
SLAG-PUB-2443
December 1979
0-f)

*
THE SAMAC PROGRAM - THE COMPUTER SUPPORT

FOR A STAND-ALONE MONITORING AND CONTROL SYSTEM

By C.A. Logg
Stanford Linear Accelerator Center

P.O. Box 4349
Stanford, California 94305

ABSTRACT

The high en e rq y physics experiments at SLF.C
require constant monicorilly and control of the
numerous components contained in the particle
detection apparatus. This paper describes a basic
hardware configuration and operating system which
have been designed and implemented to satisfy the

,monitoring and control requirements of the many
different setups used in these high energy physics
experiments. It 'is based on the LSI-11
microprocessor with up to one million words of RAM
and EPROM which are interchangeably mappable into
the normal LSI-11 RAM/EPROM address space of 28K
words. The entire'system is modular in hardware
and software so that it can easily.tailored be to
an individual experiment. The human interface is
such that little training is required for
effective use of the system. Since the items

,monitored include gas pressures in detectors,
temperatures, and detector voltages which may have
a bearing on the final analysis of the data taken
during the experiment, these readings are
communicated to the central data .acquisition
system (usually a VAX 11/780 or a SIGMA 5) so that
they can be logged along with the data.

INTRODUCTION

In the high energy physics experiments
which are done at SLAC, there are numerous
factors such as voltages, pressures, and
temperatures which must be continuously
monitored. The stability and values of
these factors are crucial to the
experiments, and in some cases may have an
influence on the final analysis since they
may determine the characteristics of the
various detectors. A monitor chassis (1)
and various cards for digitizing the
voltages, pressures and temperatures have
been designed at SLAC. This paper
describes the computer hardware and basic
operating system software of an LSI-11
based computer system which has been
designed and implemented to facilitate the
ncnitoring and controlling of the various
voltages, pressures and temperatures for
which the monitor chassis provides an
interface. The readings are also made
available to the host experiment data
ac'quisition computer (usually a VAX) so
that it can record any information which
may he relevant in the final analysis.

*
Thj.s work was supported by the Department of Energy
under contract number DE-AC03-76SF00515.

The design goals have been to provide a
system that:

++

+t

++

++

+t

++

++

+t

has an easy to use human interface.

can be easily tailored for individual
setups.

has an expandable data base.

can provide fast respoI1se for
interrupts that might be generated by
fault conditions.

could be developed in a about SiX
months with existing software
development facilities.

is fully functional in a stand alone
mode.

has multi-terminal support.

provides some protective Control over
the issuing of commands SO that
contradictory commands can not be
issued by different terminals.

(Contribution to the 1979 Fall DECUS U.S. Symposium, San Diego, CA, December 10-13, 1979.)

I

;
++ is low in cost. I I

I TR1PLEX ’ I
:
:

:: : : :.
:: : : :
:: :
:: : 1 lIlAI

TAT’T I

:: : IMIGIDI CAMAC lclc
:: : IMlOlCl CRATE IClC
:: : i-lRl_i l-l-
:: : : :
:: : :........ :
:: : -::
:: : I -1
:: : 1 MONITOR 1
:: :
:: :
:: :

‘:: I
:: I LSI-ll',
::
::

) CONSOLE \
El

::
:I \

: 1 :I AUX. TERMINA:,
:I ___I
:
1 AUX. \

) TERMINA:,
__I

++ includes facilities that experimenters
have found useful in previous LSI-11
systems.

In general, during checkout, the
experimenter wants to look at displays of
data on command, then maybe adjust the
hardware, reread the data, and display it
again. nuring the experiment, there may
he numerous readings which are to be taken
on a timed basis (every N seconds, minutes
or hours), checked for tolerance, and
displayed on command. All reading
addresses, tolerance limits, and settings
must be interactively changeable. In many
cases, the user may be interested in a
function of some reading rather than the
actual reading. The following sections
describe a package which is intended to
satisfy these monitoring needs. It also
has been designed so that control
subsystems can easily be interfaced.

LSI-11 HARDWARE CONFIGURATION

The LSI-11 hardware we have Put together
has a minimum of two 32K word Digital
Pathways (2) RMA-S32 random access memory
(RAM) boards, one 16K word Digital
Pathways RMS-fl16 EPROM'board, a DLVll-J, a
Standard Engineering Corporation
CCLSI-11/A CAMAC Crate Controller and
LSI-11 interface (3) an
processor, and aa Digital

LSI 11/2
Pathways

(BSC-256) Bank Switch Controller for
handling the RAM and EPROM memory. By
adding additional 32~ RAM boards or 16K
EPROM boards we can further expand the
memory as needed.

