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ABSTRACT 

It is pointed out that, in contrast to the recently discovered 

large QCD correction to the Drell-Yan formula, a certain quark-parton 

model relation between structure functions for lepton pair production 

is not subject to any first order QCD modification. Both parallelism 

and contrast to the Callan-Gross relation in deep inelastic scattering 

are spelled out. Implications on the lepton angular distribution for 

both low and high q, are discussed. The case is made that this relation 

provides a unique opportunity to test the "QCD improved quark-parton 

model." 
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Recent QCD calculations 1 reveal a large (~100%) order us correction to 

the Drell-Yan cross-section formula2 for lepton pair production (LPP) in had- 

ron collisions. This makes the integrated cross section a dubious testing 

ground for QCD corrected parton model, and raises fundamental questions about 

the viability of the perturbative QCD approach. It is, therefore, important 

to study other aspects of this approach. 

There is much more to the quark-parton model and its QCD modifications 

in LPP than just the integrated Drell-Yan cross-section formula. The lepton 

angular distributions are controlled by structure functions which obey parton- 

model relations 394 similar to those between Fl and F2 in Deep Inelastic Scat- 

tering (DIS). How are these relations affected by perturbative QCD correc- 

tions? The answer to this question is quite surprising: at least one of 

these relations-- the exact counterpart of the Callan-Gross relation--is not 

modified at all by first order QCD corrections although individual terms in 

this relation may be subject to large corrections. In the rest of this note, 

we spell out explicitly the parallelism as well as the contrast between the 

DIS and LPP cases in the perturbative QCD approach and discuss the experi- 

mental implications of these results. 

The LPP process is described by a tensor amplitude6 Wpv corresponding 

to the current correlation function 

W pv =Yl * 
d4= eL 4 ' = < PlP21 J,, (z> Jv (0) 1 PlP2 ’ 0) 

- 

similar to that of DIS. Here Pl and P2 are the four momenta of the collid- 

2 
ing hadrons, l y = -(Pl+ P2) , and q is the momentum of the virtual photon 

(hence the lepton pair). The trace of this tensor is related to the cross 

section (integrated over the lepton center-of-mass angles) via the formula 2,4 

do = ( ~1 )2 
d7q 

1 wu - - 
MY (2T)3 F\ 

(2) 
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wherein M represents the effective mass of the lepton pair and c1 the fine 

structure constant. 

The tensor W can be decomposed into four structure functions 4 in much 
lJV 

the same way as in DIS: 

‘L 
W = wl gJ.lv +w"p"p 

I.lV 21.1 v 
- w3 (S& + yv 1 + w4 yv (3) 

‘L 
where g pv = g?JV - ypv/s2, p = Pl + P2, p = Pl - P2 , $ = ; 

and G 
% 

= 
u 

g I.lv pv/m. These structure functions can be determined experi- 

mentally from Eq. (2) together with lepton angular distribution measurements. 

Eq. (3) closely resembles the corresponding formula defining Wl and W2 in 

DIS (where the last two terms are absent). 

A basic result of the quark-parton model in DIS is the Callan-Gross re- 

lation5 It is usually written as: 

V2 WL = w1 + (-2 - 1) w2 = 0 
9 

(4) 

where W 
L 

is the helicity structure function for longitudinal virtual photon. 

We can recast this result in the not-so-familiar form: 

wi =2w1. (5) 

In Ref. 4 we showed that the same equation follows as a general consequence 

of the quark-parton model in LPP. In terms of the invariant structure func- 

tions W 1 to W4 of LPP, Eq. (5) takes the form 

wl+ ((q*;)2-1)w2- (qeP)(q*p) w3+(l+(~)W4=0 (5) 
9M YM2 YM2 

whereas in terms of the helicity structure functions 

wL = 2w,, . (7) 
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Here WAa is the 'double-flip' structure function. 4 These results are to be 

compared with Eq. (4) for DIS. Of the three equivalent versions, Eqs. (5), 

(6) and (7) only the first one is form-invariant when going over from LPP 

to DIS. 

It is known that in perturbative QCD the structure functions become 

functions of q2. In addition: 

9 for DIS, the Callan-Gross relation is modified by small first-order 

QCD terms; and 

ii) for LPP, the Drell-Yan cross-section formula, which is essentially 

WV' (cf. Eq. (2)) is subject to very substantial first order corrections. 1 

It is natural, therefore, to ask how is Eq. (5) affected by QCD effects inLPP? 

If we represent the basic parton-parton amplitude by Fig. 1, then first 

order QCD corrections come in three forms: the "annihilation" diagrams, Fig. 2; 

the "Compton" diagrams, Fig. 3; and the "vertex correction" diagrams, Fig. 4. 

