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Abstract 
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in SU(3) xU(1) gauge theory is constructed by means of the helicity 
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it gives the same results as those of Weinberg-Salam model in the low 

energy range. The Weinberg angle is bound by sin20w 5 i. A new 

conserved quantum number SW called the weak strangeness is introduced 

in this model. The Kobayashi-Maskawa expression of Cabibbo mixing for 

quarks may be obtained in the model generalized to include three 

generations of fermions. 
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1. Introduction and Motivation 

Recent neutrino induced elastic and deep inelastic neutral current 

data are in agreement with expectations based on the simple SU(2) xU(1) 

gauge model of Weinberg-Salam [1,2]. The Weinberg angle Bw is shown to 

be slightly less than 30'. 

The motivation of the present paper is to investigate the following 

questions: 

1. Whether sin20 w 3 $ has special physical meaning? 

2. Are there possibilities other than SU(2) xU(l)? 

The requirements for the new model to be constructed are: 

1. It gives the same observable results as the Weinberg-Salam 

model in the low energy range. 

2. There might be some predictions different from the usual 

SU(2) xU(1) model, which can be tested in the near future. 

3. The model is right-left symmetrical before spontaneous 

symmetry breaking. 

4. The model is anomaly free. 

It will be shown in the present paper that such possibility indeed 

exists for gauge group SU(3) xU(1) in which the value of sin2ew cannot 

1 exceed z. In this model a global U(1) symmetry is also postulated 

which turns into a conservation law called weak strangeness conservation 

after spontaneous symmetry breaking. Conservation of weak strangeness 

ensures that the additional gauge bosons have no direct coupling with 

the ordinary fermions and makes our model different from that of B. W. 

Lee and S. Weinberg C31. 
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This model contains right-handed neutrinos, heavy fermions and 

bosons yet unobserved. Their number is rather large and we are aware 

of the possibility that they might cause difficulties in problems not 

discussed in the present paper. We shall discuss them in later 

publications. 

The paper is outlined as follows. In Sections 2 and 3 we discuss 

the transformation properties. In Section 4 the model is presented with 

a brief discussion of the left-right symmetry and the cancellation of 

the anomalies. In Section 5 the mass spectrum is obtained from spon- 

taneous symmetry breaking. In Section 6 the weak currents are obtained 

which tends to that of Weinberg-Salam model as sin2ew + i. Section 7 

is devoted to the conservation of weak strangeness and its experimental 

implications. In Section 8 generalization to more generation of fermions 

is briefly discussed. The section contains the summary and some 

conclusions. 

2. Transformation Properties of Fermions and Gauge Fields -- 

In order to preserve the left-right symmetry before spontaneous 

symmetry breaking, we introduce an unified description of transformation 

properties for two chiral components of fermions. In the chiral repre- 

sentation if three left-handed fermions form a triplet representation 2 
* 

of SU(3) group, then the corresponding right-handed fermions form 2 

which is the conjugate representation of 3. - We will embed y5 into some 

* 
of generators to describe the transformation properties of both 2 and 2. 

in an unified formula simultaneously. Since the mass terms of fermions 

connect the left-handed components to the right-handed components, the 

unified description is rather useful for many physical discussions and 
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makes them simple and brief. We formulate generally this kind of des- 

cription in the following. The connection between this description and 

usual notation is given in Appendix B. 

The generators ?i, i=l ,...,8 of the SU(3) group can be composed 

into two sets i, and ? c1' where the choice of a and c1 is one of the seven 

possibilities listed in Table I. We now define operators Ii ̂cE) by 

(2.1) 

where E commutes with ii and satisfies the relation E 2=1. One easily 

"(E) n 
verifies that the Lie algebra for Ii are the same as that for I.. 

1 

Four possible choices for E: E=+l, -1, y 5' -y5 will be used below. 

They are denoted simply by +, -, 5, -5 respectively. 

The first choice for a and cx listed in Table I will be used in the 

following. The second, third and fourth choices will give essentially 

similar results. The generator of the U(1) gauge field will be denoted 

by Y. 

Besides the conservation of various fermion numbers there is another 

global U(1) symmetry whose generator will be denoted by 5. This global 

U(1) will combine with an Abelian subgroup in SU(3) xU(1) to give a new 

quantum number SW after spontaneous symmetry breaking. This new quantum 

number SW is called weak strangeness and will be discussed in detail 

below. 

For simplicity, suppose there is only one generation of fermions 

(leptons and quarks), the model involving several generations will be 

discussed later. The leptons form two Y=O triplets of Dirac spinor in 

SU(3) and are denoted by $J, and #F respectively. The representations 

for quarks are two triplets IJJ~ and JIt with Y= $ together with a couple 
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ofY=% h singlets u and u . Transformation properties for fermions are 
3 

respectively 

U ‘fu( = 

uh+uh’ = 

where 

u(5) (Sj(x)) e 
iGo eiSY5n# 

, 

&5) (Sj(x)) e 
i&3(x) eiS(-y5)s +h 

, 

eiYe(~) .iSYgn u 
, 

.i?e(x) eiS (-Y5)‘l uh 
, (2.2) 

= exp iii"' Cj(x)} . (2.3) 

In (2.2) and (2.3) Ej(x), j =l,..., 8, e(x) and n are group parameters 

for the local SU(3) xU(1) and the global U(1) respectively. The generator 
/. 
S will take value t for fermion triplets and -+ for fermion singlet. 

