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ABSTRACT 

We discuss the physical reason why keeping more states per site in 

a lattice truncation calculation gives more accuracy than keeping a 

small number of states and blocking more and more sites together in a 

given iteration. The specific example of the 1 + l-dimensional Ising 

model in a transverse magnetic field is discussed in detail in order to 

show how attention paid to simple physics radically improves upon pre- 

vious calculations. 
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1. Introduction 

-h 

The application of "real space renormalization group methods" to 

the study of lattice Hamiltonians has shown that one can learn quite a 

lot about the ground state and lowest lying states of a quantum system 

from an extremely crude approximation scheme.l It therefore becomes 

interesting to ask how hard it is to systematically improve the accuracy 

of these methods, and which schemes yield the greatest improvement for 

the least amount of work. 

There have been several studies of this question within the context 

of simple models.2 Most of these studies relate to the improvement one 

obtains by treating increasingly larger blocks exactly and holding the 

number of states per block,kept in any one truncation, to be equal to the 

number of states per site in the starting Hamiltonian. Unfortunately, 

the increase in accuracy obtained by these methods is not comparable to 

the increase in the difficulty of carrying them out. It is our purpose 

in this paper to point out that there are various ways in which one can 

rapidly improve accuracy for significantly less work, and to explain in 

simple physical terms why these methods work better than ones based on 

choosing larger and larger blocks as the basis of a truncation procedure. 

2. The Free Fields -- An Instructive Example ______ --- 

The method we will describe is an alternative truncation procedure 

which works with small blocks but keeps more states per block. There is 

a simple reason why this allows for greater improvement in accuracy; 

namely, properly implemented it reduces the "surface effects" coming 

from the fact that any single truncation is carried out in a block of 
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finite size. To see why this happens it is instructive to analyze the 
-h 

one-dimensional problem of a set of coupled harmonic oscillators. Let 

us begin by doing this within the framework of the more usual procedure 

and see how it can be greatly improved upon. To establish notation let 

us first consider a periodic Hamiltonian on a finite lattice, viz. 

N-l 

H= xj+l-xj)2+ t(~-X-N)2 (2.1) 

This Hamiltonian is solved exactly by first defining 

“k = 1 c .-iki x 
J2N+1j j 

, 

(2.2) 

where the variable k refers to the discrete set of lattice momenta 

k = 27~p/(2N+1) for 
P 

-N<p'N m (2.3) 

With this notation we can rewrite H as 

H= 
-kppkp) + 

(u2+2(1-cos(kp))) 
2 X-kpxkp 1 (2.4) 

where p k and "k satisfy the commutation relations. 

pkl , Xk = -iskr ,-k 1 - 

In the usual way we introduce annihilation and creation operators 

xk = (a_,+al )I% 

ipk = (ask-a: )I&$7 
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where 

and 

2(1- cos(k))+n2 

and rewrite H as 

H = aLak+ l/2 

In the infinite volume limit 

IT 

(2i+1) k + k c J ak 
-T 

and H becomes 

7T 

H = L 
5 . 

-7l 

(2.6) 

(2.7) 

So much for the exact solution. Let us now see how a naive trunca- 

tion calculation of an approximate ground state of the infinite volume 

theory procedes. To begin we divide the infinite lattice into blocks 

of size L B = (2NB+l) and rewrite H as 

2 

H= 2 Z( 
PLgs+r + h2+2) < ____ ____ 

2 - xLBs+r xLBs+r+l 
(2.9) 

SE--~ r=-N 2 bs+r 
B 

Next comes the truncation step. This amounts to reducing the LB degrees 

of freedom per block to a single degree of freedom. To be precise let 

us define this procedure by first introducing variables Xs(K), Ps(K) 

where 
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NB 
-iKr 

XLBS+r 

-c Ps(K) = & r=-NB e 
-iKr 

‘LBs+r 

and where 

K = 2&LB f -NB 5 R I N B ; (2.10) 

we then freeze out all but the K= 0 degrees of freedom. This is most 

simply carried out if we rewrite H by adding and subtracting the terms 

cxLBs+NB 'LBs-NB and substituting (2.10) into the resulting expression. 
S 

We thus obtain 

where 

H = Ho + V 

+ Ps(-K)Ps(K) + 
(p2+2(1- cos(K))+2/LB) 

