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ABSTRACT 

We recommend a new recipe for calculating cut corrections by intro- 

ducing azimuthal correlations between the conventional Pomeron and the 

regular Reggeon. This procedure is suggested within the context of the 

Reggeon calculus and amounts to a more general parameterization of the 

vertices of the theory than has been used so far. We apply Gribov's 

Reggeon diagram technique to the concrete case of pion-nucleon charge 

exchange between 6 GeV/c and Fermilab energies. We investigate how sen- 

sitive the helicity amplitudes are to a specific choice of the vertices. 

The vertices we have chosen reverse the counter-clockwise rotation of 

the non-flip rho pole. This results in the correct phase behavior of 

vector and tensor exchanges obviating the need to introduce a compli- 

cated Pomeron or Regge-Regge cuts. 
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1. Introduction 

A simple and unique description of the phase and energy behavior of 

the rho exchange has not so far been achieved. A great number of cut 

modifying devices have been suggested (I). In this paper we approach 

the problem from a different standpoint, by proposing to calculate cut 

corrections by introducing azimuthal correlations between the Pomeron 

and the Reggeon. The Pomeron remains a simple pole with intercept exactly 

at 1.0 and a small slope of 0.3 [(GeV/c)-2] as indicated by the ISR data. 

The Reggeon has a simple and smooth residue and its trajectory chooses 

sense. There are no boost factors enhancing the strength of the cut. 

Our method of calculating the cut modification relies entirely on the 

correlation kernel, which is purely real so as not to violate the ana- 

lytic properties of the amplitudes. By introducing the correlation ker- 

nel we get a more general parameterization of the Gribov vertices than 

previously obtained (2). In terms of the Reggeon calculus the Gribov 

vertices are related to the Reggeon-particle scattering amplitudes. The 

absorption model is limited to the elastic pole exchange, whereas the 

correlation kernel takes account of the inelastic intermediate states. 

One may be able to constrain the correlation parameter by considering 

the Gribov vertices as form factors within the framework of the non- 

relativistic harmonic oscillator quark model. Here the absorption model 

would correspond to the ground state of the oscillator whereas the cor- 

relation kernel would allow for the nth level excitation relating its 

parameter to the oscillator length. Thus the radii of the Regge ver- 

tices and the correlation parameters are bound up in the effective 

interaction size. 

(l) A. C. Irving and R. P. Worden, Phys. Rep. 34, 117 (1977). 
(2) K. A. Ter-Matirosyan, Sov. J. Nucl. Phys. 10, 600 (1970); 

V. Yu Glebov, A. B. Kaidalov, S. T. Sukhorukov and K. A. Ter- 
Matirosyan, Sov. J. Nucl. Phys. 10, 609 (1970). 



-3- 

Correct cut models have to rotate the helicity nonflip amplitude 

clockwise (3). To achieve this it is only the ratio of Pomeron trajec- 

tory to effective interaction size which has to be large by comparison 

to that of the absorption model. It is not therefore necessary to give 

the Pomeron a substantially large real part or to invoke Regge-Regge 

cuts. It is enough to reduce the effective interaction size, and this 

we accomplish through taking care of the mutual orientation of the 

transverse momenta between the Pomeron pole and the regular Reggeon. We 

introduce logs dependences into the correlation parameters. This 

ensures a stable phase against large variations in energy, and also an 

improved, although not totally satisfactory, behavior of the differen- 

tial cross section for FNAL energies (4). 