The LSI-11 system is connected (Figure 1)
to the monitor chassis via two CAMAC
modules: Kinetic Systems
Converter (zodel 3553) (4) and

12-bit A/D
Kinetic

Systems 3fiRl Input/Output regiszer (IGOR)
(5). The IGOR module is used to send
commands to the monitor chassis and read
digital data. The A/D Converter is used
to digitize the analog data which is
retrieved from the monitor chassis.

The experimental data acquisition
computer, usually a VAX, has access to the
same CAMAC crate via a CAMAC CCA-2 crate
controller. A 4K Kinetic Systems 3821 RAM
memory module (6) is also in the CAMAC
crate. The LSI-11' can receive commands
from the VAX either via this memory module
or via a serial line as a virtual terminal
to the VAX. Any data which must be sent
to the VAX is transferred via the RAM
memory.

Figure 1

The basic configuration includes an LSI-11
with an auxiliary CAMAC crate controller,
a DLVll-J, a CAMAC crate, and the monitor
chassis. The DLVll-J is used to connect
up to 3 terminals, and for a virtual
terminal connection to either the
expermental data acquisition computer
(usually a VAX), or the central SLAC
computer complex (the TRIPLEX).

Minimally the CAMAC crate contains:
MM - the 4K Kinetic Systems RAM module
ADC - A/D Converter -
IGOR - Input/Output module
ACC - LSI-11 auxiliary crate controller
CCA-2 - the VAX crate controller

-2-

Nominally, up to 3 terminals can be
attached, although with the addition of
more DLVll-J boards and a slight system
generation modification more terminals
could certainly be used.

'Pha LSI-11 RAM and EPROM is divided into
4K word banks. Each bank is given a
unique number in the range of cl-$377 octal
(note that SNNNN is used to indicate an
octal number) . For convenience, the EPROM
banks are numbered from 5317 octal down
and the RAM banks are numbered from 0 up.
The number is actually strapped by jumpers
onto the memory boards. The bank switch
controller has 8 l&bit registers which we
have located at $170600-$170616 in the I/O
page. These registers are used to map
into the normal 28K address space of the
LSI-11 the various RAM and EPROM banks.
The register at $170600 holds the number
of the memory bank which responds to the
addresses (O-$17776). The memory bank
number contained in the register at
5170602 will be the one used when an
address in the range ($20000-$37776) is
accessed. Similarly

$170604 maps addresses ,($40000,$5777(i)

' $170606 maps addresses (S60000,$77776)

$170610 maps addresses ($100000,$117776)

S170612 maps addresses ($120000,$137776)

$170614 maps addresses ($140000,$157776)

RAM and EPROM are not mapped into the
address space reserved for the I/O page.

These registers are all under program
control. The BSC controller has on the
board 82S123 ROM which contains a
power-up'default configuration. Bit 15 of
the register located at $170616 determines
whether the default ROM located on the BSC
controller, or the registers in the I/O
page determine the mapping. On power-up,
bit 15 of $170616 is always 1. It can be
set under program control to 0 to make the
I/O page registers the effective map
controller.

For the implementation of the software for
this system, the following mapping scheme
(Figure 2) has been chosen: continually
resident RAM is present in the range
0-$60000 for the program area which must
be resident. That is; registers $170600,
S170602, $170604 will always contain 0, 1,
and 2. Register $170606, which controls
the address space ($60000-S77776), is used
for various overlayable EPROM banks.
These EPROM hanks contain pieces of the
SAMAC code which can be executed out of
EPROM and 'overlayed'. The register
S170610. which controls the address soace
(S100000-S117776), is used for RAM banks
which are overlayed. These are RAM banks
which a software memory (buffer) manager

manages as a buffer pool. The register
S170fi14 contains the bank number of a
general 4K EPROM kernel. The contents and
significance of this EPROM kernel will be
discussed later. It should suffice to say
for now that the kernel contains some very
general stand-alone system support
routines. The register $170612 controls a
continuously resident RAM bank which is
used for the system stack and various
buffers and pointers which the EPROM
kernel uses. Although this full 4K is not
needed for the EPROM kernel support,
partial usage of this block by the stand
alone system (other than as stack
is more-trouble than it

space)
is worth.

I I

I I
I . I 160000
/

/140000

i i
I

I120000
I

I I100000

/

I

1 60000
I I
i RESIDENT i

I
RAM

I

I
I 1000
I

I/O PAGE

GENERAL EPROM
KERNEL

SYSTEM STACK, HOST
COMPUTER BUFFERS

RAM BANK
SWAP SPACE

OVERLAYED EPROM
BANK SWAP SPACE

DOWN LINE LOADED
PROGRAM SPACE

INTERRUPT VECTORS
I I 0

Figure 2

Diagram of LSI-11 address space usage.