2 Xs (-K)Xs (K) 1 
and 

i(K-K')NB i(K-K')NB 
e 

v= x 
e 

K#K' LB 
Xs(K)Xs(K') - Ix 

s,K,K' LB 
Xs (K) Xs+l (K' ) 

Introducing annihilation and creation operators as in Eq. (2.6) with 

WK : u2+2(1- cos(K))+2/LB 

we can diagonalize Ho. The naive truncation procedure is to eliminate 

all but the degrees of freedom Xs (K=O). This is accomplished by 

restricting the class of trial states to thosel' which satisfy the 

condition as(K)I$> = 0 for all K# 0. Under this assumption if I+> and 
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/Q> are two such states, then 

i, HO+V 1 @> = F 
f 

go +L" u2+2(1-cos(K))+2/LB <Q/Y> 
t 

L P (K=0)2+ + (u~+~/L~)X~(K=O)~ 

E <cp 1 Hyff ( 'i'> (2.12) 

where, I'?> and IQ> are arbitrary square integrable functions of the 

variables Xs(K=O). Having arrived at (2.12) we drop the label K= 0 

from our notation for the operator Xs(K=O) and observe that we can obtain 

an upper bound on the ground state energy of the theory by diagonalizing 

the effective Hamiltonian 

eff = 
Hl (Vol) E,ll +x lP2 + 

t 

hJ2+ 2/LB) 

s 2s 
2 xi - J- XsXsfl 

LB 

(2.13) 

where a is the identity operator, 

E. = u2+2(1-cos(2ap/LB))+2/LB 
t 

(2.14) 

and P 
S 

and Xs satisfy canonical commutation relations (2.10). Obviously 

HI could be as easily diagonalized as H and one would obtain an upper 

bound on the ground state energy density, which for the infinite volume 

case is 

IT 

1 
El = EO+ 21TLB J 

dk 
2 u2+ 2(1- cos(K))/LB 

-IT 

(2.15) 
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In fact, this is not a bad bound on the true ground state energy density 
-c. 

even for L B=3. Even if one pretends one does not know how to diagonalize 

(2.13) and instead iteratively carries out the same procedure one obtains 

a reasonable bound of the form 

M 
1 

E = lim 
var c 

M-tm R=l 0" ER I 1 

(2.16) 

where 

(2.17) 

If the only quantity of interest was the ground state energy density, 

this would be an entirely satisfactory state of affairs. However, 

one would like to use this method to learn something about the spectrum 

of low lying states and the behavior of correlation functions. For these 

purposes, one needs to do well in computing not only the energies of 

states at zero momentum, but also the way in which these states condense 

a0m on zero; i.e., one needs to compute the density of states near 

K=O. Examination of (2.17) for the massless limit, p2 = 0, shows that 

the naive truncation procedure doesn't do so well in this regard. The 

point is that, as can be seen from (2.17), after k-iterations the p=O 

mode has a frequency We(a) given by (2/LB) RI2 . This means that states 

are condensing down onto the true K=O mode as the square root.of l/L: - 

which is the length of the block under consideration. Of course, for 

the true free field case, Eq. (2.4), on a block of length (LB) R with 

periodic boundary conditions, we see that for u2 =O, W. for the K=O 

mode vanishes and the neighboring modes are spaced from it by an amount 
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1/L;. The common factor of (l/L,)"'2 in all energies is a surface 
-h 

effect due to truncating on finite size sub-blocks and survives only 

because of the prescription we have adopted of truncating to a single 

mode per box. Having made this observation the cure is apparent. 

