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ABSTRACT 

The influence of self-energy diagrams on solutions of the 

Bethe-Salpeter equation is studied by taking a g4l(x) #I,(X) $I,(x) 

interaction and under the ladder approximation. The results show that 

for ground state solutions, the self-energy diagrams will diminish the 

eigenvalues and alter the wave functions slightly. However for the 

excited states and anti-symmetric solutions, the influence of the self- 

energy diagrams is considerable, which completely alters the properties 

of the solutions. Their wave functions look like a &function and their 

eigenvalues are independent of the binding energy and the quantum numbers. 

The results also show that the infrared behavior of the self-energy 

diagrams is very important for the solutions of the equation. The results 

also show that the solutions from the ladder approximation are meaningful - 

only in the loosely bound cases; as the binding becomes tight, the 

contribution from the self-energy diagrams becomes important. 
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1. INTRODUCTION 

During recent years interest in bound states has increased. We can 

use the Bethe-Salpeter equation to describe bound states. In general, 

the B-S equation becomes very complicated in the case of strong inter- 

actions. For example, the scalar B-S equation has the form 

A-'$) &p2) X(P) = 
/ 

G@,P,P') x(P'> d4p' 

where 

ml4 &P1+P2-P) X(P) = 
/ 

d4x1 d4x2 e 
-iP1xl -iP2x2 

(1.1) 

(1.2) 

I 
Pl =p+;, p2= -P+$, A-l (P.> = i(p2+m2) . 

PFI is the center of mass four momentum of the bound state. pn is the 
I 

relative four momentum; m is mass of the particles (equal mass particles 

by assumption) which constitute the bound states. G(P,p,p') is the 

integral kernel determined by four point irreducible Feynman diagrams 

as well as by self-energy diagrams. Up until now nobody has been able 

to add up all the diagrams in order to solve the equation. Thus some 

lower order diagrams are taken to solve the equation. A famous one is 

the ladder approximation. 

In 1954, Wick' and Cutkosky2 studied the solutions of a scalar 

B-S equation under the ladder approximation. Their results led to some 

understanding of the equation under this approximation. They found the 

existence of some abnormal solutions in the case of strong coupling. 

The abnormal states don't correspond to the solutions of the non- 

relativistic equation. The non-relativistic bound states are in three 
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dimensional space. The quantum numbers are the radial quantum number 

and the orbital angular momentum. However, relativistic bound states 

are in four dimensional space. The abnormal states correspond to the 

quantization of the fourth dimensional space-time. Many people have 

studied this problem.3 There are some different points of view. 

But up to now there aren't any physical states which correspond to the 

abnormal solutions. R. Blankenbecler and R. Sugar4 have discussed the 

importance of satisfying unitary conditions in the equation. 

M. J. Levine and Jon Wright5p6 have resolved a scalar B-S equation. 

They found that in the inelastic region the unitary condition 

%ot 2 0 elastic (1.3) 

can be violated if only ladder graphs are taken in the integral kernel. 

But if the contribution of self-energy diagrams is taken then the unitary 

condition is satisfied in the inelastic scattering region. We know that 

if the unitary condition is violated some unphysical effects will appear. 

In this paper we want to discuss what changes will occur in the 

bound state solutions if the self-energy diagrams are included in the 

integral kernel. 

The paper is divided into six sections. In Section II we discuss 

the equation and the method used to solve the equation. In Section III 

the solutions without considering the contribution of self-energy 

diagrams are given and compared with those obtained by using other 

methods. In Section IV the solutions with self-energy diagrams are 

given. In Section V obtained wave functions are discussed. Section VI 

is a brief discussion of the results obtained by us. 
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11. THE EQUATION AND THE METHOD 

For the sake of simplicity we still discuss a scalar B-S equation. 

The interaction is chosen to be 

re, (x> = P4&4 +4 $,(x) (2.1) 

where $,(x) is a complex scalar field whose mass is denoted by m. 

4,(x) is a neutral scalar field whose mass is denoted by p. The kernel 

G is taken up to second order diagrams in the coupling constant in 

Fig. 1. By using these diagrams (Fig. 1) the four point Green's function 

is denoted in Fig. 2. The bubbles of Fig. 2 are constituted by self- 

energy diagrams in Fig. 3. 