SOFTWARE DEVELOPMENT

The software for this system has been
developed by using the existing software
development facilities (7) available on
the large SLAC IBM computer complex (B),
called the TRIPLEX. These facilities
include a PL-11 cross compiler (9), a
cross linker (10), the WYLBUR text editing
system (ll), IRM OS data sets, and the
lineprinters. The programs are edited,
compiled, and linked together on the
TRIPLEX to form an absolute load module.
This load module is then down line loaded
into the LSI-11 resident RAM memory by the
down line loader contained in the EPROM
kernel.

The parts of the stand-alone system which
are contained in the overlayed EPROM banks
are created in a similar fashion. There

-3

is one absolute load module for each 4K
EPROM bank. The only difference is that
instead of being down 1 ine loaded, the
absolute load module is burned into EPROMs
which are placed in the 16K EPROM board.

Linkage between subroutines which are
contained in the stand alone system EPROMs
(henceforth referred to as SAS-EPROMs) and
subroutines contained in the resident RAM,
subroutines contained in one SAS-EPROM set
and another SAS-EPROM set, and subroutines
contained in the resident RAM and any of
the SAS-EPROM sets, is done by TRAP calls.
Each separate load module in the stand-
alone system contains a TRAF address
table. The addresses of any routines in a
1 oad module which may be accessed by a
TRAP instruction are loaded into the TRAP
address table contained in that module.
In the case of an SAS-EPROM set, if a
given TRAP routine is not contained in
that set, then the EPROM hank number where
it is contained is loaded; or, if the
routine is in RAM, the TRAP table entry is
flagged to indicate that.

Linkage between the stand-alone system
code and the EPROM kernel is done by EMT
calls.

TFE EPROM KERNEL

The EPROM kernel contains facilities used
in the software development: a terminal
emulator and a down line loader. It also
contains various routines which are used
by all stand-alone systems such as binary
number to ASCII character conversion,
ASCII character to binary number
conversion, and input and output routines.
Other miscellaneous facilities include a
FORTH bootstrap, RT-11 bootstrap, floppy
disk read/write routines, and a memory
test.

SOFTWARE DESIGN PHILOSOPHY

The overall design for the SAMAC software
has relied heavily on the fact that the
various factors which are to be monitored
or controlled can be grouped into small
logically related groups. For example ,
one group may be composed of CAMAC crate
voltages; another group may contain Hall
Probe readings. Groups are defined by
specifying a unique group numher, the
max lmum number of elements (henceforth
referred to as variables al though these
may be settings or readings) which will be
defined in that group, and a title for the
group. The individuai variables in a
group each have various subparameters
associated with them: high (HI) an3 low
(LOI toleranc’e limits, a CAMAC address
(CP.1 , a monitor chassis address (CH), a
scale factor or ADC gain (SC), a setting
(SE), and, optionally, an expression set

(which will he discussed later).

The basic operating system software has
been designed and implemented in a highly
structured and modularized fashion. The
main routine, SAMAC , calls the system
initialization routine, SYSINI, which
calls the initialization routines for all
of the subsystems which make up the basic
operating system. SAMAC then calls a
routine called UINIT, which is provided
individually for each system. UINIT
should initialize any special purpose
subsystems which may have been written to
expand the basic system and provide
additional functionality. It can also do
qroup, display, variable, expression, or
histogram definitions. SAXAC then goes
into a loop which calls a routine named
RKGRND. BKGRND continuously checks’ a
background queue for any commands which
may have been posted to it. The BKGRND
routine is one basic system routine to
which the user may wish to make additions
when he tailors a SAMAC system.

Once the system has been initialized, all
actions are generated by interrupts. The
terminal keyboards are all interrupt
driven. When a complete command has been
entered (break or <CR> is a terminator),
it is passed to the command subsystem for
processing. Other actions can be
generated by the clock subsystem and CAMAC
system.

The entire SAMAC software package is made
up of many functionally independent
subsystems; although some do use the
facilities of the others. The following
sections describe in detail the various
basic subsystems and the facilities they
provide.

GENERAL SUBSYSTEM STRUCTURE

All of the various subsystems in the SAMA%
software have the same basic structure.

++ Each subsystem has an initialization
routine. The initialization routine
posts to the command processor the
address of a routine which will process
commands relevant to that subsystem.
It also posts to the HELP command
processor the address of a routine
which will print, on a specified unit,
a description of the subsystem
commands. The initialization routine
ends with the characters INI.

++ A subsystem command processor is
provided to handle any commands
associated with a subsystem. An
example is shown in Figure 3. There
are two parallel tables in a command
processor: * one contains the command
strings and the other the addresses of
the routines to be called when the
respective command string is found.
This information is passed onto the
command search routine (CMDSER) which

-4-

.