Simply truncate to more than one mode per box. For example, suppose in 

the first step we keep the lowest three oscillator modes per box of 

length LB. Our effective truncated Hamiltonian will then describe a 

lattice system of three harmonic oscillators per site 'j', i.e., x(j), 

y(j), and z(j), and will have the form. 

i 

1 0 0 

H eff = J$ 3 (P,(j), Py(j), Pz(j)) 010 
J 

\ 
0 01 

1 
+-ST ( x(j), y(j), z(j) 

) 

1 

% ( x(j), y(j), z(j), \ 

P,(j) 
P,(j) 
p,(j) 1 

2 
w 0 0 

X 
x(j) 

0 2 0 
Y 

Ii 

Y(j) 

0 0 uf z(j) 

x(j + 1) 
!i 1 
y(j + 1) 
z(j+l) 

(2.18) 

where the K 
ij 

's are numbers whose modulus is of order unity, and m2 w2 x' y' 

and U: are all of order ~JL~ and differ by terms of order l/L:. 

Clearly, in the next iteration remixing of these terms will produce 
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oscill@ors having frequencies, which are in fact split from the lowest 

one, by order l/L;. Thus, freezing out all but the three lowest modes 

does produce a reasonable representation of the density of states factor 

for the u2 =0 case, As in example of this effect and the importance of 

keeping more oscillators per block see Ref. 3. 

The moral to be drawn from this discussion of the free field is, 

as we said at the outset, that in order to minimize "surface effects" 

arising from the truncation algorithm it is more important to keep addi- 

tional degrees of freedom (i.e., for finite spin systems--more states) 

than it is to work with larger and larger blocks. In the next section 

we will show how well an algorithm based upon this observation works for 

the simple case of the l+l dimensional Ising model in a transverse 

magnetic field. 

3. Analysis of the Ising Model in a Transverse Field 

The theory to be discussed in this section is a one space--one time 

theory of elementary spins on a line, having a Hamiltonian. 

E 

H= -f o,(j) - Aoox(j)ox(j + 1) 1 (3.1) 

A simple-minded analysis of this system was described in Ref. 4, and a 

more complex variational method for improving upon these results within 

the restriction of keeping at each step only two states per block was 

presented. Typical results obtained for these calculations are given 

in Table 1 compared to results for the more complex calculations to be 

described in this section. These calculations all involve keeping more 
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statesser block, but the very best of the calculational schemes uses 

the previous "two level variational renormalization group" results as 

input to a multistate calculation. In order to make the details of 

this calculational scheme clear we briefly remind the reader of the 

principles of the two state truncation calculation. (See Ref. 4 for a 

detailed discussion.) 

A. Variational Renormalization Group Analysis of Ising Model 

The basic procedure followed in analyzing H as defined in (3.1) 

is to block the lattice into pairs of sites, i.e., define j =2 +r, 
P 

r = 0,l. One then thins the number of states to be used in our trial 

wave function for the ground state. To accomplish this we define ]fj> 

and I+;> to be eigenstates of u 3 (j) with eigenvalues +l. We then note 
J 

that a basis for the full Hilbert space of the theory is generated by 

taking tensor products over all sites 'j' of these 2 states per site; 

hence, for a lattice of length L we have a 2L dimensional space of 

states. We next construct, using these states, a subspace having half 

as many states. To do this we define two states, associated with each 

block 'p'. 

I$> z 1 
I+ 2p+l> + a(EolAo) 1-f 2p 2p+l> -f 

v 1 + a2(Eo/Al) 

and 

I’ - fp> = ; I+2p+p+1> + 1+2p+2p+1> ( ) 
(3.2) 
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and then forming the 2L'2 states which can be made by taking arbitrary 

tensor products of these two states per block. The next step is to 

compute matrix elements of H between arbitrary states of this type. In 

this way one obtains a truncated or effective Hamiltonian of the form 

eff 
H1 

where, by definition 

O,(P) I+;> f I+;> , 

az(P)l+p> E - Is;> , 

and 

ox(P) 

o,(p) 

Ibp> = Isp> , 

Ibp> = I.Ep> , (3.4) 

(3.3) 

and where C 1, cl and Al are given in terms of E o, A0 and a(Eo/A,) by 

the equations. 

