
SLAC-PUB-2456
January 1980
(M)

THE BABEL OF APPLICATION DEVELOPMENT TOOLS+

John R. Ehrman
Manager, User Services

SLAC Computing Services (Hail Bin 97)
Stanford Linear Accelerator Center

Stanford, California 94305

ABSTRACT

A major barrier to achieving productivity in the development
of all programming applications is the poor quality and excessive
number of tools that must be used to get the job done. Host at-
tempts to find, measure, and eliminate productivity bottlenecks
have focused on only one of these tools, namely higher-level lan-
guages. An example of such an attempt is the recent concern with
Structured Programming.

It is the thesis of this presentation that in order to produce
even a simple program, a programmer must know on the order of a
dozen distinct languages. These languages are incompatible, have
idiosyncratic syntaxes and mediocre diagnostics, and are often
the biggest stumbling blocks in the way of rapid program develop-
ment. A simple programming example is used to illustrate these
points.

- (Submitted to Datamation Magazine)

J(Supported by the Department of Energy under contract DE-AC03-76SF00515.

(Originally prepared for presentation at the SHARE-GUIDE-IBM Application
Development Symposium, Monterey, CA., October 15 - 17, 1979.)

-2-

1. OVERVIEW

1.1 INTRODUCTION -se--e--e-

It is well known today that the rapidly falling cost of compu-
ter hardware is making the increasing cost of software more and
more prominent as a factor in the development and maintenance of
computing applications. Hence, increasing the usability and use-
ful lifetime of programs and the productivity of programmers have
become major concerns throughout the data processing industry.

1 contend that we have done little to enhance the productivity
of programming personnel, or to help them improve the quality of
what is produced. In fact, we seem to be making the job of pro-
ducing long-lasting application code harder even as we try to
simplify it. While this may seem to be a contradiction in terms,
I believe I can demonstrate hov and why this situation is occur-
ring, and vhat can be done to alleviate it.

1. One significant barrier to increased productivity is
that an *'average" application programaer must knou on
the order of a dozen different languages in order to
create and maintain an application. The nulaber of such
languages is not decreasing.

2. I believe the problem will continue to get worse, The
widespread use of micro-programmed devices means that
the number of "language-like" interfaces is increasing,
and that they have an ever greater variety of styles.

3. The growing number of user interfaces is making it
harder to combine new and old application programs to
form larger and more general ones.

4. We must no longer optimize the usage of computer re-
sources at the expense of human resources.

I believe these problems might be alleviated by a change in
the way we view the application process: we should eliminate the
artificial languages and replace them with a subset of normal
English.

In addition to its normal meaning, I will use the term "lan-
guage" to mean any interface between a computer and its user that
requires the user to learn and understand the peculiarities and
details of transactions across that interface.

I will illustrate these points by following a typical program
development process through a series of steps.

2.1 THE PROGRAIY DEVELOPMENT -- -m-e-- ---e---w PROCESS -e--m-

-3-

2. AN ILLUSTRATIOP OF THE PBOBLEB

Suppose you erssigned one
call Flo coder) to the task-of

of your programmers (whom we will
implementing a new system to main-

tain a file of data relating to Cwl an inventory of parts in-
portant to your business. The programmer was to devise the
structure of the file containing the data, the layout of the re-
ports to be produced from the data file, the organization of the
program, and so forth. Let us follow her on an imaginary path
leading toward (not necessarily to) the solution to the problem.

2.2 THE PROBLELS --- ----e-e DEFINITION --w-w-

First, Plo sat down with the people who requested the program
be written, and derived a detailed specification of all the re-
quirements the program was intended to satisfy. Since the program
was expected to be small, and the programming effort limited to
one person, the specifications could be written out and under-
stood in a relatively small number of pages. (This is in marked
contrast to some large software projects involving hundreds of
programmers, analysts, and supervisors: planning and controlling
such large projects requires large and complex computer-based
systems just to help specify and track the phases of the job.
This example is purposely kept simple!)

