F ( 
22 

> , (2.6) 

where 

F =av-av 
mp mp pm , 

D @' = am@' + eE m pb vm ob . 
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Equation (2.6) is just the Hamiltonian density for the Abelian 

Higgs model considered by Bogomol'nyi for the special case when the 

coupling constants satisfy 2X= e2. Note that to obtain Eq. (2.6), $3 

must be chosen with a non-zero, constant vlaue. 

Now, making the substitutions (2.5) in Eq. (2.4b) and going to 

Bogomol'nyi's dimensionless variables gives 

f2 mn ' 2fmnEmn (-Q~Q~) + (1 - QaQa) 2 

1 + T ~~~~~~~ T eimDmQP 
( 

2 ,I 
e2F4 T- 4 $ f,,E,(-QaQa) - ~~~~~~~~~~~~~~ 1 - (2.7) 

The first and second terms in square brackets correspond to the t 

and z independent limits of the Euclidean self-duality condition and 

topological charge density respectively. In contrast to the situation 

in three dimensions however, to extract the Bogomol'nyi equations and 

the lower bound on the mass of the vortex from Eq. (2.7) it is necessary 

to add zero cleverly disguised as 

e2F4 
2 lf mnemn ' 2 mn'mn 1 . (2.8) 

When Eq. (2.8) is absorbed into Eq. (2.7), Bogomol'nyi's expression 

for the Hamiltonian density of the Abelian Higgs model with 2A=e2 

follows immediately. 

So, in this case although the two dimensional limits of the topo- 

logical charge density and the self-duality condition require some 

manipulation to produce the correct form, the instanton-like properties 
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of vortices can still be seen to have a direct relationship with their 

four dimensional counterparts. Interestingly, unlike the instanton 

case, the series solutions of De Vega and Schaposnik indicate that a 

vortex of charge N is radially symmetric. It appears that the Abelian 

Higgs model in two dimensions has sufficient linearity to admit multi- 

charged solutions with the maximal symmetry whereas non-Abelian theories 

in higher dimensions do not. 

Continuing down to dependence on one spatial dimension only, the 

energy density for the kink can be recovered. Setting 

F =0 mn , (2.9a) 

2 = $I , o2 = 0 , (2.9b) 

2 e - = )) 
4 , F2 = m2/2X , (2.9c) 

where m 2 and X are now the usual quadratic and quartic couplings respec- 

tively, Eq. (2.6) becomes 

(2.10) 

Making the substitutions (2.9) in Eq. (2.7) reduces the first term in 

square brackets to Eq. (2.10) and causes the second term to vanish. 

Hence to obtain the Bogomol'nyi expression for the kink energy density 

it is necessary to add the identically zero term 

(2.11) 

So, even one dimensional $4 theory can be regarded as a special limit 

of self-dual Euclidean Yang-Mills theories. That is, the kink is a 

"one dimensional instanton." 
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The foregoing discussion has illustrated that the notion of self- 

duality, which has proved so useful in finding solutions of Yang-Mills 

theories in four dimensions could also be employed to find solutions in 

lower dimensions. Such solutions would be stable since for a particular 

value of the topological charge they saturate the lower bound on the 

energy. The idea then, is to take the appropriate limits of the ansatze 

used to obtain multi-instanton solutions in the hope of finding multi- 

monopole and multivortex field configurations. 

3. Ansatze for Cylindrically Symmetric Monopoles -.__-- 

Setting 
aa eA CT 

A = ;i 
11 , 

where G a are the Pauli matrices, the most general ansatz'for a gauge 

potential with spatial cylindrical symmetry may be written as1' 

, (3.la) 

where 

; = (l,O,O,O) , (3.lb) 
1-1 

h 
z 

?J 
= (O,O,O, 1) , 

h 
1 (0 

5 = P 
,X,Y,O) , 

i, = ; (0 , -y , x , 0) , 

2 
P = x2 + y2 , 

(3.lc) 

(3.ld) 

(3.le) 