- Ao(l - a0)2 / (1 + ai) 

Al 5 
Ao(l + a0)2 

2(1 + a:) 

EO(l - ai) + Ao(l + ao) 2 

cl= 2c - 
0 

2(1 + ai) 1 (3.5) 
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and a 
o-- 

= a(Eo/Ao) is for the moment an undefined function of y 
0 = (E~/A~) . 

Clearly, the lowest eigenvalue of H 
eff 
1 is an upper bound on the lowest 

eigenvalue of H in (3.1). This procedure is carried out iteratively 

until E or An becomes sufficiently small that the Hamiltonian, H eff 
n n' 

can be exactly diagonalized or well treated perturbatively. The best 

"two level" truncation scheme calculation is based upon the observation 

that we get a different renormalization group prescription for each 

choice of the function a(y). Hence, we can choose some parametrization 

for an arbitrary function of this form, compute the bound on the ground 

state energy density obtained for a given choice of parameters--where 

this bound is nothing but to 

B(a(y)) E lim 
! ) 

-b 
2n n 

(3.6) 

and then vary the parameters defining a(y) so as to obtain the best 

bound. The explicit form of a(y) used to obtain the results in Table 1 

was 

(3.7) 

where ~1, g were the two variational parameters. 

B. The Multistate Calculations: Naive Truncation Scheme 

With the discussion of Section 3A behind us it is simple to define 

the general multistate calculation. It proceeds in a similar fashion. 

First one blocks the lattice into units of length Lt3 by letting 
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j = LOP‘+ r, r = O,..., L 11. In general there are 2 Lo 
states associ- 

0 

ated with each block and a basis for the full Hilbert space of the 

theory is obtained by taking tensor products of these individual block 

states. The first step of the calculation is to choose some number, 

say M, states out of these 2 Lo 
states and compute H eff 

1' This leads to 

a Hamiltonian of the form 

eff Hl = Cl I+ + C2;4ass(P) + s~(P)QP+ 1) 1 (3.8) 

where 3 pY x&(P), S;(P) and S:(p) are M x M matrices. The columns in 

Table 1 labeled "naive truncation calculation" are produced by pairing 

sites, i.e., letting p = 2R f r, r - 0, 1, choosing for block 'RI--the 

lowest M eigenvectors of 

.ce(a) = i ( 
c2 ZG&(2R) + Xs(2") + 1) - $2&)$(2!Z + 1) (3.9) 

) 1 

out of the M2 eigenvectors in this block, eff and truncating c;Ce, to the 

subspace spanned by tensor products over these states. Evidently, this 

sort of calculation is carried out by means of a computer and, referring 

to the Table I and II we see that keeping eight states per block results 

in considerable improvement in accuracy over the two site "variational 

renormalization group equation." However, one can do still better by 

folding the 2 state variational renormalization calculation results into 

the multi-state calculation and the results in the last three columns 

of Tables I and II and in all of the other Tables and Figs. 3-11 show 

the results of the calculational scheme, to be described in Section 3C. 
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C. Multistate Calculation - A Hybrid Technique 

The calculations to be described in this section allow us to com- 

bine the best attributes of the preceding set of calculations with no 

appreciable increase in labor. It does not take much thought to realize 

that this is a desirable thing to do since on the one hand the multi- 

state calculation is myopic, in that it treats the physics of short 

distances very well but does not allow a great deal of feedback of 

effects that are important for a very large number of sites into the 

short distance calculation; and, on the other hand the two level varia- 

tional renormalization group scheme sacrifices accuracy in the treat- 

ment of short distance effects in order to maximize the effects of long 

distance physics. Clearly, the two calculations provide complementary 

information. 