One note that Jlh and uh transform just as 8 and u with -y5 instead 

of Y5’ so we may call $Jh the helicity conjugation of JI and vice versa. 
. 

There are nine gauge fields A;(x), j =1,...,8 of SU(3) and B,,(x) of 

u(1) * Define 

$4 = 
IJ 

igA$x) I!') 
J 

(2.4) 

p transform under SU(3) in the following way 
?J 

;\(E) ~ i(E)’ = +) 
(Sj(X))(a~+~llE)(x))U(E)+(~j(X)) (2.5) 

lJ v 

The covariant derivatives for the fermions are easily constructed. 

They are 
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D,,9 = ) 

+ $gliBll)+h , 

DIJU = 
au + +g’b U 

P 
, 

Duuh = Uh . (2.6) 

The invariant Lagrangian involving fermions and gauge fields can be 

written as 

-t- 'Lqyv 
( ap+A n(5>+i&" n(-5> +&" 

v 2 YBp 
) 

+, + $Y' ( ap+Av 2 YB 
) 

'bh 1-I q 

-I- iy' u + pv” (2.7) 

3. Transformation Properties of Higgs Field 

We choose Higgs multiplet 0 to be a 3x 3 matrix. It transforms as 

@ +O' =e i?e(x) eiinu(-) au(+)+ 

* A 
*+ + @+( = e-iWx) .-iSn ,(+I @fu(-)+ (3.1) 

Since 

+)* = &d , $E) = &-d+ 

for our choice of a and ~1, we obtain from (3.1) 

a*+@*' = e -i%(x) e-igqu(+>Q*u(-)+ 

Y&-F;1 = eifie(~) eiirjU(-) T~(+>+ 

(3.2) 

(3.3) 
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. I.e., z transforms in the same way as @. Thus @ decomposes into two 

irreducible representation by the following additional conditions 

@(6) = $6) , 

@(3) = $3) 3 

$3) and o(~) can be expressed as 

@(3) = A/ 

where $O, # 
a 

and $c are complex in general. 

The triplet 0 (3) can also be expressed 

$7 

$33) = -95 

0 +2 

6 - 

3 - (3.4) 

(3.5) 

in the column form 

The transformation rule (3.1) can be expressed in this form as 

$3) ~ o(3)' _ ei?e(x) eisrlu(+) @(3) 

@(3)++ @(3) _ -i?e(x> e-iiq ,(3)+u(+)+ - e (3.6) 

and (3.2) as 

@(3)* 3 o(3)*', e-iie(x) e-iiriu(-) o(3)* 

$3) ~ $3)' = e i$e(x) eiin1(3) u(-)+ 

The covariant derivatives of Higgs fields are 

(3.7) 

(3.8) 
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for matrix form of both @ (6) and Q(3) and 

(3.9) 

for column form of @ (3) respectively. 

In order to see how to generate the mass spectrum for quarks let us 

consider the Lagrnagian interaction involving quarks and Higgs field 

f J, @ p+ $ + f* JI 0+ P- + 

+ fl;@+P+$ + f; JI @ P- u 

+ f2XP-JI + f; J1 @* P+ u 

+ fh Sh 0 P- Jlh + fhJc -h + 
'4 Q p+ dJh 

+ f;;hO+P-$Jh+fl h* Yjh 0 P+ Uh 

+ fh ;h 3 p 
2 + (3.10) 

In (3.10) P+= $(1+y5), which are necessary for the quark Higgs coupling - 

to be invariant. 

We note that any one multiplet such as $ or u contains same portions 

of left-handed and right-handed components. The left-right symmetry 

requires that fl and f2 be of the same magnitude. Suitable choice of 

the phase of @ makes both fl and f2 real and we may define a parity 

transformation P to realize the left-right symmetry which distinguishes 

two kinds of cp (3) as 

* + Y4JI , 'J-+YU , 4 

P: (3) 
@A 

+ -p* 
A 

@(3) 
B 

-f mi3)* (3.11) 



(3.11) holds for @(3) 

The P-invariance 

in the column form. 

require that 

(3) f -1 = -f2 for @A- ; 

fl = f2 for 0i3) . (3.12) 
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Of course, for leptons we get fl = f2=0 since there is no singlet for 

leptons. These properties are sufficient for the model to be left-right 

symmetrical. 

4. A Possible Model in SU(3) x U(1) 

Now we construct a left-right symmetrical model involving one 

generation of fermions. Fields belonging to this model are 

leptons 

quarks : i,, UP $9 Uh 

gauge fields: Ai (j =1,...,8) , B,, 

Higgs fields: 2: @A' OB, @y ; 5: @ 

where oA, QB and 0 have quantum numbers Y=O and S= - f, while Y= -1, 

s=$ for oy, QA and oB have opposite behaviors under.P transformation 

given above. Qy is free under P transformation because it does not 

couple directly with fermions. 