-TITLE SYSCMD - DEBUG COMMAND PROCESSOR
GLOBAL PROCEDURE SYSCMD (RS) STACK;
BEGIN
q

Calling sequence:
EXTERNAL PROCEDURE SYSCMD STACK;
INTEGER UNIT=$17756fi,OK;
ARRAY BYTE, EXCMD=('TRACEON',$lS);

S;SCMD(REF(OK),REF(EXCMD),REF(OK));

This routine contains the tables for some
of the basic system commands.

”

ARRAY BYTE CMDLIST=('HELP@ ‘
,'HALT@ '
,'TRACEOFF@ '
,'TRACEON@ '
,'SYSHELP@ '
1 i

EXTERNAL PROCEDURE TRACEO,TRACE,HELPQ,
STOP,SYSHLP;

ARRAY INTEGER CMDPRO=(REF(HELPQ)
,REF(STOP)
,REF(TRACEO)
,REF(TRACE)
,REF(SYSHLP)
1 i

INTEGER NCMD=LENGTH(CMDPRO)/2;

EXTERNAL PROCEDURE CMDSER STACK:

"arguments"

INTEGER UNITADD SYN MEMORY(R5+2),
CMDSTR SYN MEMORY(R5+4),
OKADD SYN MEMORY(R5+6);

CMDSER(REF(NCMD),REF(CMDLIST),REF(CMDPRO),
CMDSTR,UNITADD,OKADD);

RETURN;
END.

Figure 3

t?xample.of a subsystem command processor.

utilizes the 'information to process
commands. Since the command processing
is done by the command subsystem,
standard calling sequences must be
utilized by the routines which are
called. The command processor ends
with the characters CMD.

++ A subsystem help routine is supplied.
It is called in response to the command
HELP, and it lists a description of
various subsystem commands available.
An example is shown in Figure 4. The
help processor ends with the characters
HLP.

-TITLE SYSHLP - BASIC SYSTEM HELP
GLOBAL PROCEDURE SYSHLP(R5) STACK;
BEGIN

"
Calling sequence:
EXTERNAL PROCEDURE SYSHLP;
INTEGER UNIT=$17756fi;

SYSHLP prints on the specified UNIT a
description of the system commands
available.

COMMAND

n

EOrJATE CR SYN $15, LF SYN $12;

INTEGER UNITADD SYN MEMORY(R5+2);

ARRAY RYTE SYSHELPLIST=(
'HELP - PRINTS THIS LIST',CR,LF,
'HALT - ODT HALT',CR,LF,
'TRACEON - SET A TRACE TRAP',CR,LF,
'TRACEOFF - CLEAR A TRACE TRAP',CR,LF,
'SYSHELP - LIST SYSTEM DEBUG COMMANDS',

fl) i

EXTERNAL PROCEDURE PRTSTR,STACK;

PRTSTR(UNITADD,REF(SYSHELPLIST));

RETURN;
END.

Figure 4

Example of a subsystem help processor.

++ The other routines contained in a
subsystem are those which are necessary
to respond to the subsystem commands.
If the subsystem handles any
interrupts, then the appropriate
interrupt processing routines are also
supp1ierl.

With regard to the command processors, any
characters following the basic command
string are passed on to the routine which
is called. For example, when the command

HOUT HID=l, UNIT=LP<CR>

is typed, the routine which is called to
process the HOUT command ia passed the
remainder of the string, that is:

HID=l, UNIT=LP<CR>

It then does its own parsing to pick off
the specifications. Various parsing
routines are available as part of the
basic system.

-5-

.

SYSTEM DEBUG COMMANDS

The system command processor SYSCMD
contains facilities to aid in debugging.
These commands, with the exception of the
HELP command, can only be issued by the
console terminal and only if it is in
CONTROL mode (discussed in the next
section). SYSCMD provides the following
commands:

++ HELP - results in a call to all the
help rout-ines which have have been
posted to the HELP processor.

+C TRACEON - allows the user to turn on a
TRACE TRAP when the instruction at a
specific absolute memory address is
executed.

+C TKACEOFF - clears the last unexecuted
TRACE TRAP that was set.

+C HALT - executes a HALT instruction and
puts the LSI-11 into ODT. This should
be done before turning the CAMAC crate
power off.

++ SYSHELP - executes a call to just the
SYSCMD help processor.

