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ABSTRACT 

In grand unified models, the abundance of superheavy magnetic 

monopoles in the universe can be suppressed if (1) the phase transition 

which creates the monopoles occurs after much supercooling; and (2) 

immediately after the phase transition, the effective monopole mass 

is large compared to the temperature. These requirements impose 

constraints on the history of the early universe. The Georgi-Glashow 

SU5 group probably breaks to SU4 x U1 before it reaches SU3 x SU2 X U1. 

- 
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There has recently been much int.erest in grand unified theories 

(GUTS) of the electromagnetic, weak and strong interactionsly These 

models, combined with classical gravity, attempt to describe all physics 

which occurs at energy scales well below the Planck mass,3 MP=G 
-% 

= 

1.2x 1o19 GeV, at which point gravitational interactions will become 

strong. If these models are correct, they in principle allow one to 

extrapolate the history of the universe back to a temperature of say 

T= 1017 GeV (t - 10D41 set). With reasonable success, such extrapolations 

have been used to obtain crude theoretical estimates of the net baryon 

number density of the universe.4 

These models contain stable magnetic monopoles with mass Mm which 

is typically (although not necessarily) of order 10 
16 GeV. Recently 

Zeldovich and Khlopov' and also Preskil16 have attempted to estimate 

the abundance of magnetic monopoles which exist today as a result of 

production in the very early universe. Both studies assumed that the 

symmetry breaking takes place through a single second order (or weakly 

first order) phase transition, and both concluded that the number of 

monopoles would be unacceptably large. Their argument.would also be 

applicable if the symmetry breaking persisted at all temperatures. The 

problem is evaded only if the GUT contains a mechanism to suppress the 

initial production of these monopoles. In this paper we will discuss 
- 

some of the issues involved in this suppression, and the constraints 

imposed on the history of the early universe. 

In a general GUT, a simple gauge group G undergoes a hierarchy of 

spontaneous symmetry breaking into successive subgroups: G+Hn+ . . . 
EM 

+ Ho where H1= SU3 x SU2 x U1 (QCD x Weinberg-Salam) and Ho= SU3 x U1 . 
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By general topological arguments, such theories necessarily contain 

classically stable magnetic monopole configurations of the 't Hooft- 

Polyakov type. The monopoles are actually associated with the symmetry 

breaking Hl+l + Hl, where Hk is the first group in the sequence with a 

U1 factor. The mass Mm is then on the order of %/cx, where % is a 

typical mass of the gauge mesons associated with this level of symmetry 

breaking. 

The high temperature behavior of spontaneously broken gauge theories 

has been studied in the literature.* These models typically have 

symmetric phases at high temperature, and undergo one or more phase 

transitions before reaching a low temperature phase with symmetry Ho. 

As we will see later in the example of SU5, the intermediate phases may 

have symmetries which are not part of the gauge hierarchy. In any case, 

there will be one phase transition at which the magnetic monopoles come 

into existence, and we will call this critical temperature T . If the 
C 

theory is to successfully suppress monopole production, then we believe 

that this transition must be first order. It will then proceed through 

nucleation of bubbles of the new phase. Bubbles exceeding a critical 

size will start to expand. 

We shall consider two mechanisms by which monopoles might be pro- 

duced during the course of this phase transition: 

(i) Bubble coalescence. The orientation of the Higgs field inside 

one bubble will have no correlation with that of another bubble not in 

contact.' When the bubbles coalesce to fill the space, it will be 

impossible for the uncorrelated Higgs fields to align uniformly. One 

expects to find topological knots,and these knots are the monopo1es.l' 
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The number of monopoles so produced is then comparable to the number 

of bubbles, to within a few orders of magnitude. 

(ii) Bubble expansion. As a bubble expands, we expect that the 

interior will contain a density nm of monopoles which is at least as 

high as thermal equilibrium, (Note that fewer monopoles would 

correspond to a higher degree of order in the Higgs fields, which seems 

unlikely.) Thus, 

n m N cM,(T)T13'2 expC-M,(T)/TI , (1) 

where M,(T) is the effective monopole mass computed using the Higgs 

expectation value at temperature T. 

