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ABSTRACT 

The operator product expansion, of appropriate products of quark 

fields, is used to find the anomalous dimensions which control the short 

distance behavior of hadronic wave functions. This behavior in turn 

controls the high Q2 limit of hadronic form factors. In particular, we 

relate each anomalous dimension of the non-singlet structure functions 

to a corresponding logarithmic correction factor to the nominal as(Q2)/Q2 

fall off of meson form factors. Unlike the case of deep inelastic 

lepton-hadron scattering, the operator product necessary here involves 

extra terms which do not contribute to forward matrix elements. 

- 
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In this paper we shall show how the operator product expansion 

links-together two critical testing grounds of quantum chromodynamics 

(QCD> : the evolution of the moments of the deep inelastic structure 

functions and the short distance structure of the hadronic wave functions 

which appear in large momentum transfer exclusive reactions. In parti- 

cular, we shall be able to relate the anomalous dimension y, of the n-th 

non-singlet operator that appears in the description of deep inelastic 

lepton-hadron scattering to a corresponding logarithmic correction 

factor (an Q 2 2 -Yni261 /A ) that multiplies the nominal es(Q2)/Q2 fall off 

of (helicity zero) meson form factors. In fact, each anomalous dimension 

is associated with a specific Gegenbauer moment of the lowest qi Fock 

state component of the meson wave function (q stands for quark, 4 for 

anti-quark). Here Bl is defined by B(g) = -81g3 + O(g5), and yng2 is 

the anomalous dimension of the n-th non-singlet operator appearing in the 

expansion of two currents (in the leading contribution to forward matrix 

elements). A is the renormalization group invariant scale, and 

as(Q2) = 1/[4nB,log(Q2/A2)] with 6, = (l/16T2)(11-2/3n,) (nf is the 

number of quark flavors). 

The general result in QCD for the electromagnetic form factors 

of hadrons at large momentum transfer is (Q2=-q2= -t> C1,2,3,41 

where n= 2 and 3 for mesons and baryons, respectively. For mesons, the 

yk are equal to the yk that appear in the moments of the non-singlet 
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structure functions. The quantity m2/Q2 represents mass effects (target 

mass, transverse motion, etc.). This result holds for all elastic and 
- 

transition form factors where the constituents have zero orbital angular 

momentum along the hadrons' direction of motion, and the hadronic helicity 

is conserved and less than one (zero for mesons, one half for baryons); 

otherwise the form factor is suppressed by additional powers of QL (with 

new powers of Iln Q2/A2). For mesons, the leading k=O term in eq. (1) 

has y. =yo=O and is normalized to the M + La electromagnetic or weak 

decay amplitudes (a++u+v for n+ form factor C5l and o'+e+e- for p + 

form factor). In the case of baryons the leading k= 0 terms have To = 

(Wh2) (4/3), and the ratios of the asymptotic form factors are given 

by the SU(3) of color and the flavor group symmetry. 

Following Ref. Cll, we can write the hadronic form factor to leading 
I 

order in c,,(Q2) as (see fig. 1): 

1 1 

~(42) = 
J / 

'dxl 'dy] Of(Xi,Q2) T,(Xi,Yi,Q2) ~(Yi,Q2) 

0 0 

(2) 
where x i = (k"+k3)i/(po+p3) is the longitudinal (light-cone) momentum 

fraction carried by the i-th constituent and Cdxl = dxl... dxn6(l-$lXi)' 

Equation (2) is obtained in the standard light-cone frame where the 

incident hadron and virtual photon momenta are (pf=po? p3) 
- 

pv = (P+,P-+ = 
( 

+ m2 + 
P ,,,Ql 

P ) 

qp = (s+,s-+ = (0, y 2iJ 

with q2 = -;: = -Q2. 
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The hard scattering amplitude TH is defined as the amplitude for 

the form factor where each hadron is replaced by collinear valence quarks. 
- 

The dominant momentum transfer occurs in TH, and to leading order in 

as(Q2) it has the form Cl,21 (fig. 1) 

n-l 

TH = f (xi,yi) (3) 

The "quark distribution amplitude" $(xi,QL) in eq. (2) is the amplitude 

for finding n-valence quarks which are collinear up to the scale Q': 

$(xi,Q2) = (log ~~"'2~'/~~d2~~i)~(Q2-~~(i))}~(2)(~~~j))*(xi,~~i)) 

(4) 

+(i> where Y(xi,kL ) is the positive energy projection of the Bethe-Salpeter 

wave function on the null plane, 

-t(i) ‘M(Xi,kL > N F.T.C<O 1 W(+h2) 1 M>] + + 
zl= z2 

(5) 

YB(Xi, y > - F*T*[<O 1 T$(zl)$(z2)$(z3) 1 B>] + + + (6) 