(3.lf) 
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A h h 
and z, P, and $ are similar unit vectors in group space. The functions 

fl,f2,i.. ,fll are in general functions of p, z and t. From the discussion 

in Section 2, it is known that ansatz (3.la) may also be used to search 

for monopole solutions by simply requiring that the functions f., 1 

i=l,..., 11 be independent of time and identifying A; with $a, the Higgs 

field. So, with this restriction on the fi's, the components of Au may 

be written explicitly as 

a eA. = 
Ej stzspt 

J P f4 

+ 
i 

‘j 
pflo + 

pzy)t 

P 
ill) '"":z"") , j =1,2 (3.2a) 

a a eA = zaf2+ %f6 + E 
abczbpc 

3 P f9 

a 
e$ a = eAt = zafl + %f 5 

, 

, 

where now 

a Z = (0 , 0, 1) , 

a 
P = (x , y , 0) , 

abc b c 
E z P = C-Y, x, 0) , 

and - 

a,b,c,s,t = 1,2,3 . 

(3.2b) 

(3.2~) 

The ansatz (3.2) is precisely the form obtained when Witten's 

ansatz for multi-instanton solutions is rewritten in a manifestly 

cylindrically symmetric form dependent on p and z only. 
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The field strengths may be calculated from Eq. (2.1) in a straight- 

forward manner and are given by 
CI 

1 za 
q2 = -g p a&+qlf+gflo 1 ( ) + ~(BoPs - gllf3+f10g4) 

P 

+ E 
abczbpc 

D2 ( a g P 11 + ggf3 - f$4 ’ (3.3a) 

abczbpc 

2 
P 

Pi(apf9-a~f10+f3f6-f2f7) 

+ 
( 

a f 
P 6 

- azf7 + f2flo - f3fg 
> 

PiPa Piza 
-+- 

P2 
a f 

P ( P 2 
- azf3+ fgf7 - f6f10) 

ist s t a ist s t a 
+ E ZPZ 

P2 
-azg4-f6gll+fggg > + E '3' ' (-azgg-g4fg+f2gll) 

P 

+ (6aip2_ (-a g 
P3 

z 11 
+g4f6-g f ) 

82 ' 
f 

i=1,2, (3.3b) 

1 F;O = D3$a = e >+ $(azf5+f9fl) 

abc b c 
+ E ZP 

P (f2f5-f6fl)} (3.3c) 

FTo = Di$a = i + flofl) + +(apf 1 - f10f5) 

abc b c i 
+ E z P P 

z- ( f5f3- flf,) + ( (f5g4- figs) 
P P 

E 
istzs tza 

P 

P2 
(gllf5)+ & 

istzs 

P3 

, i=1,2 , (3.3d) 

where it is convenient to define 
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f8 = g8fP 9 (3.3e) 

f4 = (g,- 1)/P , (3.3f) 

fll = g11'p , (3.W 

and 8 
P 

and aZ are derivatives with respect to p and z respectively. 

Equations (3.3) may be substituted into the static self-duality 

condition giving 

azfl - fgf5 = T $(apg4 - 8glo + gllf7) y 

-fgfl + f2f5 = F $(apgll - gqf7 + gsf3) 9 

azf5 + fgfl = T +a 
( 13~8 -g11f3+g4f10) ' 

1 -flf7 + f5f3 = + p azgll- 
( ‘qf6 + g8f2> ’ 

1 
apf5 + flofl = + p azgg+g4fg- gllf2 ( ) , 

a f 1 
P 1 - f10f5 = ’ ; azg4- ggfg+gllf6 , 

a f 
P 6 - azf7 - f3fg + f2f10 = 'flgll IP 9 

a f 
P 2 - azf3 - f(jfl() + fgf7 = ~f5g&P , 

apf9 - azf10 
1 

- f2f7 -t f3f6 = t ; f5g4- flgg . > 

(3.4a) 

(3.4b) 

(3.4c) 

(3.4d) 

(3.4e) 

(3.4f) 

(3.W 

(3.4h) 

(3.4i) 

Equations (3.4) are the most general equations describing a 

cylindrically symmetric PS monopole. In fact, since a choice of gauge 

such as aPAP= yields in general another three equations for the 

unknown functions, the above system is overconstrained. 