TERMINAL CONTROL SUBSYSTEM

The terminal control subsystem provides
the software facilities for attaching
additional terminals to the system. The
basic system comes with one terminal
attached - the ccnsole terminal. Other
terminals can either be attached by the
UINIT routine, or by keyboard commands.
This subsystem also ensures that
contradictory commands are not issued
simultaneously by two different terminals.
Certain commands can only be issued by a
terminal which is in CONTROL mode. All
active terminals are either in CONTROL
mode or MONITOR mode; however, only one is
in CONTROL mode at any given time. In the
remainder of this Faper, in the subsystem
command descriptions, CONTROL mode only
sammands are indicated by '+C' in the left
margin. Terminal subsystem commands are:

++

++

+c

CONTROL - which says to make the
terminal issuing the command the
CONTROL terminal. If another terminal
is in CONTROL mode, then a message is
printed on that terminal to indicate
that another terminal wishes control.
The terminal issuing the command also
gets a message stating which terminal
port is in CONTROL.

MONITOR - causes the issuing terminal
to be put in MONITOR mode.

DETACH <unitno> - causes terminal
<unitno> to

port
be detached. It can then

no longer issue anif commands. The
LSI-11 console cannot be detached.

++ CONNECT <unitno> - results in the
software activation of the specified
<unitno>. It is attached in MONITOR
mode.

++ TERMHELP - causes the terminal
subsystem help processor to print a
list of the terminal manipulation
commands on the issuing terminal.

THE VARIABLE GROUP MANAGEMENT SUBSYSTEM

A' SAMAC system may have a data base
containing hundreds of variables. These
variables are divided into various groups
according to their functions. The group
management subsystem handles the
manipulation of these variable groups.

GPINIT - The Group Management
Initialization Routine

GPINIT is the group management
initialization routine. It initializes
the group pointer index table so that,
initially, no groups are defined. It
passes to the command processing subsystem
the address of a command processor (GPCMD)
which will handle any group management
related commands, and to the help
subsystem the address of the help
processor GPHLP.

GPCMD - Group Management Command Processor

The GPCMD routine pro.cesses the group
management related commands. Group
management commands are:

++ GPDEF - The GPDEF commands results in
the allocation of a variable group with
space for the definition of up to <# of
elements> variables. This command
merely allocates the group space. It
does not define any.of the variables in
the group. The syntax is (Note:
commands must be typed completely on
one line. They are split over several
lines only for the formatting of this
document):

GPDEF GPID=<gpid>
GPSIZE=<# of elements>
GPTITLE=<char Str>

where: GPID is the group identifier.
<gpid> is a number in the
range 1001 to 1999.

GPSIZE is the maximum number
of elements that will be
defined in that group.

GPTITLE is a group title. .a
-++ GPLIST - The GPLIST command has 3

(three) different modes. The syntaxes
are:

GPLIST
which lists the specifications
(<gpid> t <# of elements>, title) of
all defined groups.

-6- .

+c

+c

++

+c

+c

++

GPLIST <gpid>
which lists the specifications of
the indicated grouPl all the
defined variables in that group and
all of their subparameters.

GPLIST <gpid> <subparameter l>,
tsubparameter n>

which lists the specifications of
the indicated growl and the
specified s¶meters of all the
variables in that group.

GPACT - The GPACT command indicates
that a group is to be activated - that
is read on a timed basis. The syntax
is:

GPACT <gpid> <# of seconds>
which causes all the variables in
the group identified by <gpid> to
be read every <# of seconds>
seconds.

A 60-cycle interrupt-driven clock
subsystem is also a part of the
system. The GPACT command results
in the posting of a read command
and time interval to the clock
processing subsystem which handles
timed events.

GPDEACT - The GPDEACT command allows
one to deactivate a group so that it is
not read. The syntax of the command
is:

GPDEACT <gpid>
which causes the read command and
time interval to be removed from
the clock subsystem queue.

GPREAD - The GPREAD command is a
one-shot command to the system to read
a specified group. The syntax is:

GPREAD <qpid>

GPSET - The GPSET command is a one-shot
command to the system to do the
settings specified for a group. The
syntax is:

GPSET <gpid>

GPDEL - The GPDEL command results in
the deletion of the specified group.
After the execution of this command,
all of the variables and expressions
associated with the 4 row are
undefined. The syntax is:

GPDEL <gpid>

GPHELP - which results in the printing
04 a description of the group
management commands on the terminal
issuing the command.

THE VARIABLE MANAGEMENT SUBSYSTEM

The variable management subsystem provides
the actual variable definition and
variable parameter setting facilities.

VARINIT - Variable Management
Initialization Subsystem

In initializing the variable management
subsystem, VARINIT ' simply posts to the
system command processor the variable
management command prccessor VARCMD, and
to the system help subsystem processor the
variable help command processor VARELP.