With consideration of second order diagrams in the kernel, the 

integral kernel in the B-S equation has the following form 

G@,P,P') = 
ih 1 

7 
- Ah(p) (p+-m2)(p;+m2) S4(p-p') (2.2) 

(P-Pv)2+1-12 

where 

h(p) = 

co 

(p;-hn2) 
[I fs2- (~+I.I)~ 

% 1 c a2- (m-v>2 3 
% 

~~(o~-rn~)~ (p:+02-is) 
da2 

Q) - 

I 
[02 - h-u> ‘1” + da2 (2.3) 

b-b) 2 (r2(cr2-m2)2 (pz+02-is) 

The expression h(p) of the self-energy diagrams is obtained by using the 

method of the spectral function. The renormalization is considered. 
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Substituting formula (2.2) into Eq. (1.1) and after Wick rotation, 

the equation can be written in the following form 

(P$m2) (Pgm2)X(P) = -+ x(p') d4p' + Xh(p)(p;+m2) (p;+m2)x(p) (2.4) 
IT (P-P’)2+ v2 

Now both the momentum p and p' are in the Euclidean space. In the rest 

frame of the bound state, by using the rotation invariance of the 

equation, we single out the three dimensional harmonics corresponding to 

the orbital motion, and discuss the case in which the orbital quantum 

numbers are R and m: 

(2.5) 

Substitute the formula (2.5) into Eq. (2.4) and we obtain 

dlpil 
Q, (a> 

+ (1; 1 ,P;> + Ah(p)d@p) L(P) L(p') !2 
, (2.6) 

where Q,(a) is the Legendre function of the second kind and 

(P4- pg2 + 1$12 + lp’; I2 + lJ2 
a = 

21;1 Ipi1 
, 

Jig (3 = L(P) f&(P) , 

L2 (P> = (ICI2 + p; + 1 - n2)2 + 4TJ2 pi 

(2 -7) 

M 
n =z 
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M is the rest mass of the bound state, n is a related parameter which 

denotes the binding energy. All the quantities in Eq. (2.6) are in 

units of m, hence are dimensionless. 

Equation (2.6) is a two-dimensional integral equation in the 

Euclidean space and is invariant under the transformation p4 -++ -p4. 

Using this symmetry, the equation can be rewritten as 

q;(P) = Mp)'$;(p) + 1 dl$'l&p,p') $P') (2.8) 

0 0 

where 

2 QQ(a(p4)) + Q&Gp4)) 
&P,P’) = 7 

L(P) L(P’) 

Because h(p) is an even function of the variable p4, we have 

l)‘,(l;I ,-P4) = 4&7 ,P,) 

(2.9) 

(2.10) 

It is obvious that no non-relativistic approximation exists for $,(p); 

hence, it is the anomalous solution. In the following calculation, $l 

and $a are solved separately. 

Now introducing the following new variables: 

(2.11) 

then the regions of the integration of new variables x and y become 

t-1,11 * The method of Gauss quadranture is used to discrete the 

integral equation and obtain a set of algebraic equations 

N 

A-- lx+ = h..xf,+ 
c 

A + 
iJ iJ =J ij,!Lm xRm (=.fa 

R,m=l 



I 
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where 

AC ij,am = 

2JWiW.WRUm 

(11 - Xi) (1 - rjl c.1 - X&l (1 - Ym) 
\ k+ ij,am 

(2.13) 

xtj = i wp. 

(l ‘xi> (l- Yj) 

+zj 

w. are the weights of Gaussian integration. Equation (2.12) is a set 
1 

of coupled algebraic equations which is solved on a DJS-8 computer 

numerically. 

III. THE SOLUTIONS WITHOUT CONSIDERING THE SELF-ENERGY DIAGRAMS 

In order to examine the influence of the self-energy diagrams on the 

solutions and check the method used to solve the equation, we first solve 

the equation without considering the self-energy diagrams. After removing 

the self-energy diagram's term h(p) from Eq. (2.8), the equation becomes 

a standard Fredholm integral equation whose properties are well known. 

In the corresponding algebraic equation (2.12), after removing the term 

corresponding to the self energy diagrams, we use ten Gaussian points and 

solve the eigenvalues and eigenfunctions of a 100 x 100 determinant. 