After looking over the problem specifications and analyzing
them thoroughly, Plo wrote out a set of hierarchically-organized,
top-down structured-programming data flow and HIP0 diagrams.

2.3 THE PROGRABBING LANGUAGE -- w-s---- -------v
-

Flo chose to write the program in PL/X, lince it was the most
general and flexible high-level language available. Part of the
program is shown here:

-4-

r----

1

I

1

I

i
IF (Nub-REBAINING <= REORDER-LEVEL) THEN

DO; PUT SKIP EDIT FILEfREORDERS) 1
(PART-RUBBER, PART-DESCRIP, ORDER-COUNT)
(F (20) v A(401 8 F(f2) 1 ; t

REORDER-COURT = REORDER-COUNT + 1 ;
END; t

4

i Figure 1: Part of a Program i
l-------w- -1

In this example, there are actually two distinct programming
languages being used. The first is the language of statement flow
and process sequencing, the "logical organization w of the code.
(This first language is the one that has been thoroughly scrutin-
ized by devotees of structured Programming. You nil1 observe that
there are no GOT0 statements in the example!)

The second language is what we might call a "formatting and
conversion language". The two middle lines are needed to specify
how the program's internal data must be rearranged and converted
before it can be put onto an external file. Another example of
this second language appears in lines 3 and 4 of the part of the
program where data is to be read into the program:

I- -- ----- 1

I
BHILE (END-PILE = FALSE)

; DO
t

; GET EDIT (PART-NUHBER, PART-DESCRIP, PART-COUNT,
I NW-REMAINING, REORDER-LEVEL, ORDER-COUNT) f

1
(SKIP, ~w p A(321 l (4) ~(8) I ;

END ; f

I---- I_ 4
I Figure 2: Another Part of a Program I
1, J

As in Figure 1, part of the code in this example involves the
mapping of data from its representations and organization on an
external medium into the format and organization it will have in-
ternal to the program.

There is a third language that must be used to specify the in-
ternal data ----w- types and structures to be manipulated by the pro-
cessing logic of the program:

-5-

; i
I DECLARE (PART-NUXBER, PART-COUNT, NUM-REHAINING,

t
REORDER-LEVEL, ORDER-COUNT) FIXED BINARY(31), 1
PART-DESCBIP CHARACTER(32) ; I

I--- --- ------A
I Figure 3: Declaring Internal Variables I

These three examples illustrate the fact that writing a program
requires knowledge not only of an algorithmic language that mani-
pulates the internal data in a prescribed fashion, but also a
knowledge of the external formats and representations of all data
elements, and the special "format w-v conversion" language that
transforms the data between its internal and external formats and
structures. Thus our programmer Flo had to know three distinct
languages just to get the program "down on paper":

i
I Ll.
I
I L2.
I

I
1 L3.
I
I

an algorithmic data-manipulation and statement-
sequencing language;
a f8format conversion" language specifying the structure f
of the external data, and the mapping betWeeA the
external organization and representation of data and I
its internal organization and representation: I
a language for specifying the internal structure of the 1
data elements to be manipulated by the algorithm. I

I

i Figure 4: A High-Level Language is 3 Distinct Languages i L-- -- J

2.4 JOB CONTROL LANGUAGE -- -w--w-- --we

Flo compiled her program and got rid of the errors that the
compiler detected. To try to debug the program by actually exe-
cuting it, Flo had to tell the Operating System uhat she wanted
dOA& This required the use of control statements such as Job
Control Language (JCL):

-6-

//FLOTESTl JOB 'F.CODER,263f',TI~E=(1,30)
//TESTCASE EXEC PLlXCLG,
// PARH,PLl='STMT,NEST,LIST,ETC',

;;
PARX.LKED='RENT,LIST,XREF',
REGION,GO=256K

//PLl.SYSIN DD DISP=SHR,DSN=DEPT23,E2631,CODEB,TESTl
//LRED,SYSLHOD DD DISP=OLD,DSN=DEPT23.E263t,CODBR.LUOD

I /,'GO.INPUT DD DISP=SHR,DSN=DEPT23.E263l.CODBR.DATA

r---------- ~

I Figure 5: JCL Statements i c -- -- 1

JCL is hard to learn even in its "pure" form; in addition,
each installation imposes local JCL conventions and requiremeats.
Learning how to use and code these JCL statements correctly re-
quires a substantial investment of time and effort, Flo wrote the
JCL statements she needed to get her task started (not done!), To
be able to do this, she had to learn both a new language (JCL),
aAd a new set of concepts, to understand the objects to which the
control language refers: the Operating System, its structure, and
its many components.