VARCMD - Variable Management Subsystem

VARCMD provides the following variable
manipulation commands:

++

+c

+c

++

VARDEF - The VARDEF command is used to
define a variable. The group <gpid>
in which the variable is to be defined
and the variable name must be
specified. A variable name is an
up-to-B-character string, containing
any combination of numbers (O-9) and
letters (A-Z), as long as it contains
at least one letter (i.e., for
parsing reasons a variable name must
not convert to a number). The command
syntax is:

VARDEF GPID=<gpid> VNAME=<vname>

VARDEL - The VARDEL command causes the
specified <vname> to be deleted. The
syntax is:

VARDEL <vname>

VARSET - The VARSET command allows one
to set a subparameter of a variable to
a specified value. Subparameters
include the high (HI) and low (LO)
tolerance limits, a setting. (SE), a
CAMAC address (CA), and a chassis
address (CH). The syntax is:

VARSET <vname> <subparan:eter>=<num>

VARHELP - which results in the printing
of a description of the variable
management commands on the terminal
issuing the command.

THE ALIAS SUBSYSTEM

The alias manipulation subsystem is a
facility which was designed to enable
users to give names which may make some
symbolic sense to the variables which are
defined in a SAMAC system. For example
the 40 volt monitor card can handle up to
31 inputs. Initially, these are defined
with names like 40V0, 40V1, 40V2, 40V3,
. . . . 40V31. However a user will probably
prefer much more descriptive names such as
24CR1, 24CR2 for 24 volts crate 1, 24
volts crate 2. The alias facility enables
him to rename these, as desired, without
reallocating and/or redefining them.

-J-

ALINIT - Alias Initialization Routine

The alias initialization routine posts to
the system command processor the address
of the alias command processing routine
ALICMD. It also posts to the system help
routine the address of the alias help
command process0 r ALIHLP. For
initialization, it clears the alias table.

ALICMD - Alias Command Processor

The alias command processor handles the
following alias commands:

++

++

tC

++

ALIAS - which results in <namel> being
equated to <nameZ>. Any time <nameI>
in referenced, the variable <nameZ> is
actually used. The syntax is:

ALIAS <namel>=<name2>

ALIASLIST - which results in the
listina of the aliases for <namel>; or,
the aliases which lie alphabetically in
the range <namel> through <name2>; or,
in the listing of the entire alias
table.

ALIASLIST <namel>
or ALIASLIST <namel>-<name2>
or ALIASLIST

ALTASCLR - which results in the
deletion of the specified <namel>; or,
in the deletion of all aliases which
lie in the alphabetic range <namel>
through <name2>.

ALIASCLR tnamel>
or ALIASCLR <namel>-<name2>

ALIASHELP - which results in the
printing of a description of the ALIAS
commands on the terminal issuing the
command.

THE EXPRESSION SUBSYSTEM

Usually the raw readings do not have
immediate significance to an experimenter.
W!en, for example, a temperature probe is
read, the degree centigrade to which the
ADC reading converts has much more meaning
than the raw reading. The user may also
be interested in some function of a
reading or readings; he may want to
accumulate a histogram of the readings; or
he may want to keep a running average, or
mean and standard deviation of some
readings. The expression subsystem is
intended to fulfill these needs.

There are three classes of expressions.
There is the global expression block, the
group-associated expression block, and the
variable-associated expression block. Any
expression in any block can access any
exnression result ‘or any variable in the
entire system. The three different
classes are allowed primarily to make it
easier for the user to have some logical
association between expressions and what

they apply to. For example, the
expression which converts an ADC reading
for temperature
centig:ade belongs

probe to degrees
in that variable’s

expression block. An expression which
forms the average of the temperature
readings in a variable group belongs,
logically, in that group expression block.
And an expression which operates on
variables from several different groups
probably belongs in the global expression
block.

A histogram identifier can be specified
with an expression definition. In that
case, the result of the expression
evaluation is binned in the specified
histogram. It is the user’s
responsibility to see that the histogram
is defined. If it is not defined, no
warning is given: the .result is simply not
histogrammed.

Operands in the expressions can be any of
the following:

++

+t

+t

+t

+t

t+

++

<gpid> : <ind> - This kind of operand is
the result of a group associated
expression. The result from the last
evaluation of expression number <ind>
in the group expression block
associated with the variable group
<gpid> is used as the operand.

<vname>:<ind> - This kind of operand
indicates that the result from the last
evaluation of the expression number
<ind> in the expression block
associated with the variable <vname> is
to be used as the operand.

<vname>:<subparameter> - This kind of
operand indicates that the specified
subparameter of the variable <vname> is
to be used as the operand.

%:<ind> - This kind of operand
indicates that the value resulting from
the last evaluation of the global
expression number <ind> is to be used
as the operand.

Decimal integer numbers in the range
-32768 through 32767 may be used as
operands.

Octal numbers, in the range O-$177777,
may be used as operands.

Hexadecimal numbers, in the range
0-#FFFF, may be used as operands.