The parameters n and u are taken to be 

rl- = 0.0, 0.2, 0.4, 0.6, 0.9, 0.99; 
- 

v = 1, 0.1, 0.01. 

and the symmetric .and anti-symmetric ground states and several excited 

states are solved for the S- and p- waves. The eigenvalues for p=l 

are shown in Table I, in which 1; n are the eigenvalues corresponding to 
, 

the symmetric and anti-symmetric wave functions with the orbital angular 
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momentum R and quantum number n respectively, where n is labeled according 

to the magnitude of the eigenvalues from 0 on. The h*'s are obtained by 

Zin Linden7 by expanding the wavefunction in the four-dimensional spherical 

harmonics and solving the resultant one dimensional integral equation by 

using 32 Gaussian points. From Table I we see that X* agree with 1: o 
f 

obtained by us up to the third effective figure. In paper8 A. Pagnamenta 

solved the equation (without self-energy diagrams) by using 12 Gaussian . 

points and obtained Xi o= 3.4182 (for n= O.O), which agree with our result 
, 

also up to the third effective figure. In paper9 Schwartz exploited the 

variation method to calculate 
+ 

A 
+ 

0,l' x1,o and Xo,o, and his results agree 

with ours up to the second or third effective figure. The eigenvalues 

corresponding to p= 0.1 and 0.01 are given in Tables 2 and 3, from which 

we see that for fixed n, X decreases as n decreases; i.e., the spectrum 

of X becomes denser as p decreases. In order to examine the stability of 

the results obtained, we have also used eight Gaussian points to solve 

the equation and compared the results with the above mentioned ones in 

various references. It turns out that the eigenvalues tabulated in these 

tables remain unchanged up to the third effective figure for the ground 

state, and up to the second or third effective figure for the excited 

states. 

IV. THE INFLUENCE OF THE SELF-ENERGY DIAGRAMS 
- 

When the self-energy diagrams are taken into consideration, we 

have to solve Eq. (2.21), which contains the following diagonal terms 

A 
h xl. . ij 1-J 

In solving the equation, ten Gaussian points are still used. The 

eigenvalues obtained are given in Tables 4, 5 and 6. 
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From these results we conclude that: 

1. For p=l, there exists a ground state solution of the symmetric 

wave function, corresponding eigenvalues are lower than that when the 

contribution of the self-energy diagram is neglected (30% lower for n= 0). 

This difference diminishes as n increases, and for n + 1. They approach 

the same limit which shows that the contribution of the self-energy 

diagrams are small for loosely bounded states (n m 1). This can also be 

seen from Fig. 4. This result agrees with R. Blankenbecler and 

M. J. Levine5y6. 

2. For p=l, all anti-symmetric solutions and symmetric excited 

solutions are degenerate and the eigenvalues are independent of n. In this 

case the calculating results show that 

h(p) X(P) " 1 
7 (pff 1;(,;+ 1) / 

x(P’> d4p’ 

(P-P’j2 + u2 

Hence the contribution of the self-energy diagrams is dominant. In this 

case the eigenvalues are equal to the inverse of the maximum of h(p). 

For u=l, we obtain 

h(p) = 0.417 = x-l 
max 

Then 

x = 2.39 . 
- 

It is the same with calculating results. As the term of the self-energy 

diagrams control the solution of the equation, the discrete spectrum 

doesn't exist and only the continuing spectrum exists. For the ground 

state of the anti-symmetric wave function its integral kernel K- is small 

which causes the larger value 1; o = 16.33 in the case without considering 
, 

self-energy diagrams. For the excited states of both symmetric and 
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anti-symmetric wave functions there are some zero points in the wave 

functions which cause the integration 

/ 

x(P’) d4p’ 

(P- pY2+lJ2 ’ 
for the excited states 

to be small which can be seen from the large values of X 
-I- + + 
0,l' lo,29 x1,0' 

+ + - - 
hl,l' hl,2' x1,0' h1,o and A; 1 (Table 1). These results show that 

, 

the integrations are small in the case of the ground state of the anti- 

symmetric wave function and the excited states. Thus as the self-energy 

term exists it will control the solution of the equation in these cases. 

3. For n= 0.1 and 0.01 all the eigenvalues of the ground state 

corresponding to n < 0.9 are constant, i.e., l/h max' Only for loosely 

bounded states (n > 0.99) can the different eigenvalues be found and the 

ground state of the symmetric wave function exist. These eigenvalues 

approach the values without considering self-energy diagrams. The calcula- 

ting results show that as JJ is getting smaller the h(p) values are getting 

larger. 

4. From Tables 5 and 6 we see that as parameter gr is getting smaller 

the corresponding eigenvalues are also smaller because the h(p) values are 

getting larger as p decreases. 