t---- *
I
t L4. Job Control Language, the concepts and facilities to 1

f
to which it refers, and its "plessages and Codes", t

I
r----- ~-~~ -~
I Figure 6: Another Language: JCL i L ---- -- 1

(A note: I happen to have chosen examples from IB& aanuals or
systems only because I know them best: I'm sure you can find
equivalent examples on your system!)

2.5 PROGRAH LINKING ---e-v V-P

Having gotten the program accepted by the compiler, Flo was
ready to linkage-edit it into a test library from which it could
be run uith some sample data. She found that it was necessary to

-7-

use soxe Linkage Editor control statements in order to obtain the
results she desired, somewhat like the following:

t--- *
1 IDENTIFY ('INVENTORY-AO/FLO CODER/VERO,MOD2') f
I INCLUDE SYSTEB(WODULEA,f'lODULEB)

1
INCLUDE UPDATE(FIXTOC) f
ORDER MAfN,A,B,C,D,E,F

I ALIAS INVENT !
3 SETSSI ABCDEFOl I

f
NAWE INVENTO(E)

i
l- -l
I Figure 7: Linkage Editor Input Statemnts I

Unfortunately, she got some diagnostics from the Linkage Editor
that required getting some help from Joe Veal, the systens expert
next door:

----_I_-
t

****INVENT0 DOES NOT EXIST BUT HAS BEEN ADDED TO DATA SET !
****INVENT IS AN ALIAS FOR THIS BEBBEE? I
AUTHORIZATION CODE IS 0.
**hi3DULE HAS BEEN HARKED NOT REENTERABLE, AIJD NOT REUSABLE. t

.---- -----A
Figure 8: Linkage Editor Output t

Joe explained the way the Operating System handles such matters
as Load Modules,-reusability characteristics, and what is really
meant when the Linkage Editor says that something nDOES NOT EX-
IST". Thus, we find that Flo has mstered yet another language:

-8-

r---- ~~ ~~~~

I i
I L5. The properties, command syntax, and diagnostics of the I
i Linkage Editor, as well as the concepts and notation I
I for describing the storage and manipulation of programs 1

1
in load module format.

I
l- --- -w--m -4
I Figure 9: The Linkage Editor Language I

----a- -- 4

2.6 DEBUGGING AND DIAGNOSTIC TOOLS ---+---- --- ----a-- ----

Having created a workable version of the program, Flo was
ready to test it uith some sample data. Due to various oversights
and ontissians, the program "blew up" in unanticipated ways and
produced a dump of memory. In order to find the cause, Flo had to
correlate the symbolic Assembler-Language-like listing produced
by the compiler uith the hexadecimal machine language code and
data in the dump. Once she had localized the problem to a small
area of the program, she added some extra tests to the code to
try to expose the error condition. Fortunately, she could use an
interactive debugging system that allowed her to trace the execu-
tion of the program on a statement-by-statement basis.

Thus, we find that program debugging requires a knowledge of
three additional languages:

t
I

L6. Absolute binary machine language.
L7. The symbolic Assembler Language for the machine, and :

the conventions of that language that apply to the
program's execution environment. f

L8. The syntax and semantics of the debugging language and 1
the debug-control system.

t
.------I- ------11_------- 4

Figure 10: Debug and Diagnostic Languages I
m--e----- --- 1

While some progress has been made in providing prograamers with
better diagnostic facilities for high-level languages, too much
diagnostic information is still produced in the form of memory
dumps. (IBM's PL/I actually has a robust run-time environment
that rarely dumps. Fortran's is less solid, and COBOL's is
rather wobbly, so on average this example isn't too unfair.)