Before going on to describe the hybrid calculation it is worth 

pointing out that the intuitive notion that the naive multistate calcula- 

tion and two level variational renormalization group calculation provide 

complementary information can be reasonably well quantified. This is 

because the theory specified in (3.1) can be transformed to an equiva- 

lent spin l/2 theory for which the roles of so and Ao are interchanged. 

This is the familiar duality transformation in which one defines new 

spin operators 
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j-l 
sx(j) = n (-$ 

i=--m 
a,(i) 

Sz(j) = - u,(j - 1) u,(j) (3.10) 

and rewrites H as 

H = Ao x 
j 

+ o,(j) - o,(j) ax(j +I> 

(3.11) 

where 

It is clear that the ground state energy of either the Hamiltonian 

depends only, up to an overall scale factor, on the coefficient of the 

o,(j) term; it follows that, 

Eo(yo) = % Ep (4/yo) (3.12) 

This formula is satisfied by the exact solutions for Eo(y> and in gen- 

eral is poorly satisfied by simple approximation procedures. In Fig. 1 

the solid curve is the plot of the exact ground state energy as a func- 

tion of y 
0 

and the-~dashed curve is a plot of the two level variational 

renormalization group calculation of this quantity. It is clear that this 

calculation is better for the region y c 2 than for y > 2. InFig. 2we 

see a comparison of the results of a naive g-level truncation calcula- 

tion with the curve which would be obtained using Eq. (3.12) to reflect 
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results of the two level calculation for y < 2 to y > 2. As is clear 4 

from Fig. 2 the g-level calculation for y > 2 very nearly approximates 

the results obtained by dualizing the results of the variational two 

level calculation for y < 2. Since the duality transformation (3.10) 

interchanges order and disorder variables--or short range and long 

range information--we see in highly graphic form that the two types of 

approximation procedures provide complementary information. The next 

problem is to combine them so as to get the benefit of both types of 

information. 

This is easily accomplished. In the tables and pictures to follow 

the explicit results we present were obtained from a straightforward 

procedure which began by combining sets of four sites into a single 

block and keeping only a set of 6, 7, or 10 states out of the 16 possi- 

ble states per block in order to initialize our multistate Hamiltonian. 

The particular 6, 8, or 10 states were chosen according to an algorithm 

which differed in our important way from the naive truncation algorithm: 

namely, if we decided to keep 2N states, then only the first 2 (N-l) of 

these states were chosen to be the lowest eigenstates of the block Hamil- 

tonian. The remaining two states are chosen so that one can,by forming 

linear combinations of the 2N states, generate the states I+'> and I+'> 

which one would have generated after two iterations of Eq. (3.2) and 

(3.5) and using the form of a(y) given in (3.7). To be precise; one 

first forms the states (for block 'p') 



(3.13) 

where 

a 
0 

= a(co/Ao) ; al = a(cl/Al) 

and c 
1 

and A 1 are given in terms of soand Ao by Eq. (3.5); one then 

Gram-Schmidt orthonormalizes the set of 2N states obtained by adjoining 

the states in (3.13) to the set of 2 (N- 1) lowest (four even and odd) 

eigenstates of the Hamiltonion for block 'p'. This set of states has 

the virtue that it contains all the information carried in an iterative 

2(N-1) naive truncation procedure and also one has kept all the states 

needed to construct the two level variational wave functions at the 

next step of the calculation. The iteration procedure is to block this 

effective lattice theory having 2N-states per site into block of 2-sites 

or 4N2 states, i.e., let p = 2r + s, s = O,l, and diagonalize the 

resulting 4N2 
-2 

x 4N matrix. One then truncates the 4N2 states to 2(N-1) 

states ((N- 1) - even and (N - 1) - odd levels) and then one once again 

adjoins the states needed to span the vectors 
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1”> = 
d-k- 2 ( I+;, j;,tg + 3 Ifir +;,+,,) 