Note if the operand is an expression
result or a variable subparameter, and if
the expression or variable and/or
subparameter are not defined, then the
evaluation of that expression is aborted
and an error message -is printed on the
console terminal.

Note the following with regard to the
evaluation of the expressions: EXECUTION
IS STRICTLY LEFT TO RIGHT WITH NO OPERATOR

-8

PRECEDENCE and ALL OPERATORS ARE BINARY
OPERATORS.

The following operators are provided:

+ addition
- subtraction
* multiplication
/ division
< arithmetic shift left
‘, arithmetic shift right
n (carat) maximum function

(underscore) minimum function
X logical and
1 logical or

32-bit intermediate results are propagated
if the next operation is an addition,
sllbtraction, or division. For
multiplication, if the multiplicand is
greater than 16 bits, an overflow is
presumed to have occurred and the
expression evaluation is aborted.

Conditionals can also be attached to any
expression. The operands may be any of
the above, and valid conditional operators
are:

> greater than < less than
= equal t not equal

‘Phe conditionals are also evaluated in
strictly a left-to-right fashion. Note
that A>B#C is evaluated as A>B and A#C.
Mu1 tiple conditions may be specified for
an expression. If any of them fail, the
expression is not evaluated and a zero is
saved as its value. If one expression
calls for the value of another as an
operand, and the operand expression failed
one of its conditionals or was aborted
during its evaluation, then a zero is used
as the operand.

EXPINIT - The Expression Subsystem
Initialization Routine

EXPINIT initializes the expression
subsystem by clearing the global
expression block pointers. It also posts
to the command processor the address of
the expression command processor, EXPCMD;
and the address of the expression help
processor, EXPHLP, is posted to the system
help processor.

EXPCMD - The Expression Command Processor

Expression management commands are:

++ EXPDEF - which defines an expression.
EXPDEF has three diferent forms:

Global expression block expression
definition:
EXPDEF IND=<ind>, HID=<hid>,

EXP=<expression>

Group expression block expression
definition:
EXPDEF GPID=<gpid>, IND=<ind>,

HID=<hid>, EXP=<expression>

Variable expression block
expression defintion:
EXPDEF VNAME=<vname>, IND=<ind>,

++

+c

+t

+c

++

HID=<hid>, EXP=<expression>

In the expression definition, the
<expression> has the following form:

(<condition>)<arithmetic expression>

For example:

EXPDEF IND=l, HID=S,
EXP=(40VO:RE>l0) (40Vl:RE>10)40V0+40Vl/2

This example indicates that expression
number 1 in the global expression block
is to be: if the reading associated
with the variable 40V0 is greater than
10, and the reading associated with the
variable 40Vl is greater than 10, then
take the average of the two, and
histogram that result in the histogram
which has the identifier 5.

Note: if just a variable name is
given, the subparameter RE (the raw
reading) is assumed.

EXPHELP - lists an explanation of the
expression commands on the terminal
issuing the command EXPHELP.

EXPCLR - Stores zero for the result .of
the specified expression(s). Since the
result of an expression evaluation can
be used as an operand in another
expression, this command is provided SO
that the user can set a result to zero.

EXPLIST - Lists the specifications of
the indicated expression(s) and the
result from the last evaluation.

EXPDEL - Deletes the indicated
expression(s). The buffers which were
used for holding the expression are
returned to the system buffer pool.

EXPEXEC - Results in the evaluation of
the specified expression(s).

The expression specifications for EXPCLR,
EXPLIST, EXPDEL, and EXPEXEC are exactly
the same.

For the entire global expression block:
EXPCLR IND=0 1 ALL

For a specific expression in the global
expression block:
EXPCLR IND=<ind>

For an entire group expression blcck:
EXPCLR GPID=<gpid>

For a specific expression in a global
expression block:
EXPCLH GPlD=<gpid> IND=<ind>

For a variabie expression block:
EXPCLR VNAME=<vncme>

For a specific. expression contained in
a variable expression block:
EXPCLR VNAME=<vname> IND=<ind>

9-

THE HISTOGRAM SUBSYSTEM

Histograms provide a convenient way of
accumulating and displaying data
distributions. Up to 999 histograms (ID's
range from 1 to 999) can be defined at any
given time. For each,, an identifier, the
number of bins, the low bin, the bin
width, and a title must be specified.

HINIT - The Histogram Subsystem
Initialization

HWIT clears the histogram pointer table,
posts the address of the histogram
subsystem command processor, HISCMD to the
system command processor, and posts the
address of the help processor, HISHLP, to
the system help processor.