'1='2='3 

(F.T. stands for Fourier transform (see eq. (14)) and $ are the quark 

fields). The factor (log Q2/A2) 
-nyF/281 

in eq. (4) is due to the vertex 

and propagator corrections to TH (see fig. - 1); both TH and @(xi,Q2) have 

zero anomalous dimensions becausethis factor is included here rather than 

in eq. (3). Note that in general yF, the anomalous dimension of the 

quark field, is gauge dependent. In the analysis presented here we 

shall work in the light-cone gauge [63 A+=n*A=O, although the final 

results are gauge-invariant. 
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For mesons the behavior of $(xi,Q2) at fixed xi as Q2+m is 

dominaled by the behavior of 'the operator T$(z)$(O) for z'=-zf= 

0(1/Q 2 ) + 0. This light-cone region can be studied using the usual 

operator product expansion. Despite the fact that $(z)$(O) is not 

itself gauge-invariant, it is interesting that only gauge-invariant 

operators actually contribute to the matrix element in (5) evaluated 

in light-cone gauge. To see this, ignore external derivatives for the 

moment and note that T$(z)J(O) h as an operator product expansion of the 

form 

T$(z)$(O) - cn(z2-is) T(i) z 5 . ..z 
n 

+ c Cnm(z2-is) r(i) z 5 . ..zUn z ‘1 “m . ..z 
n,m 

(7) 

where the I'(~) are the 16 Dirac matrices. In general Fnm#O since 

$(z)?(O) is not gauge-invariant. However, for the matrix element 

<0 1 T$(z)$(O) I T> each operator Av always leads to a factor of nv 

(p7T* and 11 
V 

are the only available 4-vectors, and A+=0 rules out 

P TTv since pz# 0). Since n l z=z+ =0, no operator which explicitly 

contains Av can contribute to the meson wave function (5). .This 

leaves only the standard operators ;j;r?? -% l-y** n (and their external 

derivatives, as discussed below) in the operator product expansion. 

It is also for this reason that only the qi wave function is required in 

eq. (2) for the leading power behavior. 
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In general the functions f(xi,yi) in TH are singular at the end- 

points- of the xi and yi integrations. If the wave functions $(xi,Q2) 

were constant, then the integration in eq. (2) would diverge logarithmi- 

cally for the meson form factor. However, the hermiticity of the 

kinetic energy operator cC(k; 
i 

+m2)/xli for a composite state guarantees 

that +(xi,A2) N (l-xi)s 2 with E > 0 as xi-+1 for any A . This ensures that 

the meson form factor in QCD is not dominated by the endpoint (large 

distance) region of the x. integration, and that the short distance 1 

domain of the operator $5 controls its asymptotic behavior C7l. Further, 

the compositeness condition ensures the existence of the evolution 

equations derived in ref. 1 and the convergence of the polynomial 

expansions for $,(xi,Q2) as in eq. (20) * 

It is important to observe that the large Q2 behavior of the non- 

singlet structure function moments is controlled by the same singularities 

which appear in eq. (7) for helicity zero mesons. Indeed, aside from 

flavor factors, the same operators Q 
Cd 

dominate the operate expansions 

of $W2)7x-d2) and Ju(z/2)Jv(-z/2): 

c cn(z2-iszo) c r%, 
o1 .-*a a 

$Wsi2-z/2) N . . .z a n m2n 1 um'(n)(i)m (*) 

and 
a 

J,,(z/2)Jv(-zk) N 
"'ama 

1"' za "4(1!~)(i) m (9) 
where 

,(i) = ‘a 
a i 

t ‘a’5 

i=l 

i=2 

(10) 
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(11) +s g 
,(i) 

gvagp B vB pa - gpvgaf3 (F1 J2) 

JJvaB = 
h 

EwaB 
(F3) 

and CSI 

6";'; i-7 = 2 dmnk aak+l.. .aam T(O) ryi) +qa,. . .vak Q(O) . (12) ni k=O 

Only p(2) a is relevant for the pseudoscalar meson wave function, and only 

p 
a contributes to the helicity-zero vector mesons wave function. The 

anomalous dimensions of @ (n) (1) and @(n)(2) are the same. The overall 

factor of (l/22)2 in eq. (9) is due to the canonical dimension of J J ; 
?JV 

as defined here, both cn and zn have zero canonical dimensions. 

The distinguishing characteristic between the moment and wave 

function analyses is just the difference between forward and non-forward 

matrix elements, respectively. For the moments, the forward matrix 

element <p ( JvJv I p> has contributions only from terms having no external 

derivatives (i.e., one term for each n with m=n=k). In contrast the 

wave function receives contributions from all terms in eq. (12). Fourier 

transforming eq. (8) we obtain the distribution amplitude Ceq. (4)1 

6(X,,Q2) = C an $,(xi) 
n=O 

(13) 

Since $(xi,QL) was defined to have no overall anomalous dimension, the 

yn appearing here are just the anomalous dimensions of the operator @ (4 ' 
. I.e., precisely the anamolous dimensions controlling the moments of the 

al...ama 
non-singlet structure function, where <p (d 

(4 (1) 1 P> cC 

ul +-+"n <p 1 $y"v . ..D VJlP>. 
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The functional dependence on xi in eq. (13) reflects the fact that 

the q and 4 do not have the same light-cone momentum fractions in the - 

non-forward matrix element. Explicitly (x E x1-x2) 