The annihilation and Compton diagrams have been studied by us8 and others 9,lO 

in connection with high q 
L 

events for which they should represent the dominant 

mechanism. It has been noticed8 that the parton-model structure function re- 

lation, Eq. (5), is also satisfied by these QCD diagrams. Since this result 

holds for all values of q., 
L 

it means that these diagrams do not introduce any 

first order QCD correction to the parton relation Eq. (5) even at low q . 
L 

We now point out that the remaining first order diagrams, Fig, 4, give rise 

to an amplitude with the same tensor structure as the zeroth order amplitude 

of Fig. l--as any anomalous magnetic moment term from the modified vertex 

drop out upon taking the trace of the Dirac matrices. It follows then, even 

though the overall all normalization may be corrected by some factor, the 

decomposition into invariant structure functions is not affected and Eq. (5) 

remains intact. 
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We conclude, therefore, in LPP the parton model relation W lJ 
?J 

= 2Wl is 

not modified by first order QCD corrections at all-in contrast to both the 

Callan-Gross relation (for DIS) and the Drell-Yan cross-section formula 

(essentially Wp , cf. Eq. (2)). 
1-I 

This appears to be a rather remarkable re- 

sult; we are not aware of any other parton model result which is not affected 

by QCD corrections. For this reason, we sketch in Appendix I a derivation 

of Eq. (5) f rom the diagrams Figs. 1 - 4 which is more direct than those 

given before. 8,9,10 It will be interesting to find out to what extent can 

this result be extended to higher order diagrams. 

We now make a few additional remarks on Eq. (5) and its experimental 

inplications. 

i> The relation Wu 
1-I 

= 2 Wl is closely related to the spin l/2 nature 

of the charged parton (i.e., quark). The fact that this relation is not 

modified by first order QCD effects when both sides themselves may be subject 

to corrections of order 100% certainly represents a unique signature of the 

QCD-quark-parton picture. 

ii) In terms of helicity structure functions, this relation takes the 

form WL = 2WAA, Eq. (7). Although for LPP, the helicity structure functions 

depend on the choice of coordinate axes4 (e.g., Gottfried-Jackson, Collins- 

SOPER,...etc.), this relation remains frame independent--i.e., if the QCD- 

quark-parton model is correct the two structure functions WL and WAA must - 

be related by Eq. (7), for any h c oice of axes in the lepton pair center of 

mass frame. This strong,result again demonstrates the significance of this 

relation. 

We know the angular distribution of the leptons in the rest frame of 
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the pair is given by4: 

do 

d4qdhl* 
+WAsin20* cos $* 

(8) 

+ 'AA sin2 8* cos2$*] 

Written in the form 

do 

d4qdR* 
0: 1 + 01 cos2e* + 8 sin29* cos (p" + y sin 2 * f3 cos2@" 

Eq. (7) implies 

l- cx = 4Y 

(9) 

(10) 

independent of the choice of axes. 

iii) For q2 << M 2 
L 

, kinematic constraints require WAA to be small4 and 

of order q2/M2 
L - 

The dynamical relation Eq. (7) restricts WL to stay the 

same as 2W Ah ' hence it must also be small. The angular distribution of the 

leptons should be close to 1 + cos 2e* l ‘w* is required by kinematics to 

be O(qL/M) and small also. Now, make the transition to the large q 
L 

region. 

There is no reason for WAA to stay small, the angular distribution will be 

2* very different from 1 + cos 8 . But Eq. (7) is still in force and WL must 

keep pace with the change in WAA as q 
L 

increases. Note, although the rate 

of high qi events is of order as(?i2), the predicted change in angular dis- 

tribution from low to high ql - is of order 1 and the relation between WL 

and W AA remains precise throughout. In other words, the test of QCD furnished 

by this relation does not concern just small correction effects; it involves 

quantities of order unity. 

For comparison, in DIS, the Callan-Gross relation reads W, = 0 in the 

parton limit and acquires a small us correction when QCD is taken into account. 
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Since there is no q, variable in DIS, the transition in angular distribution 

discussed above simply does not exist here. 

iv) So far, we have neglected all masses (mi) and intrinsic transverse 

momenta (Pil) of the partons inside the hadron. It is relatively easy to 

see that incorporating these effects in the zeroth order parton model (Fig. 1) 

-2 2 
incurs order m2/M2 and p, /M corrections to the basic relation Eq. (5). 4 

In current QCD jargon, these represent "higher twist" effects. In DIS as 

well as elsewhere, the higher twist effects occur alongside with calculable 

QCD (twist two) correction terms, thereby complicating the phenomenology 

considerably. Because of the unique situation here in LPP where first order 

QCD correction is absent, deviations from Eqs. (5)-(7) can only come from 

the higher twist effects. Therefore, we have a cleaner source of informa- 

tion on the size of <p12 >---etc. 