2 

(3.14) 

where 

a2 = a(E2/A2> 

and E 
2 and A 2 are defined in terms of a 

1' &l' 
and A, by the obvious 

generalizations of (3.5). Since, at each stage we are carrying along 

the ability to reconstruct the two level variational groundstate wave- 

functions, this procedure guarantees that we will get a groundstate 

energy that is lower than either the 2(N-1) naive truncation answer or 

the two level-variational calculation. Moreover, considering the 

results shown in Figs. 1 and 2, the answers should be considerably bet- 

ter in terms of self duality. This is in fact borne out in the calcu- 

lations which have been carried out for the cases 2N= 6, 8, and lO-- 

and the results are shown in the tables and figures which follow. 

4. Discussion of Results 

There is not much that needs to be said about the tables and figures 

that follow; they--essentially speak for themselves. The purpose of 

Figs. 3 - 11 is to show how good the analysis of the model is for all 

values of y 5 e/A when one keeps 10 states at each iteration. Figures 12 

and 13 are included to give a feeling for how the accuracy changes as 

one adds additional states. In all figures the plotted points represent 
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the results of independent calculations done by means of the same algo- 
-c. 

rithm for each value of 'y '. 0 This is important since none of these 

calculations are based upon an extrapolation of a perturbation expan- 

sion, and--at least to our minds--it is astonishing how accurate such 

an apparently crude approximate scheme can be made. The solid curve in 

Fig. 3 gives the result of the exact calculation of the ground state 

energy density. The same information is obtainable from Table I where 

one can also see what kind of increases in accuracy result from adding 

2 states at a time. The solid curve in Fig. 4 is a plot, not of the 

1 exact magnetization, i.e., 7 c 
j 

<oz(j)> as a function of 'y', but 

rather it is a plot of the functional form of the exact answer. 

1 
E 

l/8 

v <ax(Y)> = 1 - (Y/Y,) 2 (4.1) 

for the calculated value of y, = 2.08 instead of the exact value which 

isy =2. 
C 

The fit is remarkably good, except for the error in the 

critical point. Perhaps one of the most striking curves is Fig. 5 

which is' a2Egl ay2. Once again the solid curve is the exact answer 

plotted for the wrong value of y 
C’ 

i.e., 2.08 instead of 2. Apparently, 

the point by point calculation has no trouble reproducing a reasonable 

fit for the true logarithmic singularity over a large range of coupling 

constant. This result is the first indication that the scheme'is doing 

more than producing a good value for the ground state energy density, 

since this quantity requires a reasonably correct treatment of the den- 

sity of states factors. The next three curves provide further support 
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for this picture in that they compare the exact (yc=2) calculations or 
- 

the nearest neighbor correlation functions 

1 
Ix 

v a 
<ux(j)ox(j +I)> , + x 

a 
<oy(.j)uy(j + 1)) 

and 

1 c 
’ a 

<uz(j)oz(j + 1)) 

against the approximate calculations. Once again, the agreement is sur- 

prisingly good given the crude nature of the calculation scheme; and 

once again, these quantities are related to getting more than the ground 

state energy correctly. As a further test of this question one compares 

the direct computations of the mass gap of the theory above yc= 2 with 

the exact prediction; here one sees that one does quite well except in 

the vicinity of the critical point. Figure 11 dramatically shows that 

keeping more states is most important in doing well in this quantity 

and therefore pinning down the exact location of the critical point. From 

Fig. 10 we see that although keeping more states only modestly improves 

the ground state energy, even two extra states pay large dividends in 

computations of the mass gap. The tables allow one to get a more quan- 

titative feel for the results summarized in the various figures. 
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Conclusions 