The invariant Lagrangian has the form 

22 = YFG + LzH + 8,, - v (4.1) 

where gFG is the Lagrangian given in (2.7) and 
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9H = tr(D,,QA)+(D'QA) + tr(D,,'QB)+(D'OB) 

+ tr(DuQy)+(DuOY) + tr(DU@)+(D'@) 

f AR ?g’A’++Q + i&Q;p-“p. J 
+ fR ( ?(p+lJ, + QJ+qJ, ) 
+f Aq 

( 
Tq@Ap+'bq +. ?q'~-$q 

) 

+ fq 
( 

Tq@P+4Jq + JIqO+gJ q > 

+ fAu 
-+ 

( u'Ap+$q + $q',p-u - ZAP ljJ 
-q 

- ++u 
) 

+ fB~ ( 
&+P 'JJ + J 0 P u + ;SBP-"q + $m;P+u B+q qB- > 

h h P +*,u+u, + +PT, f + fh terms - > 

(4.2) 

(4.3) 

where f's are real by a suitable choice of phase factors. Renormaliza- 

bility restricts the self interaction potential V of Higgs fields to be a 

polynomial of Higgs fields with powers I 4. Owing to the global U(1) 

symmetry only terms with even power are allowed. The explicit form of 

V used in the present model is given in Appendix A. This Lagrnagian 

has left-right symmetrical form as it is invariant under the following 

parity transformation 

Now we discuss the problem of triangular anomaly in this model. 

The typical triangular anomaly is shown in fig. 1. TWO of the vertices 

are vector vertices and the third is axial-vector one. In our model, 

both vector and axial-vector vertexes are discribed uniformly by 

-(_+5) generators Ii . The Feynman amplitude of this diagram is 
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S .&p,q) = (28)-4/d4k tr Sp[~"I~)(y,q+k)y~~~~) (y,k) 

yL95) (q+H2k2(k-p)2 
-1 

i 1 
+ (27-T) 

-4 4 
/ d k tr Sp 

[ y A- (-5) Ik (y,q+k)yvr;-5)(y,k) 

y”i;-” (y,k-p)] [(q+k)2k2(k-p) ‘I-’ (4.4) 

where (y,k) = yPkv, Sp means trace for Dirac matrices and tr means trace 

for matrices in SU(3) xU(1) space. In (4 4) ick5), i=1,...,8 are given * f i 
* (?5> above and IO is define as 

$5) = I(-5) = LA 
0 0 2y (4.5) 

Two terms in (4.4) are contributions of +,, Jo 
4 

, u and $i, $i, uh 

respectively. 

A(?5) Since all Ii commute with yy, (4.4) can be simplified as 

S ApV(P,q) = (2r)-4/d4k S~{tr[f~~‘i~~)I~~) + i:-5)ii-5)ii-5)] 

(y,q+k)y’(y,k)y’(y,k-p)yX } [(.q+k)2k2(k-p)2]-' (4.6) 

The factor 

(4.7) 

is important in the discussion of anomaly. The existence of anomaly 

requires T N y5, i.e., 

Sp(y5T) # 0 (4.8) 

hence there should be odd number of the "a" type vertices. Furthermore 

as :(-5)=-f(5), 3-5) = 35) 
a a a a ' we get 
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T = tr ;;);;5);15) 
1 

_ yyyq = 0 

So the model is anomaly free exactly. 

5. Spontaneous Symmetry Breaking and the Mass Spectrum 

The self interaction potential of Higgs fields is chosen to be 

(see Appendix A) 

V = -aA@iQA + bA(OiDA)2 - aBOiQB f bB(@i@B)2 

- ayC$Qy + by(@G@y)2 - atr@+@ + b(tr@+0)2 

+ + 
+ C@AoY@y@A - d($DB + ";@A)2 

- etr 
[ 
(CDL + OAAQ+)@yGG 1 (5.1) 

where all coefficients are positive. The vacuum expectation value are 

vA vB 

<@A>o = 0 ( \ <oB>o = 

I 

, 

0 0 0 

0 , 

( 
0 

0 

, <@> 0 = % 0 

“Y 

i i 0 0 0 0 

OS0 

<@y>o = 

respectively. 

(5.2) 

After spontaneous breaking of symmetry, eight components of gauge 

fields become massive while the nineth one corresponding to photon 

remains massless. 

Let us perform infinitesimal gauge transformation for the Higgs 

fields near their vacuum expectation values, which can be expressed as 



%,B = 'A,B + $'A,B 

C4 + is5 c1 + is2 

E4 + is5 2(c6 + iC7) E8 - E3.z 
i 1 

C$l + is2 E8 - c3+J? 
i i 

2(E6 - iE7) 

(5.3) 

It is possible to eliminate eight components in QA and Qy by a suitable 

choice of SJ and 0 after spontaneous symmetry breaking and get the 

remaining components as 

VB + 0; + i(Ji” 

( -I +2 , 

$4 1 , 
(5.4) 

0 
where +O, x0, $(I, $i", 923 and 4;: are real and the others complex. 

All of them will be heavy Higgs bosons, since the Higgs potential has 

no additional higher global symmetry, no pseudo-goldstone appears after 

spontaneous breaking of symmetry. In other words, for given <@A>o and 

<oy>,, all degeneracy on the minimum of V are removed. 
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Qy does not couple directly with fermions owing to the conservation 
+ 

of Y. 
OA + - 

$3 4$, +11' +12’ o,,, 9,,, * $2;' 4;; and 0; do not couple with 

ordinary fermions owing to the conservation of weak strangeness SW 

discussed below. 

One local U(1) and on global U(1) symmetry remain unbroken. Their 

generators are the charge: 

tj = 13-&Ig+Y 

and the weak strangeness: 

SW = 1.;,+Y+j: 
$3 

(5.6) 

respectively, which are conserved quantum numbers. After sponteneous 

symmetry breaking, all physical particles are eigenstates of charge Q 

and weak strangeness SW as shown below. 