-9-

2.7 UTILITIES --s-w--

In order to set up different test versions of her programs and
data, Flo had to use a variety of utility programs. Each of
these utilities has its own peculiar control statement syntax and
format. For example, IEBCOPY requires the usual mix of commas,
parentheses, and equal signs, but allows freer format than JCL:

;

1

1
COPY OUTDD=INOUTA

INDD=INOUTE

!
SELECT MEMBER=MA,MJ
COPY O=INOUTB,I=((INOUTC,R),INOUTD)

I SELECT MEHBER=((B,H),(C, J,R),A, (D,K))

L-----
I Figure 11: Sample IEBCOPY Control Statements
L --w---m ---

Similarly, the VSAH Access Method Services language is oriented
toward ease of computer scanning, not for ease of use; its desig-
ner preferred blanks, lots of parentheses, and hyphens:

r-----------

1 REPRO INFILE (SORT -

I
ENV (RECORDFORMAT (F) -

BLOCKSIZE (80) -
I PDEV (3330))) -

1
OUTFILE (NAME)

l- -- -- ------4
I Figure 12: Sample VSAM Access llethod Services Input I

I have actually made a generous grouping of the many distinct and
often very dissimilar "utilityn languages a programmer must use
to complete even a relatively straightforward task. On a typical
OS system, a user needs to know how to use IEBGENER, IEBCOMPB, ,
IEBPTPCE, IEBCOPY, IEHLIST, IEHMOVE, IEHPROGM, and IHBLIST, in
addition to locally-written utility programs.

-lO-

Learning the functions of these program, the objects they ma-
nipulate, and the control statements and JCL to obtain needed re-
suits, requires another substantial investlaent of time and ef-
fort.

r-- 1
I I
4 L9. The properties, command syntax, and diagnostics of the

I
Utilities, and the concepts and structure of the I
objects they Panipulate.

I . . .

i Figure 13: The HUtilities@* Languages i
w-w "8

,So far, Plo had to use nine distinct languages, and there was
still more to be done!

2.8 TEXT EDITXNG e-w- ---w-e

An important program developatent tool ir the text editor. In
fact, it is probably the aost important tool, W-B since it is needed
to manipulate the l*sourcen (character) form of all the other ob- v.
jects, Because it is so fundamental to all progz;mfng tasks, it
should be the easiest to use. ft often is as difficult to use as
any of the other tools: most programmers simply adapt because it . .
must be so frequently used.

i i

1
topfalter 7 af * *
dstring/wea_ther/ I

I getfile double items c 10 25
change /,+// 1 * f ,::

I

i Figure 14: Typical Editor Comands ; ':
-----I_ 8

-ll-

Flo's computing installation was typical.of many others in of-
fering half a dozen or more editors, each with different fea-
tures, different comand syntaxes, and different or inconsistent
command and operand names. Furthermore, these editors use a vide
variety of internal and external representations for the text:
the records may be fixed or variable length, sequence numbers may
or may not be part of the record, the text may be a stream of
characters uith embedded delimiters, and so forth.

r----- 1

I
1 ~10. A set of commands for manipulating data in character I

1
format, and the internal and external representations 1
of that data.

I : &-- -- -- ------I
I Figure 15: The Text Editor Language I L-, -_

2.9 CONNAND PROCEDURES ----- ---w-v

Nost of today$s opgrating systeU& provide some simple form of
command language procedure capability that allows users to col-
lect and combine commonly-used command strings into a single
grouping. Examples are JCL cataloged procedures, TSO's CLIST fa-
cility, and the CNS EXEC facility. Note that this language uses _
ampersands to denote keywords, left parenthesesy<Gd no commas: _ ~

r---- --

; GLRANE = ECONCAT El *
1 LISTPILE ELNANE SCRIPT * (EXEC
4 EXEC CNS GSTACR
1 &LOOP -END GREADFLAG EQ CONSOLE
f &READ VARS &N&HE &TYPE &NOD
f &SUFFIX = GSUBSTB &MANE 3 6

= CCONCAT 82 &SUFFIX

I Figure 16: Segment of a CNS EXEC
-- --

-12-

Yost system command languages are so difficult to use without
command procedures that it is essentially mandatory to know the
command procedure language as well. -------

r--
I
1 Lll, A language for writing command sequences and for

I
controlling the sequencing of a set of programs.