We shall ignore other mechanisms, such as (iii) monopole production 

.from energy released in bubble wall collisions, and (iv) conversion of 

monopoles from the previous phase (see below). 

Mechanism (i) depends critically on X, the probability per unit 

volume per unit time that a critical size bubble will nucleate. One can 

define x(T)ET4f(T) , where f(T) is then dimensionless. We will now show 

that monopole suppression requires a very small value for f(T). 

The early universe can be described by a Robertson-Walker metric" 

with zero curvature: df2 = dt2-R2(t)dg2" If bubbles 

v, then the fraction of space which remains in the old 
- 

is given by 

expand at speed 

phase at time t 

dtlR3(tl) X(t,) . (2) 
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The number of bubbles per volume which have nucleated by time t is 

then given by 
4. 

n,(t) = R-3(t) 
/ 

dtl R3(tl) A$) ~$1 . (3) 

0 

To find qualitative answers, one can assume f(T) = ? El(T,- 4 ' where 

7 is a constant. We also assume for simplicity that v= 1 and that the 

universe evolves through the entire time period as if it were dominated 

by radiation with a fixed number of degrees of freedom. Then RT=constant, 

and T =dMp/2yt , where y2 = BITT 45 I !,I Nb + (7/8)Nf 
1 

; Nb and Nf are the 

numbers of effectively massless bosonic and fermionic spin degrees of 

freedom, respectively. One then finds that for large times nb + CT 3 r3/4 , 

where c = (~/IT) 1’4r (5/4) r 0.90. The ratio of bubbles to photons is then 

- 314 given by 3.68 f 16 . For Mm-10 GeV, one requires12 nm/ ny< 10-24. 

If nmwnb, then we find ? c 10 -32 . We also find that the temperature 

T* at which half of the volume has entered the new phase is given by 

1 
3 = ++ 0.9oy 

c % ?I4 l 

(4) 

Taking f N 10 -32 and y= 20, one finds that T* < 1o1O GeV for all 

values of Tc. -- 

If T* << T c (such supercooling seems quite likely), then the 

evolution of the universe has an interesting "heat spike." A typical 

region will cool to about T*, at which point the phase transition will 

take place and the latent heat will be released. The temperature will 

then rise to some Tr 6 Tc. It is this Tr which should be used on the 
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r.h.s. of Eq. (1). Furthermore, the number of photons will be increased 

by a factor of (Tr/T*)3, further suppressing the monopole/photon ratio. 

If one takes Tr=10 13 GeV, one finds that the earlier bounds are 

replaced by ?< 10 -26 and T*<2xlO 11 GeV. 

The calculation of A(T) remains an important topic for future 

investigation. This is the finite temperature generalization of the 

work of Coleman and Callan13 on the fate of the false vacuum. 

To illustrate the ideas discussed above, we will now examine in 

detail the simplest GUT: the SU5 model of Georgi and G1ashow.l 

For our purposes, the fields of interest are the gauge fields and the 

adjoint representation Higgs field, which is denoted by a Hermitian 

traceless matrix14 The Langrangian contains a 

Higgs potentialI 

v,cg = -i u2Tra2 -I- $ a(Tr02)2 i- i bTrQ4 + $ cTrQ3 . (5) 

The low temperature phase is determined by the minimum of this potential. 

There are three possible forms for this minimum.:16 

I. QO = v diag (l,l,l,-3/2,-3/2), where v= Cc+ dc2+8(15a+7b)u21 

/2(15a+ 7b). The unbroken group is SU3X SU2XUl. 