For fermions we must replace (5.5) and (5.6) by 

(j = $+5) _ J? ;(iS) + f 
3 8 (5.7) 

SW = 2 p51 
43 8 

+ ; + ,(i5) (5.8) 

on account of the transformation properties of IJJ and I/J~ introduced above. 

For example, $,, $ and u can be expressed as 

j i 

L2/3 
716 

+ R;;; 

, i,= 
-l/3 

L7/6 + R:;; 

i 

, u = (L;;; + R;;;) (5.9) 

L5/3 -l/3 
l/6 + R7/6 

where L Q Q 
SW 

and R s denote the left-handed and the right-handed~fermions 
W 

with charge Q and weak strangeness SW respectively. 
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After spontaneous symmetry breaking the mass terms of the fermions 

are derived from 9 FH' For $,, $ 
g 

and u, they have the form given in 

(4.3) and the masses are determined by the following expression 

1 
Jz ( 

fRV + fARVA 
)( Ii;,2L;/2 + E;,2Ri,2 ) 

fqv + fAqvA 
--1/3L-1/3 
R7/6 716 

+ z- 1/3R-l/3 
716 716 

1 
+z fc - fAqVA 

E5/3L5/3 
l/6 l/6 

+ i;5/3R5/3 
l/6 l/6 

+ fBuvB + fAuvA )( 
g2BL2/ 3 

7/6 7/6 
+ ~2/3~2/3 

7/6 7/6 

+ fBuVB - fAuVA >( 
gWL2/3 -2/3 2/3 

l/6 l/6 + Ll/6R1/6 (5.10) 

The charged fermions with SW = l/2 and 7/6 are made light while those 

with SW = -l/2 and l/6 very heavy by means of suitable combination of 

"f"s and 'V's . In addition, we assume that the coupling constants for 

$9 ill; and uh are much larger than those for JI,, $ and u to make the 
9 

masses of charged components of +k, $i and u h very heavy. Thus the 

lgiht fermions remaining after spontaneous symmetry breaking are 

h 
% -+ 

VL + v P 

eL 

eR 

h h 
vR+ v L 

- 

- 

"L 

dL 

dR 

- 

- 

- 

, u + (u,) 

(5.11) 

h 
, U -f (-) . 
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' We note that there are four massless neutrinos appearing in the 

present model. However, as will be discussed below, there is no con- 

tradiction in comparison with experiments. 

The charges and the weak strangeness of all bosons are given in 

Table II. 

The mass terms of the vector gauge bosons are easily derived from 

(4.2). They are 

3 g2(lvA12+ I”,i”)(w+w- + v+v-+ $ zo2) 
+ + g21v12(w+w- + v+v- + 4u*u-- + 4 zo2) 

+ 3 g2 Ivy 12(v+v- + u*u--) 

+ + g21"y12(+ z" + & Z'O ) 

2 

where 

wf = & (A' + iA2) , vf = % (A4 + iA5) , 

(A 6 7 +iA) , z" = 3 (GA3 + Ag) , 

Z IO = - 3 (A3- dA8) sincp + Bcoscp 

and 

(5.12) 

(5.13) 

I 
sincp = q;? ’ coscp = J&z (5.14) 

From (5.14) and (5.15) we obtain: 

(1) The photon field 

A = $(A2-fiA8) coscp + Bsirup (5.15) 

is massless as required. 
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(2) The masses of the charged vector bosons are 

$ g2(bA12 + lvB12 + b12) 

+ g2((uAj2 + lvB12 + hi2 + Ivy12) 

From (5.16) the inequality 

holds. Let us introduce a new parameter 

Iby I2 v E 3 1 -- 
lvA12+ lvB12+ Iv12 4 

(5.16) 

(5.17) 

(5.18) 

which will be useful in the following. 

The Z and Z' bosons are not eigenstates of the mass matrix. Let 

the true neutral vector bosons be Zl and Z2, they are related to Z and 

Z' by a rotation 

Z = cosclZl + sinaZ2 

Z’ = -sinclZl + cosaZ2 

Diagonizing the mass matrix we have 

rnil = rni [1+ a(l- *)z] 

rni2 = rnikg20 + i (tgo. +&r] 

(5.19) 

(5.20) 



where 

and 

2 42 2 
mZ = 5 "w cos a 
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(5.21) 

tg2a = 2J?vsincp 

3v- (4+v)sin20 
(5.22) 

We note that tgcl = & sincp, m 2 zl = m$c0s~0~ and 4, 4, rni2-+m in the 

limiting case v+m for arbitrary value of sincp. The neutral current 

JN,u 
between fermions can be written as JN = J;e sin28 Je*m*. There- 

31-I WV 

fore, all observable results in this limiting case are exactly the same 

as those in Weinberg-Salam model. Another interesting limiting case is 

.2 
sincp << 1 , = << 1 (5.23) 

V 

In this limiting case eq. (5.22) becomes 

tgcl = & sincp 
( 

l+ & sin29 + O(sin'cp) > 

Substituting eq. (5.24) into (5.20) and (5.21), we obtain 

2 2 
mzl = mZ ( 

l+ -& sin49 + O(sin6Q) ) 

2 2 3v 
mZ2 = mZ 4sin2q ( 

1 + + sin29 + O(sin4cp) ) 

2 . 2 
>> m 

9 
for samll v 

and 

2 
mZ = 

$4 l-3 
( 

sin2q + O(sin4(p) ) 

Comparing with the mass formula in Weinberg-Salam model 

2 
mZ = 4 / cos2ew 

(5.24) 

(5.25) 

(5.26) 

(5.27) 
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We obtain to order sin29 that 

sin20 = 12 1 
W -6 cos cp s -c (5.28) 

This is an encouraging result since recent experiments require that 

sin20 1 5-. w 4 Of course, this result is model dependent, one obtains 

different values of sin2ew when different representations for fermions 

and Higgs are chosen. But in this model, l/4 is the limit value for 

sin20 w and thus has special meaning. 