Incorporating parton intrinsic transverse momenta in first order QCD 

diagrams, Figs. 2-4, is much more complicated. However, here the effects 

are of order CI s P12/M2 and represent only a very small perturbation if M2 
.) _I 

is large. 

v> One may wonder why Eq. (5) is not subject to first order QCD cor- 

rections in LPP while the same relation (i.e., Callan-Gross relation) in 

DIS is --- after all, the Feynman diagrams involved in the two cases are 

identical except for line reversal. The technical explanation for this - 

discrepancy lies in the fact that: inDIS, corrections to the Callen-Gross 

relation come from Figs. 2 and 3 as a result of integration over the momenta 

of the two final-state partons; by contrast, in LPP, there is only one 

parton in the final state --the momentum of which is'fixed by conservation, 

hence, there is no integration involved. 
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vi) We mention, for completeness, that in addition to Eq. (5), there 

are other parton model relations 4 which follow from the Drell-Yan mechanism 

for low q, and from the QCD annihilation diagrams, Fig. 2, for high q 
8,lO 

I' 

Those relations are interesting in their own right and, in conjunction with 

Eq. '(5), yield definite predictions on the angular distribution of the lep- 

tons. However, these predictions do depend on the choice of helicity frames - 

and are subject to QCD corrections, hence are not as striking as Eq. (5). 



-9- 

APPENDIX 

In the literature, all structure function relations were derived by 

first calculating the full tenser amplitude. A more direct derivation of 

wvp 
= 2Wl is given in this Appendix. Feynman gauge is used and partons 

are assumed to be massless. 

In Fig. 1, and Fig. 2(a), the cross section tensor W I-lV 
are respectively 

proportional to 

*(1) (1) 
I.lV 

= Tr(yUYPlYvYP2) E Tl Qv + -0. 

and 

T (2a> = Tr(yuyp3y,yPlYaYP3YvYP2) E Tl 
(2a) g 

uv+ *a* 62) 
I.lV 

using the identities 

YY Y 
?-l 5 "2 

."Y, yl.l = -2y .*.y 
2n+l "2n+l "aY5 (A3) 

Tr(y Y Y --- Y 
lJ o1 o2 

cL2n+lyvy~ly~2 --- yB,,1)= -g~vTr(Llya2 l *- 

(A4) 
Y a2n+lyBlYB2*~* y132m+l) + *** 

We immediately obtain the relation TV= 2Tl for both Fig. 1 and Fig. 2(a). 1-I 

Similarly we can derive the relation for Figs. 2(b), 3(a) and 3(b). 

The derivation for Figs. 2(c), 2(d), 3(c) and 3(d) are more complicated 

in that the massless nature of the partons have to be used. We merely ex- 

hibit how this is done for Fig. 2(c). There 

T UC) 
lJV 

= Tr(yp YP~Y,YP~Y, YP~Y~YP~) 

=- 2Tr(y,, YP~YP~Y,YP~YP~)= - 2g,,vTr(~~l~P2y~4YP3)+ l 0. 
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Using 

p3 = p2 i- py P4 = Pl - Py P12 = P22 = Ps2 = 0, we get 

UC) 
Tl =- 8 (pl*p2 ~3.~4 - ~1.~4 ~2.~3 + Pl’P3 P2’P4) 

=- 16 pl.p2 {p,.p, - p2.p5 + pl.p5) = - 16 pl’ p2 p3*p4 
= L (2chJ 

2 T,, 



-ll- 

REFERENCES 

1. G. Altarelli, R. K. Ellis, G. Martinelli, Nucl. Phys. B143, 521 (1978) 

and Erratum, B146, 544 (1978), and MIT preprint, MIT-CTP-776, 1979; 

K. Harada, T. Kaneko and N. Sakai, Nucl. Phys. B155, 169 (1978); B. 

Humpert and W. L. Van Neerven, Phys, Lett. 84B, 327 (1979), ibid. 

85J, 293 (1979). 

2. S. Drell and T. M. Yan, Phys. Rev. Lett. 25, 316 (1970); Ann. Phys. 

(N.Y.) 66, 578 (1971). 

3. J. C. Collins and D. E. Soper, Phys. Rev. D16, 2219 (1977). 

4. C. S. Lam and Wu-Ki Tung, Phys. Rev. G, 2447 (1978). 

5. C. Callan and D. Gross, Phys. Rev. Lett. 22, 156 (1969). 

6. We follow the notation of Reference 4. 

7. See, for instance, A. Zee, F. Wilczek and S. B. Treiman, Phys. Rev. 

z, 2881 (1974). 

8. C. S. Lam and Wu-Ki Tung, Phys. Lett. 80B, 228 (1979). 

9. K. Kajante, J. Lindfors and R. Raitio, Phys. Lett. 74B, 384 (1978). 

The identification of one of the density matrix elements is in error 

in this paper. 

10. J. C. Collins, Phys. Rev. Lett. 42, 291 (1979); R. L. Thews, 

Phys. Rev. Lett. 43, 987 (1979). 



-12- 

FIGURE CAPTIONS 

1. Lowest order diagram for LPP cross section, 

2. Order as "annihilation diagrams' for LPP cross section. 

3. Order ~1~ "Compton diagrams" for LPP cross section. 

4. Order ~1~ "vertex correction diagrams" for LPP cross section. 
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Fig. 3 
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