II. @O N diag (l,l,l,l,-4). The unbroken group is SU4XUl. 

III. (Do = 0 .- 

The phase structure can be described in terms of the two dimensionless 

variables nEa/b and 5:-u2b 02. I Positivity of the quartic terms 

requires that n > -7/15, and one must take b > 0 to allow for the 

existence of phase I. The phase diagram is shown in Fig. 1. 
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The renormalized parameters are chosen to give phase I at zero 

temperature. Twelve of the 24 gauge particles will acquire masses given 

by <= (25~12)~~. The lightest monopole17 has magnetic 

(Dirac quantization with respect to the electron), and in 

limitI its mass is given by Mm=%/ ~1. One expects Mx z 

hence M z 10 16 GeV. m 

At T >> %y one can evaluate the finite temperature 

potential Veff CQsTI using the methods of Ref. (8). It is 
3 

charge 2T/e 

the Bogomol'nyi 

1014 GeV; 

effective 

given approxi- 

mately by the same form as Eq. (5), except that -u& is replaced by 

2 
-ueff =-u2+oT2, where o= (130a+ 94b+ 75g2)/60. From Fig. 1 one can 

see that for T > TL z, p 'G---l0 I 
14 GeV, the system will be in Phase III. 

One also notes that if n > - 2/5, the system goes through the intermediate 

phase II. The II- I phase transition will occur at Tc, which can also '. 

be calculated (but not very reliably) from Fig. 1. Tc can be made as low 

as one wants by choosing the parameters very near the I-II borderline 

in Fig. 1. However, the natural scale is Tc 5 %. 

Since Tc 5 3, the approximations used in the above analysis are 

somewhat dubious. It is therefore reassuring to note that the existence 

of phase II can also be inferred from a low temperature approximation. 

One notes that if 

- -(Ion + 7) < 85 < (1on9+ 13) 9 (6) 

then phase II is metastable (positive values of mass2) at temperature 

T= 0. For lo2 GeV CK T CC %, one can calculate the free energy density 



JQ (which is just the negative of the pressure) of each phase using 

the massless ideal quantum gas approximation. Thus, 
A 
L 4 d(T) = Vmin - $j T (Nb + (7/8)Nf) , I (7) 

where Nb and Nf are the number of effectively massless physical spin 

degrees of freedom, bosonic and fermionic, respectively. One has 

NII II 
b =N,I+8, Nf = N;, and so the critical temperature for the I- II 

transition is given by 

Tc = [-$ [uII - vIf11'4 ' (8) 

The II-I phase transition will be first order, since Oo(II) 

cannot be continuously deformed to 0 0 (I) without passing through some 

other phase. 

Note that monopoles exist in phase II, but they are topologically 

unrelated to those of phase I (the two Ul factors are different). 

There may be some probability of conversion when a bubble wall crosses 

a phase II monopole (mechanism (iv) above), but we will assume it is 

negligible. 

Thus, our expectations for the very early universe in the SU5 model 

can be summarized as follows: The phase remains symmetric down to 

Iv 1014 GeV, at which point the symmetry breaks to SU4xUl. The transition 

point Tc to the SU3 X SU2 X Ul phase would naturally lie in the 10 13 - 

1o14 GeV range, but it could be arbitrarily low. A sufficient barrier 

against nucleation is needed in the model to suppress monopole production. 

In this case, the universe will supercool at least to -10 
11 GeV before 

the phase transition actually occurs, The latent heat will then warm 
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the universe back up to near Tc. (In the ideal gas approximation, 

it is warmed to 0.40 Tc.) These estimates suggest that mechanism 

(ii) of monopole production will be strongly suppressed. 

It is clear that the (non-)observational bound on the monopole 

density imposes constraints on GUTS and on the early history of the 

universe. Our scenario requires a modification of the present 

understanding of baryon number generation.4 Also, the expansion and 

collision of bubbles after supercooling generate inhomogeneities which 

are perhaps related to galaxy formation. Details of the effects of 

phase transitions in the early universe will be discussed elsewhere. 
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FIGURE CAPTION 

1. Phase diagram for the SU5 adjoint Higgs system. The cross-hatched 

region is not allowed. The triple point occurs at rt= - 2/5, 

<= l/9. The SU3 x SU2 x Ul / SU4 x Ul borderline approaches the 

asymptotic straight line E= - 0.61Oq - 0.206 + @(l/q). 
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