6. Interactions between the Fermions and the Gauge Bosons 

The gauge interaction Lagrangian for fermions can be written as 

Uh (6.1) 

We shall discuss the interactions between the light fermions and the 

gauge vector bosons first. For this purpose, the terms involving heavy 

fermions are neglected and the following substitutions are made in (6.1) 

v +v L R 

= 7); + 

v;+v h 
L 

0 

0 

‘V R uL 

0 

' 0 

, * q+ dL =Q:,, u*UR , 

dR 

0 

(1 0 , uh+O 

0 

(6.2) 
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As Cy'R = &'L = 0, one immediately see that AP[4,5,6,71 do not couple 

directly to either $;,"I); or vlv'l$i. It is also easily verified that 

(6.3) 

where $' denotes either $i or JI', ii, i=l 
q 

,...,8 are the usual Gell-Mann 

matrices for SU(3) and 

(6.4) 

is just the generator used by Ne'eman, Fairlie and others C41 in their 

graded SU(2(1) gauge group formulation. It occurs here simply as a 

result of the differences in the action of y5 on left-handed and right- 

handed fermions, i.e., 

y5L = L , y5R = -R 

In terms of the physical gauge fields found in the previous 

the interactions with W' and the photon have the usual form with 

e = 3 g coscp 

section, 

(6.5) 

which indicates that 

This is in agreement 

the limiting case of 

sin2ew = 1 4 cos2q in the charged current sector. 

with that obtained from the mass of Z boson in 1 

small sin2q. 

The additional charged interaction involving vR is 

(6.6) 



I 
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Since mV is probably much heavier than mW on account of experimental 

limitation, one may expect the contribution of V boson is much less than 

that of W boson in the low energy processes. But in the high energy 

range, the influence of such term might be observed experimentally. 

There is another possibility for choice of leptons which gives the 

usual form of charged current for ordinary fermions. One may propose 

the existence of singlets s and s h for leptons. The charge of s is 

neutral and the weak strangenesses are l/2 for right-handed component 

and -l/2 for left-handed component respectively. vR will couple with 

sL after spontaneous symmetry breaking and get heavy mass just similar 

to that for corresponding quarks. However, the coupling between v L and 

sR can be chosen to be vanished by suitable choice of coupling constants 

among Higgs fields and leptons. In this case, the remaining light 

neutral leptons are u h h 
L' 'R' 'R and s L' Since sR belongs to the singlet, 

it will decouple with any component of SU(3) gauge field. The charged 

current involving V corresponding to (6.6) should vanish in the low 

energy range and the lightest weak strange boson should be stable. One 

may expect to find in high energy experiment a heavy weak strange boson, 

perhaps, the double charged U boson. 

The interaction Lagrangian of $' or JI' with the neutral vector 
4 

bosons has the form 

(2i3-{+G)cosa + + sin& - &G ) 1 sina 

-{+Y)sina $' (6.7) 

In the limiting case of small sincp, this interaction can be greatly 

simplified. The effective Lagrangian for the interchange of a neutral 
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vector bosons between fermions can be written as 

9 eff = 43 J fi [ I?pJil + JN2pJZ2 72 1 
where 

JN,~ 

= J; - sin28 J e.m. 

WP 

and 

with 

J 
N,!J 

= J~cos2flw + l- 4sin2ew 
L 

2 sine = 12 
W 

- cos q 4 

are two neutral currents coupled to the Zl 

of sin20 
W 

= l/4, the first neutral current 

in the simple gauge theory; the second one 

quarks which is difficult to observe owing 

(6.8) 

(6.9) 

(6.10) 

and Z bosons. 2 In the case 

has exactly the same form as 

is a pure vector current for 

to the interference with 
3 

strong interaction. Recent experiments tell us that sinLew is slightly 

less than l/4, the present model provides a small correction (depending 

on the value v) in the neutral currents of fermions. This small effect 

could be measured by more accurate experiments. 

h The additional neutral interaction involving vR, vR and v: can be 

written explicitly as 

ZIPcosa + Z2Vsina (6.11) 

which is difficult to observe directly in the low energy range. When 

free Zl is observed in high energy processes, the branching ratio 

Br = T(Zl+v;)/T(Zl -tall) may be used to check this model since Br 

should be four times of that predicted in usual model. 
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7. Weak Strangeness and Weak Strange Particles 

The weak strangeness SW is a conserved quantum number in this model. 

Owing to the conservation of lepton number and quark number, one may 

re-define the weak strangeness for fermions as 

SW=0 , for 

SW=-1 , for 

h 
$;, $;, UR' 'R' 

h 
vR' v~ ' 

Since vi and v h 
L only couple with neutral vector boson in the above 

approximation, they will be unimportant in the following discussion on 

weak strangeness. It is sufficient to consider only one weak strange 

lepton vR. The weak strange bosons are V' and U 
tf. together with many 

kinds of weak strange Higgs as shown above. These bosons are heavy and 

probably heavier than W' and Zl. The conservation of weak strangeness 

requires that: 

(1) Weak strange particles can be produced only in pair. 