MantonI has also searched for cylindrically symmetric monopoles 

using an ansatz which may be obtained from Eqs. (3.2) by setting 
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f7 = f3 = f6 = f2 = gll = 0 . (3.5) 

Remembering that Manton used a value for the gauge coupling constant 

corresponding to e=-1, it is found that the self-duality Eqs. (3.4) 

reduce to those obtained in the special case when Eq. (3.5) is true. 

As a further check on Eqs. (3.4), it can be ensured that the PS 

monopole is recovered when the functions f i are chosen so that ansatz 

(3.2) reduces to spherically symmetric form. This is accomplished by 

choosing 

fl = -z$3(r) /r 

f5 = PfI/Z 

811 = P$2(r)/r 

f2 = Pgll/r 
2 

f3 = f6 = -zgll/r 2 

where 

f7 = Zf3/P 

f10 = -z(l+ $,(r))/r2 

gg = -pflo 

f9 = P(l+ 41(r))/r2 

g4 = 1 - Pfg 

2 r = P2 + z2 

, 

, 

, 

, 

, 

, 

, 

9 

, 

, 

(3.6a) 

(3.6b) 

(3.6~) 

(3.6d) 

(3.6e) 

(3.6f) 

(3.W 

(3.6h) 

(3.6i) 

(3.6j) 

The reduced form of the self-duality Eqs. (3.4) thus obtained have 

only one regular solution corresponding to the PS monopole.16 
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Equations (3.4) give a somewhat intractable set of coupled non- 

linear-equations, which in general will not be easy to solve. Therefore 

it is useful to consider possible simplifications. 

It is well known that the CFtHW ansatz2' 

A = io a'ln@ 
1-I I-lV 

reduces the self-duality condition to 

O@ = 0 

and the Yang-Mills equations of motion to 

oia + m3 = 0 

(3.7) 

(3.8) 

(3.9) 

where X is an arbitrary constant. 

From the discussion in Section 2, a static version of the CFtHW 

ansatz may be used to search for cylindrically symmetric monopoles. 

In this case, to ensure static gauge fields, the derivatives of the 

superpotential Q must be time independent, although Q itself need not 

be. With these restrictions it has been shown that @ must be of the 

formI 

&,t) = u(Z) exp et , (3.10) 

where ~1 is a constant. ~(2) is a function of p and z only for cylindrical 

symmetry. The self-duality Eq. (3.8) thus becomes 

a:0 + 
a 0 
$-- + a:0 + ~1~~7 = 0 . (3.11) 

Since Witten's ansatz and the CFtHW ansatz yield gauge equivalent 

solutions,21 it should be possible to recover Eq. (3.11) from the more 
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general Eqs. (3.4). Choosing 

fl = ltazq , 

f5 = iapq , 

f6 = f3 = 0 , 

f7 = f2 = gll/p = do9 , 

flo = -pg/p = aZq , 

fg = -apq 

g4 = l- Pfg = i+Oapq , 

where q = In@, casts the ansatz (3.2) into the cylindrically symmetr 

CFtHW form and reduces Eqs. (3.4) as asserted. 

ic 

A general solution of Eq. (3.11) may be obtained by separation of 

variables and does not lead to finite energy field configurations. 

The CFtHW ansatz can also be used to search for solutions which 

are not self-dual. However, since the gauge potential must be static, 

the function Q, must be of the form given in Eq. (3.10). In this case, 

the equation of motion (3.9) reduces to 

, (3.12) 

where S= Xe 2at is independent of p and z. Equation (3.12) looks 

promising and is currently under investigation. 

Finally, it is trivial to include dyon solutions by using the 

Prasad-Sommerfield procedure of defining a new gauge potential B; and 

Higgs field I$'~ given by 
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B; = A; , 

B: = cja sinhy , 

9 4 = +a coshy , 

where y is an arbitrary constant. 

4. Ansgtze for Multivortices 

For the case of the Abelian Higgs model, the two dimensional limit 

of the self-duality condition yields a system of equations very similar 

to those obtained by Witten for the multi-instanton solution. From 

Table I this condition when written out explicitly in Bogomol'nyi's 

dimensionless variables becomes 

a,Q, - v2Q1 = T alQl ( + 79,) 

a,Q, + v2Q2 = + a,Q, - vlQl ( ) 

, 

, 

(4.la) 

(4.lb) 

alv2 + a2vi = F l-Q, ( '-Q;) 3 (4.lc) 

the upper and lower sign corresponding to the self-dual and anti-self- 

dual case respectively. 