II. Formalism 

Our correlation modified cut stands effectively for Gribov's full 

double scattering amplitude (5): 

M~;)(s&)=~~" N(ka k+, , , 
k,s)62(~a+k.+-~)d2&ad2~nanb(s/so)Cla(ka)+ab(~)-2 

-00 

l disc Flha k+.,,&,sl)disc F2 ($,k.+,&,s2) , 

l na(Ila) nb$.,) (s/s ) ',(&a) ' ub(%) -2 
0 

(3) I. Ambats et al., Phys. Rev. 2, 1179 (1974). 
(4) A. V. Barnes et al., Phys. Rev. Lett. 37, 76 (1976). 
(5) K. A. Ter-Matirosyan, Sov. J. Nucl. Phys. 10, 715 (1970). 
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$ and k+ with kt b = Ita bl 2 
, 

= -ta b are the two-dimensional 

Reggeon momenta and k2 = g+q2 = 'It/ is the total momentum 

transfer. The linear Reggeon trajectories are ua b = cla b( 0) - oh bk2. 
, , , 

The energy scale is set so = 1 GeV. n 
a, 

nb are the signature factors: 

n a b ($ b) = ioa b , , , 

0 
a,b 

+1 

2 - ua,b(&a,b) 

, 

where 0 = 
a,b 

+1 . 

The Gribov vertex N factorizes into Nl= N2. These are the absorptive 

Parts of the Reggeon-particle scattering amplitudes Fl and F 
2‘ 

co co 

Nl,2 = 
/ 

ds 
Fl,2(q%,k9sl,2) 2ni;92 = 

192 

/ disc F 1 , 2(k_ , !sLb 9 k+ , &-- dsl 2 

--m t 
132 

5,2 

where s1,2 t are the subenergies and s1,2 the threshhold values. The two- 

body amplitude is given by Fig. 1. The subenergy planes s1 and s2 are 

divided into low and high mass regions such that s1 2 < M2 and s1 2 > M2, 
, , 

respectively. A special low mass unenhanced diagram where s1 < M2 and 

s2 < M2 is Gribov's high-energy approximation of the Mandelstam cut is 

shown in Fig. 2a and its eikonal in Fig. 2b. In our phase correction of 

x-p -f ron we rely entirely on the non-planarity of such diagrams. With 

the high-mass region taking on its Reggeon behavior the full amplitude 

splits into four parts (Fig. 3). These are unenhanced (Fig. 3a), 
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semi-enhanced (Figs. 3b, 3c) and fully-enhanced diagrams (Fig. 3d). 

Here the low-mass and the triple- Reggeon couplings are depicted as non- 

planar. 

Our two-body cut amplitude takes account of low and high-mass 

inelastic-intermediate states in the vertex N of Gribov's full double- 

scattering amplitude. The traditional eikonal or absorption model is based 

on a Gaussian form of the Gribov vertex N(k -a,%) and does not allow for 

any intermediate states except the elastic one ( Fig. 4a). The quasi- 

eikonal model allows for the formation of low-mass showers in the inter- 

mediate states after each rescattering (Fig. 4b). The showers enhance 

the cut strength for elastic scattering at forward direction by a con- 

stant factor. The phase and energy behavior of T-P + Ton, however, sug- 

gests a more subtle parameterization of N. N has to depend on the angle 

between La and k+. Since the high-mass peripheral nonelastic intermedi- 

ate states are Regge-approximated, N also has to depend on s. This leads 

to the diagrams in Figs. ?,3 where the non-planar low-mass and triple- 

Regge couplings are indicated. We have parameterized N&k+, k,s) for 
, 

r-p -+ Ton such that it describes the data satisfactorily and does not 

violate theoretical principles. The phenomenology of the Gribov vertex 

should then be related to the diagrams of Fig. 3. 

The sum of these diagrams gives the cut a pole-like shrinkage at 

high energy, with the enhanced diagrams b, c and d at rising energies 

taking the lead over the unenhanced diagram a. Thus, the helicity Gribov 

vertex Nosl is parameterized 
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(upper indices o and 1 indicate nonflip and flip respectively) for the 

helicity nonflip as: 

No&&&s) = 

exp (c"(s)-:o(s)k2) (Ic~-Ic~)~ - h;(s)k: - $(s,k; , 
I 

and for the helicity flip: 

exp - (c'(s) -?(s)k2) (l~lc-lc~)~ - A;(s)k; - $(s)k; 

I 

, 

where C 
o$1(s) b,l = c1 + czyl Ins , 

and zo5"(s) = ,yyl + i$" (Ins)-' . 

The p chooses sense, i.e., the flip vanishes at up= 0. 