(2) They do not couple directly with ordinary quarks and some of the 

single charged weak strange bosons can couple with electron and vR. 

(3) They are weak decaying and ended in final state with the lightest 

weak strange particle. 

It is interesting to discuss the decaying behavior of U since it 

might be the lightest weak strange bosons. If mU < mW+mV, U might 

decay through the virtual V boson 

lJ*-- w+ + v+ 

L- 

L 

e++vR (u++vpR,...) 

e++v, (U++VuL,...,U+~,...) 
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It is an electro-weak process of order two with the propagator of V 

boson. 

If mU < mW, lJ++ will decay through the electro-weak process of 

order three with both W and V virtual. So it may appear as a long lived 

particle with double charge decaying possibly into two positively charged 

lepton. 

If "v ' "v, one may expect to discover V boson earlier than U 

boson. In this case, V boson will decay into electron and vR through 

the V+A current with a short life time 

V+ + e++vR(uf+v 
!JR 

,... > 

Decay of V particle into ordinary hadrons is forbidden in the pre- 

sent model. 

8. Model Involving Several Generations of Fermions 

Three generations of leptons (v,,e), (vn,n) and (vr,~) have been 

discovered experimentally and it is probably the same for quarks. 

There might be symmetrical properties between various generations. An 

important problem is the Cabibbo mixing among various generations of 

quarks. This problem has been discussed by many authors [51. 

It is easy to generalize present model to include several genera- 

tions, for example, three generations of fermions by the method of 

Kobayashi and Maskawa [51. Denote the ith generation of fermions by 

* Ri' ~qi, ui, Jl~i, j~i’ us 

Because of the degeneracy of various generations, we must consider all 

possible coupling term among these generations in 9,. For example, 
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the term 

must be replaced by 

etc. 

Let us denote the Q=-1 lepton, Q=2/3 quark and Q=-l/3 quark of 

ith generation by ei, ui and di respectively. It is easy to derive the 

mass matrices among various generations from above generalization. They 

can be expressed simply as 

m ..e.e. + m ..U.u + m 
elJ 1 J UlJ 1 j 

dij$dj (8.1) 

where all mass matrices are Hermitian. 

For leptons, we can introduce an unitary transformation to make 

the mass matrix diagonal and obtain 

m ..e.e. + 
e=J = J 

meZe + rnPjP + mT'CT (8.2) 

Since all neutrinos are massless, they will remain massless under 

the same unitary transformation. Of course, the kinetic energy term of 

leptons 

is invariant under such transformation. From this rearrangement of 

leptons, we conclude that for leptons: 

(1) There exist three kind of charged leptons with various masses and 

one may identify them as e, n and T. 

(2) There are three neutrinos corresponding to three charged leptons 

respectively. All neutrinos are massless. 
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(3) Three kinds of leptonic numbers can be introduced to distinguish 

three generations of leptons. They are conserved individually. 

There is no Cabibbo mixing appearing among leptons. 

For quarks, the unitary transformations to diagonalize the mass 

matrices of u i and di are different in general. So if we introduce an 

unitary transformation to make u i diagonal 

m uij u. u. 1 J + mU;u+mcZc+mtft (8.3) 

di will transform into d; (d',s', b') but remain undiagonal in general. 

The connection between di (d',s',b') and diagonal di (d,s,b) is 

described by an unitary transformation, i.e., 

d' 

S’ 
b' 1 

= u 

d 

0 S 
b 

(8.4) 

There are nine parameters appearing in the 3 x 3 unitary matrix U. 

Owing to the arbitrariness of relative phases, five of them can be 

removed by suitable choice of relative phases among these six states. 

The remaining matrix with four parameters is the well-known Kobayashi- 

Maskawa general expression of Cabibbo mixing. Therefore, for quark: 

(1) Both ui and di get masses by Higgs mechanism in contrast to 

neutrinos which are massless. 

(2) In general, ui and di will not diagonalized simultaneously, it 

leads to the Cabibbo mixing. 
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The Cabibbo mixing can be described by a 3~ 3 unitary matrix with 

four parameters. 

Of course, all above discussions is easy to extend into the case 

more generations of fermions. 

9. Summary and Several Remarks 

In the previous sections we proposed an electro-weak model in 

SU(3) x U(1). The main results of this model can be summarized as: 

(1) The nature is left-right symmetrical before spontaneous 

symmetry breaking. The left-right asymmetry is caused by the spontaneous 

symmetry breaking. 

(2) This model is anomaly free exactly. 

(3) As a limiting case, it gives the same results as those of the 

Weinberg-Salam model and is in agreement with present experiments. The 

1 
Weinberg angle Bw is bound by the relation sin2ew 5 - and the neutral 4 

current for ordinary fermions reduces to that of Weinberg-Salam model 

exactly in the limit of sin2ew = i. 

(4) There are some small deviation from the Weinberg-Salam model 

about the predictions in neutral currents, where sin 2 ew is slightly less 

than l/4 which can be verified by more accurate experiments in the near 

future. 

(5) A new conserved quantum number SW, called the weak strangeness, 

is introduced in the present model. Furthermore, there exist many weak 

strange particles with non vanishing weak strangeness. Three of them, 

the right-handed neutrino vR, the vector bosons V and U are more 

interesting, because they might be lighter than the others. The weak 
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strange particles can be producted only in pairs and decay through the 

electro-weak interaction with vR in the final states. These predictions 

are the common results of a class of models analogous to the present one. 