I- ---I__-
I Figure 17: Command Procedure Language

2.10 DOCUMEhTATIOI a-------

Flo finally arrived at the end of her programming task: the
programs ran correctly, they were upgraded to include specifica-
tion changes, and the results were acceptable to the users. A11
that remained to do was to complete the documentation. I

however, Flo's program documentation xas to be coaputer-for-
matted, so she also had to learn the rudiments of a text-fornat-
ting language. A typical language used for formatting documents ~
is SCBIPT; note how it differs in style from all the preceding . .
examples: .,

i ;
I

se pubTFnum = *G&&l@
:ur .pt EpubTPnum. E2 f ,.

I .Pt .sp c;, dh set 1

;
.ur .sr temp = L'EpubTPnua t
.ur .if L'Etemp It Gtempl;,th .fo centre

:
.el .ur .of L~EpubFIhdr+Lw~pubTFnum+U t

- 1 .,
I-- 4
I Figure 18: Sample of SCRIPT Language I

-13-

i i
1 L12, Documentation is produced with the help of a text
I formatting language. I

LB - ---- ------A
1 Figure 19: The Text-Formatting Language 1
a...-, --

2.11 PLAIN ENGLISB --we ---w-w-

Unfortunately, uriting the documentation often turns out to be __uI-
the hardest task of all! In addition to all the other languages . . ~
Flo must master to get the job done, she is expected to be
skilled in the use of "Plain EnglishqV!

i i
} L13. Hell-written documentation in Plain English is needed J
I to explain the uses of the product, to aid in marketing 1

1
it, and to tell how it can be maintained, 1 -'

l- --- -- ---A
I Figure 20: The Ultimate Language: *Plain English* 1
L-- A “..

Well-written documentation can save a lot of user support effort
and field representatives: if the user can't understand the manu-
als, he calls on the supplier for help!

Heedless to say, it isn't easy to find people who can urite
clear English in addition to their skills in using many artifi-
cial computer languages.

-

2.12 OTHBB LANGUAGES -M-w -e--w
.,

Our examples of programming languages drawn from Plo's simple
programming task did not require some of the additional languages
often needed in other applications. In more realistic situations,
programmers must handle other problems as well,

1. Different techniques and utility programs are necessary
to maintain multiple versions of source, object, and

-14-

2.

3.

4.

5.

executable code, along with the patches and temporary
fixes at each level.

Special languages are used for stating problem require-
ments and task design specifications, and for project
monitoring and control.

There are special languages used for describing and ac-
cessing the contents of data bases, and for describing
the interfaces from other programs into a data base
system.

Reports and statistical analyses are customarily pro-
duced with specialized report-generating and data-anal- .
ysis languages.

Last and by no means least, every programmer must plow
through piles of incomplete, inconsistent, inadequate,
and even incorrect documentation to try to learn all of
the truly aecg~grp languages.

Learning to program well requires learning each of these many
languages well, and knouing which is appropriate under which cir-
cumstances.

i i
1 Other languages often needed include: 1

!
I "

* Code maintenance systems J .: I"

1'
* Problem and requirements specifications ;g
* Data base description and controls J

1
* Statistical and report generation J
* Plotting and Graphics

L-
I

------Q.
I Figure 21: Other Languages Often Needed J I --P- - -- m

-

2.13 SUMMABY ----

To summarize, our fable of Flo Coder showa that development of
even the simplest applications requires knowledge of a round
dozen languages.