Following Witten's method of solution by setting 

v = a- TEab ab $ a,b = 1,2 (4.2a) 

Q, = lb e xl , (4.2b) 

Q, = + e x2 , (4.2-c) 

Equations (4.la)-(4.lb) reduce to the Cauchy-Riemann equations for 

f = xl + ix2, an analytic function of z = xl+ix2. Choosing 
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$ = - $ In (f"f) + p (4.3a) 

reducs Eq. (4.1~) to 

v2p = e2' - 1 . (4.3b) 

Equation (4.3b) has also been obtained by Lohe17 and has no known 

analytic solutions. 

The interesting result is that the equations for the Higgs fields 

are precisely those obtained by Witten. Since the calculation of the 

magnetic flux depends only on the Higgs fields it is seen from Witten's 

results that the number of zeroes of f determines N, the topological 

charge of the vortex, and the 2N parameters required to describe a 

multivortex solution are just those parameters specifying the positions 

of the zeroes of f. After the completion of this work, a preprint22 

was received which has reached the same conclusion. 

5. Summary 

An examination of the properties of topologically stable solutions 

in one,. two, three and four spatial dimensions reveals a number of 

similarities between them. It is possible to exhibit explicitly the 

connection between the various models, so that in some sense solutions 

in lower dimensions can be regarded as special cases of instantons. 

Indeed, PS monopoles are mathematically equivalent to static Euclidean 

instantons. 

The absence of explicit higher charged solutions in two and three 

spatial dimensions suggests the use of the appropriate limits of multi- 

instanton ansatze in the search for new solutions. 
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For the PS limit of the 't Hooft-Polyakov model equations for the 

most general cylindrically symmetric monopole have been obtained. Some 

simplification of these equations may be achieved by using the CFtHW 

ansatz. This ansatz is also found to simplify the equations of motions 

for monopoles which do not saturate the Bogomol'nyi bound. 

For the Abelian Higgs model, the use of the Bogomol'nyi equations 

and Witten's methods show that the number of parameters required to 

spe'cify on N-vortex configuration is just the number of parameters 

describing the zeroes of the Higgs fields. 
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TABLE I 

Summarizes the main features of the topologically stable solutions which exist in one, 

two, three and four dimensions. 

PS Limit of 
t' Hooft-Polyakov 
Model 

Abelian Higgs Model, 

2X = e2 

Model Scalar e4 Theory Euclidean Yang- 
Mills Theory 

Dimension n 2 1 4 3 

Topologically 
Stable 
Solution 

Monopole Vortex Kink Instanton 

-t (Fmn12 - +(Dmba)2 

-$(Qaoa _ F2)2 

Lagrangian 
Density 

1 Fa Fa 
4 IJV vv 

f mn 
= X&l-QaQa) 

Self-Duality 
Condition 

Fa *a = iF 
U-J UV FTj = yjkDk$ 

a 

e,nDnQ" = +sabDmQb 

Topological 
Charge 
Density i 

EaD. +a 
-.&-A-- 

F 

2 
e% Ea Ba 
an2 i i 

- 
q = .-tN 

Topological 
Charge 

1 
Z Emnfmn 

Magnetic flux 

Topological 
Charge 

/ dnx;i 

K = fl 4rM = + = 
e 

Magnetic flux 

Lower Round 
on Action or 
Energy 

Jg Iql 
e 

4nMF 

PS Monopoles are 
Non-Interacting 

Vortices for 2h=e2 
are Non-Interacting 

No Higher Charged 
Solutions 

Non-Interacting 
Multi-Instanton 
Configurations 
Exist 

RPST Instanton 
only Spherically 
SymmetricSolu- 
tion known 

Interaction 

No Spherically 
Symmetric Solu- 
tions with N> 1 

De Vega and 
Schaposnik Series 
Solution Radially 
Symmetric 

Symmetry 
Properties 