(6) The number of fermions is four times the number of the known 

fermions. After spontaneous symmetry breaking, about three quarters of 

them get heavy masses and cannot be observed in the present energy 

accelerator experiments. Since all four kinds of neutrinos are massless, 

h the influence of them ought to be considered. vR and vi couple only 

with neutral vector boson and give no influence in charged current. 

They are very difficult to be discovered experimentally. The right- 

handed neutrino vR can couple with V and eR via the V+A current. The 

coupling constant of this vertex is the same as that for W boson. 

However, since both the vertexes of W and V will give contribution to 

the decay of muon 

p- -t VvL + w- 

L 
p- + VUR + v- 

e- + G L 
eL 

e- + v eR 

one may estimate the mass ratio mV/mW by the decay parameters for muon 

IgA/gvI = 0.85 T i':: and C$ = 180°+150 obtained experimentally. It . 

seems that if mV/mW is of the order 3 or more, there is no contradiction 

with the present experiments. More accurate measurement of decay para- 

meters for muon is important for estimation of the mass of V boson in 

the present model. Of course, the existence of four kinds of neutrinos 

might be observed in higher energy experiments. 

In addition, for the another choice of leptons discussed in Section 

6 the V+A charged current involving V should vanish in the low energy 

range and the lightest weak strange boson should be stable. 
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(7) This model can be extended to include several generations of 

fermions. The mixing among various generations of fermions appears 

naturally after spontaneous symmetry breaking and leads to the well- 

known Kobayashi-Maskawa description of the Cabibbo mixing. 
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APPENDIX A 

The Form of Higgs Potential 

The second order term in potential V for a Higgs field @ is unique 

and can be expressed as 

tr(W+) 

The number of the fourth order term is restricted by the following 

theorem. 

Theorem: If there are m irreducible representations with various 

transformation properties decomposed from the direct production @X @+ 

for a given irreducible representation @ of an unitary group G, the 

number of independent invariant terms constructed by four @ and 0 
+ 

should be less than m. 

Proof: Let 0 = ($l,..., +,) be a n-dimensional representation of 

unitary group G. There is only one invariant of second order and we 

denote it by 

Assume the direct product OX @+ is decomposed into m irreducible 

representations Dl, . . ..D. with dimensions Nl,...,N, respectively. 

we use IN 
+ 

to denote the fourth order invariants tr D.D. and define 
j 3 J 

the normalization of IN* to be N., i.e., INS is the sum of the squares 
J I J 

of magnitudes of all component- appearing in Dj. Then we have 

m 

c N,= n2 
j=l ' 

I1 = $ 1: , (N1 = 1) 
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and 

m 

c IN = 2 5 
j=l j i=lk=l 

thus one can use this relation to eliminate one of the invariants and 

only m-1 of IN j, j = l,..., m or less are linear independent. 

According to this theorem, Cp (3) has an unique fourth order invariant 

and @(6) has two. 

In the present model four Higgs multiplets are introduced. Their 

properties are listed in following Table: 

(3) 
@A 

(3) 
@B 

(3) 
@Y 

o(6) 

Dimension 3 3 3 6 

Y 0 0 -1 0 

S -l/3 -l/3 513 -l/3 

P A B 

First, we discuss the minimum of self interaction potential for a 

three dimensional Higgs field 0 (3) (d enoted by @) 

v = -a@+@ + b(O+@j2 (A. 1) 

The minimum takes place at 

@+@ = & (A. 2) 

so it determines only the magnitude of the vector and there is a 

degeneracy along the relative direction and the phase of the components. 

If there are two three dimensional Higgs fields 0 and Q'~, both @ 

and @' have self interacting potentials of form (A.1) and get minima at 
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0+@ = a/2b and Q'+Q' = a'/2b' respectively. Now we introduce some 

additional term to generate the correlation between Q and @' and reduce 

the degeneracy. If the quantum number Y of 0 is different to that of 

@', the coupling terms allowed by Y conservation are 

CD+@@ ' +@" + c'@+v@~+cJ (A.31 

It is interesting for us to discuss the second term since it can reduce 

the degeneracy of the minimum. This term can be expressed as 

c' x2x'2/s12 (A.4) 

where 

x = cp+@ , d- X' = &6 , @+a' = XX'S and \Sl2 5 1 

Thus the minimum takes place at 

1q2=o , when c'>O ; 

1sl2 = 1 , when c'<O . 

In the present model we select c' > 0 for @ = QA and @' = @Y in 

order to make the minimum to take place at different components for 

QA and Qy, i.e., the not vanishing vacuum expectation values take place 

at the first component of QA and the third component of Qy. 

Now we turn to the correlation between QA and oB. They have the 

same quantum number Y = 0. We hope that the not vanishing vacuum 

expectation values of this two triplets take place at same component, 

I.e., the real part of the first component. A coupling term of power 

two may be introduced for this purpose. It is 

+ 
+ 'B'A (A.51 
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where d is real. With the notation used above it can be expressed as 

2dXAXRReS (A. 6) 

The minimum takes place at 

ReS=-1 , when d > 0 ; 

ReS = +l , when d < 0 . 

Since S=e iacosO (la] i r/2>, ReS =~l means that the not vanishing vacuum 

expectation values of QA and @R take place at the same component with 

relative phase 1~ or 0 respectively. Thus, if the vacuum expectation 

value of QA is real, that of aB should be real too. 