-15-

--- - w-m----- 1

Ll. Algorithmic "processing-logic," statement flov t
L2. External data description and conversion
L3. Internal data typing and structuring :
L4. JCL or its equivalent
L5. Linkage Editor or Loader i
L6. Absolute binary machine language
L7. Symbolic Assembler Language 1
L8. Debug and Diagnostic System
L9. Utilities i
LlO. Text Editor
Lll. Command procedures I
L12. Text Formatter I
L13. Plain English

'I
--- -l

Figure 22: The '@Basic Dozenw Languages I. ------- ---- -

These agtificial languages - ------- were designed to simplify the me-
chanics of translating them into actions for the machine to obey,
Programmers are forced to learn a variety of unnatural languages
to do their work. And, because the managers of such programmers
typically do not have the same levels of knowledge of these arti-
ficial languages, communication between manager and programmer is
made more difficult.

Each of these programming tools has its own particular syntax,
semantics, and data objects. There is little or no compatibility
among the syntaxes, semantics, and data objects of each of the ~
languages. The diagnostics of each language are couched in terms
peculiar to the language and its area of application; little of
what is learned in one area can be carried over to another.

There is a further difficulty vith these artificial languages.
As we move from lower to higher levels of control, the languages
change. For example, ue have

1. programming languages to manipulate data,

2. command languages to control programs,

3. command procedures to control commands,

4. text editors to manipulate the others.

These languages are all different from one another, which makes
it very hard to combine procedures at different levels into one
coherent application package. To do this now, a programmer must

-16-

write "scaffoldingn or "bridging softwaren with the sole function
of holding the pieces together.

I knou of only one major exception to this situation: APL, I
strongly suspect that its popularity is due in no small measure
to the fact that only one language is needed to use an APL system ---
effectively!

r--- 1

I
I The artificial languages programmers must use are:
I

1
* mutually incompatible in syntax
* inconsistent in terminology

i
* uninformative in diagnostics
* difficult to learn and explain

I * designed for computers, not for people
f different from one level of control to the next

i Figure 23: Problems with Artificial Languages i 1-e J

”

.,

3. UHERE UE ARE TODAY

A programmer is required to be a polyglot, in much the same
s&se as a United Nations translator: he must be able to inter-
pret the sense and intent of a problem statement, and translate ..~
it into a dozen other languages with as little loss of meaning as
possible. And, like real translators, the skill and effort re- ~
quired often leave little time for reflections upon the deeper
meanings of the process itself.

Another effect of having to program in so many different lan-
guages is that programmers must constantly "reinvent the wheel.?
A function coded in one language must be recoded in another be-
cause there is 50 little ability to "mix and match" among law
guages.

Is it any wonder that a programmer may tend to become fasci-
nated with computing abstractions for their own sake, or that he
may occasionally lose sight of his organization@s objectives?

-17-

3.1 PROLIFERATING INTERFACES -I---------- -------

The increasing use of microprogrammed devices means that the
number of people designing end-user interfaces is also increas-
ing. Thus, the number of “languages It a user must know will in-
crease as well. To put it bluntly, anybody can create a new jar- ~.
gon 8 dialect, or entire language, and thereby force other people
to lvspeakn it if they must use the facilities his device or sys-
tem provides.

i

f

1

1
l- --
I

i
Hare microprogrammed devices

t
mean

t
More user-interface languages

1
-I_- ----.

Figure 24: Language Proliferation I
c --- --- J

People have tried various ways
tion.

to deal with this prolifera-
For example, language standards activities are obviously

driven by the desperate need to reduce the number of different
wtonguesgq and #*dialects8*. Another attempt is Structured Program-
ming, in which intelligent use of gg;Ly one of the many existing
languages (the language of statement flowy:d process sequencing, ._
called Ll above) was expected to *#solveVV the problem. (The fact
that positive results appeared can probably be attributed as much .
to a computer-style "Hawthorne Effect" as to any actual bene-
fits.) There has also been considerable research into vays of
structuring internal and external data more reliably; again, this.
involves only one of the many languages programmers mst kAOw and
use.