2 -t -t 

YM(xi,Cl) E 
/ 

dz 1 -ikL*z 1 - e 
16~1~ / 

dz- e(i/2)xz-p+ 

x <o I T 7k/a p+Ow2) 1 P> ( ,+= o 

where 

= z qi$ c / a mn 
dz- e(i/2)xz-P+(p+z-)m 

n rn>n 
(14) 

n 

a = c d mn k=O mnk bk 

and bk is the normalization factor in 

co 1 V(o) hi) 3 . . .3 a '1 "k 
~(0) I p> = bk 

The large kL behavior of the (gauge-dependent) 

is then given by eq. (14) where 

Pati**PuP ' 
k" 

(15) 
1 

Bethe-Salpeter equation 

- 237) /231 

(16) 

To one-loop order the conformal invariance of the theory at short 

distance is broken only in the singular functions En and not in the 

coefficients a mn of eq. (14). Thus in leading order these coefficients 

can be determined using conformal invariance and are independent of the 

details of the theory. In particular, we can use the following result 

derived in refs. 9 and 10 for scalar field theory: 
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m 1 

x amn(p+z-)m 0: +-n (p z ) e-(i’2)p+z- 
s 

du [u(~-u)]~~' eiup+'- 
vn 

0 
(17) 

Combining eqs. (14) and (17), we get 

y(x,+ N Cd, Cn(g;) an (l-~~)~+l . 
n a2 

Here 

an (1-x2)n+l 
a2 

Oc (1-x2) C3n'2(n) 

(18) 

(19) 
where the C312 n (x) are the Gegenbauer polynomials. The distribution 

amplitude of eqs. (4) and (13) is thus 

2 
~M(Xi,Q > = x1x2 n an Cn c 

3/2( 
x1-x2) (20) _ 

in agreement with the evolution equation derivation given in ref. Cll. 

The coefficients an in eq. (20) are the matrix elements of the 

local operators appearing in eq. (15). In particular the coefficient a0 

of the leading term (n= 0) for pions is proportional to 

<0 1 $(0)yPy5(r+/2)$(O) I V> = f,pP, where fV is determined by the decay 

rate for nrpv. Thus the leading term is completely normalized [S]. 

Similarly, the decay o'-+Q? can be used to normalize the asymptotic 

distribution amplitude and form factor for helicity-zero p-mesons [ll]. 

For the transverse p, the local operators are built on the spin-flip 

operator $oa8(r+/2)+ in analogy to eq. (12). Since the anomalous 
,. 

dimension of ToagJ' is 2yF where qF = CF/16~2, the factor (an Q 2 2 -$/@I /A ) 

will appear in the asymptotic form factor. More significantly, the 
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corresponding hard scattering amplitude TH vanishes with an extra power 

of mfabecause of the necessity for helicity-flip. 

The asymptotic behavior of the baryon form factors can similarly 

be calculated in terms of the anomalous dimensions of towers of operators 

based on three quark operators C12l. Again, asymptotically it is the 

operator with the least number of derivatives which has the lowest 

anomalous dimension. In this case it is iF/Bl for the helicity l/2 and 

3qF/Bi for the helicity 3/2 baryons. Notice, however, that the integra- 

tions over the light-cone momentum fractions in eq. (2) would diverge 

linearly if the wave function were replaced by a constant. Since compo- 

siteness only insures that @(xi) ~(1-x~)~ as xi+1 for E> 0, endpoint 

singularities are possible, and the proof of the short distance dominance 

of the nucleon form factor is more subtle. However, as shown in ref. Cll, 

each leading twist contribution to the operator product expansion for 

@@/J leads to a contribution to $,(xi,Q2) which is of the form x1x2x3 

times a polynomial. The sum of such terms is convergent and yields a 

wave function $,(xi,Q2) which vanishes as (l-xi) 24(Q2> where 6(Q2) 

vanishes monotonically as Q2+m c131. Thus the region of finite xi 

yields a contribution to the form factor which is dominated by the 

short distance domain. There remains the potentially dangerous region 

where some of the x _ i are infinitesimally small, e.g., x2,x3 N O(m/Q). 

A detailed analysis shows that this kinematic region is suppressed by 

at least two powers of as(Q2). Such contributions correspond to quasi- 

on-shell quark scattering with k2 N O(mQ> and are further suppressed 

by a Sudakov-type form factor at the photon-quark vertex 1141. 



Thus the baryon form factor in QCD, like the meson form factor, 

is not dominated by the endpoint region in the xi integration, and the 4 

short distance structure of the operator products controls the asymptotic 

behavior. 

In this letter we have shown that the results obtained previously 

Cl] for the form factors of hadrons, can be quite naturally understood 

in terms of the operator product expansion. In particular, we see that 

the exponents which appear in eq. (l), which originally were obtained 

by solving the bound state equations explicitly, are just the anomalous 

dimensions of familiar operators. 
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FIGURE CAPTION 

Fig. l(a). Meson form factor. 

l(b). Baryon form factor (+ . . . stands for all other connected 

Born graphs). 
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