We feel that these calculations show that the small errors in the 

properties of ground state wave function which make the variational two- 

level truncation scheme inaccurate are probably correctly identified as 

due to the effective "surface terms" introduced by the truncation pro- 

cedure. Moreover it is clear that the strategy suggested by the example 

of the free field, namely keeping more degrees of freedom per block, 

rapidly pays off in significant improvements in accuracy. Neverthe- 

less, we are surprised by how well the crude calculational scheme of 

this type can do, and it would be very interesting if further studies 

of this sort could provide a firmer understanding of why it works so 

well. Even in the absence of this information it is clear that the 

scheme can provide the basis of a systematically improvable method for 

analyzing the properties of quantum lattice theories. 
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Table I 

GROUND STATE ENERGY DENSITY FOR VARIOUS VALJES OF y = c/a, CALKULATED BY DIFFERENT METHODS 
4 

2 Site 8 State 
Energy Exact Simple 2 Site Simple 
Density Solution Truncation Variational Truncation H6 H8 H 10 

0 -1: -1 -1 -1 -1 -1 -1 

.4 -1.010025 -1.0028 -1.010012 -1.00817 -1.0100 -1.0100125 -1.0100187 

.8 -1.040417 -1.01562 -1.040197 -1.03391 -1.0401984 -1.04020200 -1.040196 

1. -1.063544 -1.03153 -1.062978 -1.05406 -- -1.0629915 -- 

1.8 -1.216001 -1.16934 -1.207562 -1.1952 -1.20816 -1.20818 -1.2081956 

2. -1.27324 -1.22402 -1.257837 -1.25166 -1.25913 -1.259868419 -1.260134 

2.2 -1.342864 -1.2872 -1.131425 -1.32314 -1.31839 -1.32030 -1.32555838 

3. -1.671926 -1.61484 -1.61612 -1.65648 -- -- -- 

3.2 -1.760508 -1.70581 -1.70667 -1.84584 -1.74101 -1.741507 -1.747104 

4. -2.127089 -2.08095 -2.081156 -2.11487 -2.11118 -2.111389 -2.1161878 



Y 

0 

.4 

.8 

1. 

1.6 

1.8 

2. 

2.2 

2.4 

2.6 

2.8 

Table II 

MAGNETIZATION, $ 
j 

<o,(j)>, FOR THE SAME VALUES OF y CALCULATED BY SEVERAL METHODS 
j 

1 

.9949 

.9792 

2 Site 8 State 
Exact Simple 2 Site Simple 

Solution Truncation Variational Truncation H6 H8 H 10 H 10 , 

1 1 1 1 1 1 1 

.99491 .981175 .994946 .99175 .9949 .9949 .9949 

.97844 .932368 .979195 -9667 .9791 . .979 .9792 

.96468 .898863 .966766 .94657 -- .9663 -- 

.88011 .759089 .905799 .83135 .8996 .8991 .9024 

.81254 .695192 .87458 .74653 -- -- -- 

0 .617524 .834992 0 .7991 .7798 .7483 

0 .517748 .783132 0 .01876 -- %0 

.370587 .710488 0 'LO QO QO QO 

.006761 .589951 0 QJO QJO QJO QJO QJO 

0 0 0 0 QJO $0 $0 

.9024 

-- 

.7483 

%O 
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2.2 

2.4 

2.8 
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3.6 
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Table III 