% 
is the nucleon mass and $l is the phase of the Reggeon momentum k in -1 

the following expression. 

For the Reggeon we write: 

M;(s,k;) = B;(s) exp y (1 - ap(0)) - A;& 

I 

, 

M;(s,k;) = &h ilcll exp [iol] B:(s) exp 5 (1 - up(O))- hi(s) k; 1 , 

and for the Pomeron: 

M;hk;) = %3:(s) exp 
_L [- I -A; (s&2, , 
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which is s-channel conserving. 

The Regge and Pomeron vertices are Gaussian: 

cf. (0)-l 
!3 po+ = ip0.i ,P,P , , , 

The Pomeron is purely imaginary at t = 0 with our normalization such 

that the optical theorem reads: 

CT = 
tot 

4& Im 'M"(s,k2 =o> . 

We can now write the Gribov cut in terms of the traditional cut modified 

by a correlation kernel K: 

where K Oyl (!&l'~2'k,s) = 

exp - 

[ 

091 011 
c1 + =2 

so,1 
Ins - (cl + c2 %"'/lns) k2 

- 1 
The evaluation of the correlation-modified Gribov integral leads to 

a cut expression which is much different in its s and ItI dependence 

by comparison with the canonical absorption cut. We write down 

explicitly 
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the helicity-nonflip correlation modified cut: 

MO pxp(&s) 
8’ C.5) 8; (s) exp [ it(l- a (0)) + in 

= 

2J;; 
( 

A; (s) + 4c0(s) + 4:0(s)ltl + h;(s) 

.exp - 

[ 
h;(s) + 4c" (s) + 4:O(s> ItI + A;: (s) 

and the helicity-flip correlation modified cut: 

M&,(&s) = 
J Itl~;(s)fp) 

4% J7;- 
exp [iq (1 - ap(o))+ in] 

Xi(s) + 2c1(s> + 225s) ItI 
. 

( . 
h;(s) -I 4&> + h;(s) + 4:l(s> 

) 

2 
ItI 

; 

As) xp + c?(s) 
' 

( 2(s) + A;(s) > + F(s) 1 tl As> + qs) ) 
exp - 

(, 

2(s) + 4As) + 4&s> ItI + x;(s) 
It I 

. 

i 

2a' 
a,(o) - 

Al(s) + 4&s> -I- 4F(s) ItI + A;(s) 

a- ItI ( X0(s) + 2&s) + 2%) It])' 
+ 

(A;(s) f 4&J + 4F(s> ItI + p)2 1 

. 

, 
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111. Discussion and Results 

Our main attention is directed towards the behavior of the kernel 

in regard to the zero structure of the helicity-nonflip amplitude. The 

traditional Reggeized absorption model fails; its helicity-nonflip 

amplitude rotates counter clockwise. The data demand a clockwise rota- 

tion(3). Thereforethe modified cut should have the strength to switch 

the zero of Im MO such that it occurs before the zero of ReM'. This 

is what our correlation accomplishes. 

We began a search for a possible link between our correlation and 

the i-factor model by choosing a complex kernel. We found that this 

violates the analytic properties of the amplitude. But a combination of 

a purely real correlation kernel and a conventional Pomeron not only 

fits the data but is theoretically more satisfactory. We illustrate the 

parallel (Fig. 5a) and perpendicular (Fig. 5b) components of the helic- 

ity nonflip amplitude at 6 GeV/c. The flip amplitude is shown in Figs. 6a, 

6b. These components are obtained by rotating the amplitude in the com- 

plex plane relative to the phase of the isoscalar nonflip helicity ampli- 

tude. The parallel and perpendicular components represent, up to this 

phase, the imaginary and real components of the amplitude respectively. 