On the hardware side, the example of the IBH 3278 terminal is
instructive. There is an area at the bottom of the screen where
little hieroglyphics are displayed to convey status and error
conditions. However, the design of the terminal also includes a
little flip-open drawer containing a long, skinny spiral-bound
booklet that explains what the hieroglyphs mean! The effort and
cost that went into deSigAi.Ag both the display and khe booklet
could easily have been spent on some simple, accurate, and terse
Engiish-language explanations of the error conditions,

-18-

Heaning is: "TOO MUCH DATA"
f

i Figure 25: IBM 3278 TerBiAEd Diagnostic i
L- - -- A .

I
Meaning is: "WHAT YOU EBITEBED DID NOT GET TO THE HOSP"

I--
t
il

I Figure 26: Another 3278 Tertninal Diagnostic I

The multiplicity of new and linguistically am-compatible sys-
tems at the hardware level (System/l, System/6, System/38, sys-

, tem/370, 4341, 8100, etc.) exacerbates the problem, because the
greater variety of low-level architectures and technology encour-
ages an even greater multiplicity of higher level software inter-
faces.

-19-

3.2 i3QJIREHENTS o-o--a

It is clear what is needed:

1. Pe must reduce the confusing multiplicity of languages
and syntaxes needed to develop even the simplest appli-
cations.

2. We must minimize the number of translations from the
original English-language specifications into artifi-
cial languages.

3. There need not be a single language to solve all prob-
lems, but a single language should be sufficient to
solve a large set of problems. (Again, the example of
APL is instructive!)

4. Linguistic consistency and uniformity is needed to be
able to combine procedures written at different levels
of procedural control,

4. A PROPOSAL

In every case we have examined, the specifications of the task
to be done must be translated from the programmeres %atural"
language, English (or other native tongue), into an artificial
language. IA that process, much of the original information con-
tent is in danger of being lost. It is natural to propose that
~2 translation be needed,

I an proposing that essentially all programming tasks be done
in a carefully restricted subset of English, organized in a way
that can be parsed, interpreted, and understood with a minimum of
extra training in the concepts of this restricted subset, .

That is, we need to devise a language that can be mapped uith-
out ambiguity into machine "directives,** whether it is compiled
into machine code, translated into aA internal form and inter-
preted, or interpreted in its source form,

Such a standard syntax and grammar has one major advantage:
all problem-oriented terminology can be mapped into a standard
9qcanonical form" that caa then be interpreted or compiled (or a
mixture of each) in a way that is architecture-independent,

We will also need some standard rules for creating #short-
hands," "jargons," and other forms of abbreviation, because every

-2o-

profession develops terse and convenient ways of expressing
common ideas with greater economy.

It is important to observe that this proposal is exactly the
inverse of the current situation. We AOW take the problem des-
cription, written in a language natural to people, and translate
it into terse artificial languages that can be easily mapped into .
machine code. I am proposing that we treat English as the lan-
guage Vsclosest to the machine." Then, if they like, users can
create terse mjargonsn that abbreviate the full form of the lan-
guage into more convenient notations, Thus, the fundamental form
of an algorithm or procedure should be its expression in the sub-
set of English, not its most terse and machine-digestible repre-
sentation.

There are numerous advantages to chOOSiAg English as the lan-
guage in which applications are to be written.

1.

2.

3.

4.

5.

Applications can be developed by their end users.

a) There will be less reliance on programmers, who do
not understand the needs of the application environ-
ment as well as the end users.

b) The number of potential application program creators
will be far greater.

c) The application program will be under the control of
its end users; therefore, it can grow to meet organ-
izational needs as those needs change.

The application development process will be easier to
teach and learn.

Applications can be expected to have much longer life-
times, because they will be easier to modify and expand
as needed.

sppiications will have more portability from one archi-
tecture to another.

The markei for computing equipment will be broadened.

In short, I am proposing a tool-making tool that will provide end
users with enough power and flexibility to produce their gyg ap-
plication programs without the necessary intermediation of a
nprogrammerN.