GAP TO FIRST EXCITED STATE FOR SAME VALUES OF y FOR SAME SET OF CALCULATIONS 
b 

Exact 
Sol&ion 

0 

0 

.2 

.4 

.8 

.889 

1.6 

2 

0 

0 

0 

.091255 

0 0 .279496 

0 0 .47269 

.39594 .21329 .865984 

.d2186 1.291157 1.2857 

1.3427 1.30423 1.68605 

1.7793 1.75378 2.08235 

H6 

0 

0 

.080925 

.3879 

.8761 

1.19354 

1.6895 

2.0909 

H8 

-- 

.7752 

1.26033 

1.6039 

2.0108 

H 10 

0 

0 

.186855 

.41901 

.846779 

1.665981 

2.06819 



1 
V c <ax(j)ax(j +l)> FOR SAME VALUES OF y, CALCULATED BY THE SAME METHODS f 

j 

Exact 
Y Solution H 6 H8 H 1-C 

0 1 1 1 1 

.8 .95872 .95949 .958572 .9596 

1.6 .81256 .8856 .820244 .833924 

2 .6366 .7285 .678385 .598118 

2.2 .53032 .521475 .517788 .530175 

2.8 .385996 .35997 .359447 .382808 

3.2 .330596 .314026 -313516 .328424 

4 .258656 .250674 .250323 .2575 

- 



Table V 

L c 
v a 

<oy(j)oy(j+l)> FOR THE SAME VALUES OF y 

Exact 
Y ! Solution H6 H8 H 10 

0 0 0 0 0 

.8 .020866 .022308 . .029666 .013988 

1.6 -099213 .105604 .120316 -0605285 

2 .21221 .193949 .22224 .138307 

2.2 .27070 .339289 -329199 .264582 

2.8 .27922 .307754 .306941 .280036 

3.2 .26217 .280631 .279968 .262937 

4 .22519 .234295 .233059 -2255 

- 



Table VI 

L 
V Iz <oz(j)csz(j+l)> FOR THE SAME VALUES OF Y 

Exact 
Y Solution H6 H8 H 10 

0 0 0 0 0 

.8 .061728 .0628168 .071083 .053?25 

1.6 .27782 .27781 .29961 .224331 

2 .54038 .487454 .539943 .428475 

2 .68929 .800405 .792558 -693524 

2.8 .84148 .023122 .920878 .853846 

3.2 .44536 .944067 .94249 e 895549 

4 .93100 .965678 .964919 .9378 
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Fig. 1 

Fig. 2 

Fig. 3 

Fig. 4 

Fig. 5 

Fig. 6 

FIGURE CAPTIONS 

The solid line is a graph of the exact ground state energy 

density of the theory as a function of y = co/no. The dotted 

line is the result of the two level variational renormalization 

group calculation. Note the results are better for y < 2 than 

for y > 2. 

The solid line is the exact ground state energy density as a 

function of y = ~o/Ao. The dotted line is the dual of the 

curve in Fig. 1 calculated for y I 2. Note the improvement in 

behavior for large y. 

The solid line is the exact ground state energy density, the 

points are the results of the ten state hybrid calculation . 

The solid curve is the exact analytic form of the magnetization, 

<ux> = + C <a,(j)>, plotted as a function of (y/y, = 2.08) 
u 

instead of (y/2). The circles are the results of a point by 

point hybrid calculation. 

The solid curve is the analytic form of the second derivative 

of the groundstate energy density as a function of y plotted 

for Y, =~2.08 instead of the exact value y, = 2. The circles 

are results of the hybrid calculation. 

The solid curve is the exact nearest neighbor correlation func- 

tion + c <ux)j) ox(j+l)> (i.e., y, = 2), the circles are 

results of the hybrid calculation. 
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Fig. 7- The solid curve is the exact value of $ 
j 

<oy(j)uy(j + I)> 

? 
versus yLeo/Ao. Open circles are the results of the 10 state 

hybrid calculation. 

Fig. 8 The solid curve is the exact form of $ x 
a 

<oz(j)oz(j + I>>, 

open circles are the results of the lo-state hybrid calculation. 

Fig. 9 The solid curve is the exact value of the mass gap to the first 

excited state as a function of y = so/Ao for y > z. Open cir- 

cles are the results of our approximate calculation. 

Fig. 10 A comparison of several different hybrid calculations for the 

ground state energy density with the exact answer. 

Fig. 11 A comparison of two different calculations of the mass gap 

with the exact solution. 
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