The self interaction potential of @ (6) can be written as 

v- -atr 0+@ + b(tr @+Q)2 + b' tr a+@@+@ (A.7) 

In the case of b' =0, the minimum takes place at tr @+Q = a/2b and is 

degenerate for all six components of 0. 

A coupling term 

(A.81 

can be adopted to remove the degeneracy. If the not vanishing vacuum 

expectation values of QA and (By take place at the real parts of the first 

component of QA and the third component of Qy respectively, (A.8) can be 

written simply as 

(A-9) 

The minimum takes place at 411 = $,, = $33 = $1, = $13 = Im$23 = 0, the 

sign of $23 depends on e and $1. 
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From the above discussion, we may construct a self interaction 

potential of Higgs fields to generate the expected spontaneous symmetry 

breaking. It has the form 

+ + 
V= -aAQAaA + bA - aB'BiPB 

+ + 2 
+ c@A@y@yQA - d 

- e tr 
+ ) 1 Q CJ+ 

Y Y (A.lO) 

where all coefficients are positive. The vacuum expectation values of 

Higgs fields are 

< OA >. = 

<@y>o = 

vA 

0 

0 

0 

0 

"Y 

, < OB >. = 

, <@> = 
0 

vB 

0 

0 

0 

0 

0 

0 0 

0 V/J- 

V/L2 0 
1 

respectively. The values of vA, vB, vy and v depend on the coefficients 

in (A.lO). 
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APPENDIX B 

The Connection Between the Helicity Mixed Representation 

and the Usual Notation 

In models of electro-weak interaction we deal with left-handed and 

right-handed fermions separately. One simple way to realize this require- 

ment is to adopt the chiral group. In order to preserve the left-right 

symmetry before spontaneous symmetry breaking one may adopt the direct 

product of two chiral groups. Another attractive possibility considered 

in our model is to require the group to be left-right symmetrical, i.e., 

the left-handed and right-handed components are conjugate to each other 

in their representations. For example, if the left-handed components 
* 

l form a 2 representation of SU(3) group, we use a 2 representation 

(conjugate representation of 2) to describe the corresponding right- 

handed components. 

For simplicity we discuss the SU(3) description for the first 

generation of leptons in our model. For triplets 

2 3” 2 2” (B.1) 

are introduced, where $h is the helicity conjugate of $ as shown in 

Section 2. We note that $ has the same transformation property as 

$L under SLJ(3). Using the usual notations their transformation properties 

under SU(3) can be expressed as 

h h' h 
$, + +R = '+R , 

‘4, -+ *i = u*$R , 

0.2) 
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where U = U (+I (Sj (4 1 as shown in (2.3) which is the usual transformation 

matrix of SU(3) group. Using (B.2) one may discuss our model in the 

usual notation. If we use the notation given in Section 2, from (3.2) 

the transformation (B.2) can be rewritten as 

$L + 4J;. = u(+)$L , Q, + 4Ji = lJ(-)$ R ' 

h h' 
'R + *R 

= ,(++,h h h' 
R ' $L + $L 

= ,(-)$h 
L ' (B .3) 

or simply 

IJ + Jr’ = UC5)$ , dJ = 4J, + JR) , 

qh + $h’ = ,(-5)$ , $)h = II; + 6; . 03.4) 

This is just the SU(3) part of (2.2) for leptons. This means that our 

description is consistent with the usual one. 

Since both $L and 'JJ, are 2 representations of SU(3), they can couple 
J( 

to scalar multiplets of either 2 or 5 only. Both A* scalars and 5 

scalars can be expressed as a field with two SU(3) indexes 9.. with 
=J 

d = 
ij -~ji for A* and $ij = 4.. for 6. 

J= - 
In the usual notation 4.. 

1J 

transforms as 

+ ij + $I. 
iJ 

= UiilU.., 9.1.' (B.5) 
JJ =J 

Using EC+) =U(-)+ given in (3 2), it becomes . 

$!. u (+> (-1-t 
'-J 

= Uii'a.'.'~.'. = ii' ~‘l’l”‘l’ 

iJ JJ iJ JJ 

= u(+) o &I+ 1 ij 

This is just the SU(3) parts of (3.1) with cP+ instead of 0. 
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The use of the helicity mixed representation provides the following 

conveniences: It describes both 9, of 2 representation and $, of 2" 

representation in a unified formula simultaneously and then most of 

formulas can be expressed in the matrix form simply. It reflects the 

left-right symmetry naturally and concisely and gives the close connec- 

tion between I#, and +,, especially the mechanism to get mass after 

spontaneous symmetry breaking in a simple way. 
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TABLE I 

Case 

I 

II 

III 

IV 

V 

VI 

VII 

l 

a 

13468 

13578 

23478 

23568 

1245 

1267 

4567 

a 

257 

246 

156 

147 

3678 

3458 

1238 
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TABLE II 

Y z1 z2 w- w+ v- v+ u-- u++ 

Q 0 0 0 -1 1 -1 1 -2 2 

SW 0 0 0 0 0 1 -1 1 -1 

x0 x- x+ +O $7 + - q” (b2 @2 9, 

Q 0 -1 1 0 0 0 -1 1 -1 

SW 0 1 -1 0 0 0 0 0 1 

Q 1 0 0 -1 1 -1 1 0 0 

SW -1 0 0 0 0 1 -1 1 -1 

-- 
$22 G G G 

Q -2 2 -2 2 

SW 1 -1 1 -1 
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