These results are shown in Figs. 4, 5, 6 and 7. From them we can 

see that the influence of the self-energy diagrams is considerable. 

v. WAVE FUNCTIONS 

The symmetric wave functions of the ground state $i o(j$l,p4) for 
, 

v=l, T-)= 0 and n= 0.99 and anti-symmetric wave functions $0 o(/$/,p4) for , 
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v= 1, n= 0 are shown in Fig. 8 where both cases of neglecting and consider- 

ing the contribution from the self energy diagrams are included. 

1. In Fig. 8 the dot-dash line represents the wave function $i o 
, 

corrected by the self-energy diagrams (n=l, n= 0). This correction 

+ diminishes the eigenvalues from 1: o= 3.14 to X0 o= 2.01. But it can be 
, , 

seen from Fig. 8 that the correction to the shape of the wave function is 

small. Moreover, this correction becomes smaller as n. increases. For 

n = 0.99 (Fig. 9) JI'+ 
o,o 

having the contribution from the self-energy 

+ 
diagrams and $o,o without the self-energy diagrams are close to the same. 

The correction of the self-energy diagrams on the shape of the wave 

functions is much smaller for the ground state of the symmetric state. 

2. Figure 10 represents the anti-symmetric wave function $0 o 
, 

of the ground state without considering the correction by the self-energy 

diagrams (u= 1, rl= 0). The behavior of the wave functions is very smooth. 

We cannot find any strange behavior comparing it with the wave function 

.+ *o,o. 
3. Figure 11 represents the eigenvector xi o (Fig. 10) by the 

, 
formula (2.13). After the correction by the self-energy diagrams, xi o 

, 
changes into a &function-like solution, as shown in the upper right 

corner of Fig. 11. The central position of ~0 o is just at that h(p) 
, 

takes the maximum.- In this case the self-energy diagrams are dominant 

in the equation. 

VI. CONCLUSION 

1. As n -t 1 the eigenvalues X approach a same limit in the cases 

without self-energy diagrams and in those having the self-energy diagrams 
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for the symmetric ground state. The self-energy diagrams are not 

important for the loosely bound state and the ladder approximation is 

better in this case. 

2. The influence of the self-energy diagrams on the shape of the 

wave fuction of the symmetric ground state is small. But the influence 

on the eigenvalues of the symmetric ground state is large in a tightly 

binding region. 

3. The influence of the self-energy diagrams on the abnormal states 

and excited states is very large. Their eigenvalues are independent of n 

and the state's quantum number. The wave function looks like a 8-function. 

Going to the configuration space such distributions cannot correspond to a 

normal bound state. 

4. The parameter 1-1 is related to the infrared behavior of the self- 

energy diagrams. As 1-1 is getting smaller the contribution of the self- 

energy diagrams is getting large. For p= 1 there exists a symmetric ground 

state in all n values. But for p= 0.1 and 0.01 it is only as n > 0.99 that 

the symmetric ground state exists. 

5. The equation without self-energy diagrams is a standard Fredholm 

integral equation. But the equation having self-energy diagrams is not. 

The general B-S equation can be written as 

X(P) = A(P) X(P) + 
I 

G O’,P,P’) x(p’) d4pr (6.1) 

The function A(p) denotes the contribution of all the self-energy diagrams 

and G denotes all the four point irreducible Feynman diagrams. In this 

paper only the simplest case is discussed. In general, the equation is 

very complicated. But the results obtained by us show that the balance 
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between the two terms is needed in order to obtain a physical solution. 

In the configuration space the term of the self-energy diagrams represents 

the nonlocal interactions. In the case of the strong interaction the 

nonlocal interaction is important. 

ACKNOWLEDGMENTS 

We would like to thank Professor S. Drell, R. Blankenbecler, 

Y. S. Tsai and Dr. Bing-ren Li for their helpful discussions. 

This work was supported in part by the Department of Energy under 

contract DE-AC03-76SF00515 and by the People's Republic of China. 

REFERENCES 

1. 

2. 

3. 

4. 

5. 

6. 

7, 

8. 

9. 

G. C. Wick, Phys. Rev. 96, 1124 (1954). 

R. E. Cutkosky, Phys. Rev. 96, 1135 (1954). 

Noboru Nakanishi, Supplement of the Progress of Theoretical Physics 

43, 1 (1969). 