We compare with the amplitude analysis of (3). Particular care is taken 

to obtain the correct position of the crossover zero. The observables, 

. I.e., differential cross section and polarization, are shown in Figs. 7a 

and 7b, respectively. For the set of parameters chosen in Table 1, we 

achieve comparable stability of the crossover zero and polarization over 

a wide range of energy (Fig. 7b). The differential cross section shows 

a fair large s and ItI dependence (Fig. 8). Forward turnover 
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(Fig. 8a) and dips (Pigs, 8b, c) are however filled in too strongly with 

rising energy. Attempts to settle this problem have been made by 

Refs. 6 and 7, both of which show a strong energy dependence of the 

phase. Our emphasis in this paper has been to try to obtain a reason- 

able polarization structure which would remain stable against wide energy 

variations. Since no one has yet succeeded in producing an amplitude 

with the correct phase and energy dependence properties (8), we feel 

that the approach of Refs. 6 and 7 could be combined with ours to achieve 

precisely this. This would automatically be included in Gribov's expan- 

sion if the couplings are chosen to be non-planar. 

IV. Conclusion 

Our findings support our assumption that multiple scattering pos- 

sesses azimuthal correlations. Once the mutual orientation of the trans- 

verse momenta of the Reggeons and Pomeron has been taken into account, 

phase effects of the data such as polarization are well described. This 

can be calculated from a fundamental theory-the Reggeon Calculus. The 

vertices of the theory have to be parameterized more generally than 

usual so as to include inelastic intermediate states. This is accomplished 

with the help of a purely real correlation kernel which is responsible 

for the improvement in the cut phase. Preliminary investigations into - 

line reversed symmetry breaking of charge and hypercharge reactions using 

the correlation kernel are encouraging. 

(6) Bipin A. Desai and P. R. Stevens, Phys. Rev. Dll, 2449 (1975). 
(7) P. D. B. Collins and A. Fitton, Nucl. Phys. c, 332 (1975). 
(8) G. P. Farmelo and A. C. Irving, Nucl. Phys. B128, 343 (1977). 
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Table 1 

Energy scale 

s 
0 

p-parameters 

1.00 (GeV/c)2 

ap (0) 

a' 
P 

*o ^l 
% ; 8, 

0.52 

0.804 

1.90; 30.00 

(GeV/c)-2 

(mb)' 
GeV/c 

hO A ; i; 
P 

Pomeron parameters 

ap (0) 

qo> 

“0 

8P 

0 

xP 

5.99; 1.40 (GeV/c)-2 

1.00 

0.3 (GeV/c)-2 

6.16 (mb)l/" 
GeV/c 

2.95 (GeV/c)-' 

Cut Parameters 

1 
c;; Cl 

1 
c;; c2 

so 'Ll 
cl; Cl 

QO QJl 
c2; c2 

-1.32; -0.80 

-0.10; 1.25 

0.00; 0.00 

-0.80; 8.00 
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FIGURE CAPTIONS 

Fig. 1 Gribov's two-body scattering amplitude. 

Fig. 2a Gribov's high-energy approximation of the Mandelstam cut. 

Fig. 2b Eikonal. 

Fig. 3a Unenhanced part of cut amplitude with non-planar coupling. 

Figs. 3b,c Semi-enhanced parts of cut amplitude with non-planar couplings. 

Fig. 3d 

Fig. 4a 

Fig. 4b 

Fig. 5a 

Fig. 5b 

Fig. 6a 

Fig. 6b 

Fig. 7a 

Fig. 7b 

Fig. 8a 

Fully enhanced part of cut amplitude with non-planar coupling. 

Traditional eikonal approximation with elastic intermediate 

states. 

Quasi-eikonal approximation with shower formation in the 

intermediate states. 

Parallel component of p" amplitude at 6 GeV/c. 

Perpendicular component of p" amplitude at 6 GeV/c. 

Parallel component of p1 amplitude at 6 GeV/c. 

Perpendicular component of p1 amplitude at 6 GeV/c. 

Differential cross section of K- p + Ton at 6 GeV/c. 

Polarization of r-p -+ ITon at 6 GeV/c and at 200 GeV/c. 

Differential cross section of n-p + ?r"n at very small t 

and Fermilab energies. 

Figs. 8b,c Differential cross section of v-p + Ton at Fermilab 

energies. 
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