R. Blankenbecler and R. Sugar, Phys. Rev. 142, 1051 (1966). 

M. J. Levine and Jan Wright, Phys. Rev. 154, 1433 (1967). 

M. J. Levine and Jan'Wright, Phys. Rev. 157, 1416 (1967). 

Zur Linden and Mitter, Nuovo Cimento a, 389 (1969). 

A. Pagnamenta, Nuovo Cimento 53, 30 (1968). 

Schwartz, Phys. Rev. 137, 717 (1965). 



-14- 

TABLE 1 (u= 1) 

n 

G 0 , 

%k x 

+ 
AO,l 

+ 
xo,2 

+ 
%,o 

+ 
x1,1 

+ 
xl,2 

xo,o 

xo,1 

%,o 

%,l 

0.0 0.2 0.4 0.6 0.9 0.99 

3.416 3.342 3.114 2.717 1.665 1.010 

3.419 3.344 3.115 2.718 1.665 1.014 

16.69 16.40 15.52 13.90 9.79 7.07 

45.02 44.44 42.67 39.41 29.72 23.04 

16.30 16.02 15.17 13.68 9.80 7.73 

46.18 45.57 43.51 39.89 30.43 25.05 

85.82 85.07 82.81 79.01 68.17 59.16 

16.33 16.20 15.80 15.12 13.51 12.87 

46.45 46.09 44.98 43.09 38.60 36.79 

73.82 72.97 70.35 65.60 51.71 

91.13 

42.21 

109.4 

- 

108.4 106.4 102.3 84.91 
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TABLE 2 (p= 0.1) 

f 
Ao,O 

-I- 
lO,l 

G,2 

+ 
xl,o 

+ 
%,l 

x+ 
192 

xo,o 

xi 1 , 

0.0 

2.008 1.946 1.757 1.434 0.608 0.185 

6.04 5.85 5.28 4.31 1.86 0.63 

11.65 11.38 10.55 9.00 3.79 1.40 

5.95 5.76 5.20 4.22 1.82 0.61 

11.56 11.19 10.10 8.31 3.64 1.29 

17.60 17.30 16.38 13.59 6.35 2.42 

5.93 

11.55 

5.81 5.45 

10.59 

4.81 3.08 

11.31 9.29 5.69 

2.19 

3.95 

0.2 0.4 0.6 0.9 0.99 
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TABLE 3 (p= 0,Ol) 

rl 

+ xo,o 
+ 

xo,1 

+ 
xo,2 

+ 
%,o 

+ 
%,l 

+ 
%,2 

lo,0 

xo,1 

%,o 

0.0 0.2 0.4 0.6 0.9 0.99 

1.830 1.773 1.598 1.296 0.525 0.111 

4.88 4.72 4.24 3.42 1.31 0.22 

7.29 7.14 6.68 5.55 1.98 0.39 

4.68 4.53 4.06 3.26 1.24 0.23 

7.86 7.62 6.91 5.64 2.11 0.31 

9.02 

4.44 

7.45 

9.01 

8.83 8.28 7.08 2.51 0.56 

4.35 4.05 1.92 0.67 

7.29 6.77 2.86 

8.82 8.22 

3.51 

5.74 

7.01 3.23 

0.88 

0.86 
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TABLE 4 (y=l) 

n 0.0 0.2 0,4 0.6 0*9 0.99 

%+O 2.282 2.262 2.196 2.053 1.484 0.97 , 

%+l 2.39 2.39 2.39 2.39 2.39 2.39 t 

xo,2 ,+ 2.40 2.40 2.40 2.40 2.40 2.40 

"A,0 2.39 2.38 2.37 2.38 2.37 2.37 

%;o r+ 2.39 2.39 2.39 2.39 2.39 2.39 

TABLE 5 ($I= 0.1) 

rl 0.0 0.2 0.4 0.6 0.9 0.99 

lo,0 ,+ 0.3317 0.3317 0.3317 0.3317 0.3317 0.1714 

IO,1 ,+ 0.332 0.332 0.332 0.332 0.332 0.332 

TABLE 6 (y= 0.01) 

rl. 0.0 0.2 0.4 0.6 0.9 0.99 

lo,0 r+ 0.1378 0.1378 0.1378 0.1378 0.1378 0.0889 
- 

xo,1 ,+ 0.1378 0.1378 0.1378 0.1378 0.1378 0.1378 

VI,0 0.1378 0.1378 0.1378 0.1378 0.1378 0.1378 

1'" 

031 

0.1379 0.1379 0.1379 0.1379 0.1379 0.1379 

/ 
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