HISCMD - The Histogram Command Processor

HISCMD provides the following histogram
manipulation commands:

++

+c
tc

++

t+

HDEF - which facilitates run-time
histogram definition. The syntax is:

HDEF HID=<hid>,LOW=<low>,WIDTH=<width>,
NBINS=<#bine>,
TITLE=<up-to-80 characters>

where:
<hid> is a number in the range 0-999,
which is an identifier for the
'histogram.
<low> is the lowest bin edge.
<width> is the bin width.
<#bins> is the number of bins.
<up-to-80 characters> is the title
of the histogram.

HCLR - zeroes the bins of a histogram.

HDEL - deletes a histogram definition
and returns the buffer which was used
for the specifications and bins to the
central buffer pool.

HDEL and HCLR.have the same calling
sequence:

HCLR <hid> or HCLR ALL
where: ALL specifies that all
histograms are to be cleared or
deleted. d

HLIST - lists the specifications of the
indicated histogram(s). The syntax is:

HLIST <hid> <unit%>

HSTAT - calculates various statistics
and prints them, along with some
additional information. Printed are:
HID, LOW, WIDTH, # of calls, # of
underflows, 4 of overflows, sum of the
histogram bins, mean and standard
deviation. A range can be specified so
that the statistics can be calculated
on a selected portion of a histogram.

HOUT - displays a histogram. A range
can be specified so that only a portion
of a histogram is displayed.

The syntax for HOUT and HSTAT is the
same:

HOUT <hid>

HOUT <hid>, FIRST=<bin#>, LAST=<bin#>

+t HHELP - lists a description of the
histogram subsystem commands on the
terminal issuing the command.

The basic operatins system's only use of
the histogram facility is made by the
expression subsystem. However, 'the full
power of the histogram facility is
available to any user subs.ystems.

THE DISPLAY SUBSYSTEM

Although the variables' are already
grouped, the grouping may not he the one
the experimenter wants to display. He may
prefer various other combinations, or he
.may want to look at transformations of the
raw readings rather than the raw readings.
It is this need that the display subsystem
is intended to fulfill. This display
subsystem allows the user to define
displays which he can later display on
command. Each display i's identified by a
unique number. The elements of a display
can be any of the operands which are

'accepted by the expression subsystem.
That is, the display elements can be
variable subparameters or the results of
expressions. The display is done as a bar
histogram.

DSPINI - The Display Subsystem
Initialization Routine

DSPINI intializes the display subsystem by
clearing the display definition pointer
table. It also posts the command procssor
(DSPCMD) and the help processor (DSPHLP)
to the basic system command processor and
help processor respectively.

DSPCMD -
l

The Display Subsystem
Command Processor

DSPCMD provides the following commands:

tt

++

tt

tt

DISPDEF - which does the display
definition. The syntax is:

DISPDEF DID=<did>;
<element l>, <element 2>

DISPLAY - which causes the indicated
display to be made. If a time interval
iS specified, then the display is
updated according to the specified time
interval.

DISPLAY DID=<did>, <# of seconds>
-

DISPDEL - deletps the specified display
definition. The space used to store
the 4definition is returned 'to the
central buffer pool. The syntax is:

DISPDEL <did>

DISPLIST - which causes the defintion
of the indicated display to.be listed
on the issuing'terminal.

DISPLIST <did>

- 10 -

++ DISPHELP - prints a list of the display
subsystem commands on the terminal
issuing the command.

HOST COMPUTER SERIAL LINE
COMMUNICATION SUBSYSTEM

During development of the software it
became convenient to have a file of
configuration commands (GPDEFs, HDEFs,
VArRDEFs, VARSETs, and EXPDEFs) on the host
computer (in that case, the TRIPLEX).
After the system is loaded, commands CEt-

be read off of the TRIPLEX line and
executed just as if they came from the
keyboard. This enabled us to create a
data set with a wide variety of commands
which could be used to test the various
command facilities. Also, since the
system may be used in different hardware
configurations to monitor different
sensors, it is convenient to have stored
on a host computer files of commands which
can be sent to configure the SAMAC system
in different ways. In order to load

'commands from the host computer over the
serial line (the LSI-11 is basically a
virtual terminal on the host computer
system), the LSI-11 console must be the
CONTROL terminal. All commands received
from the host computer are then printed on
the console terminal along with an
execution code. If the code is 'OK', then
the command was executed properly. If it
is anything else, then an error occured.

A specific protocol has been established
for the host computer to LSI-11
communication. Normally, the host serial
line communication subsystem prints on the
console terminal any characters received
from the host computer. Any time the host
computer goes into a state where it can
receive LSI-11 transmissions, it sends a
'DCi'. The LSI-11 then sends whatever is
to he sent until a terminating character
(a break, carriage return, or '<ctrl>D' is
encountered). It then waits until it
receives another 'DCl' ('<ctrl>Q') from
the host computer before it sends any
more.

Any commands issued by the console
terminal which are not recognized by any

,of the SAMAC command processors are sent
on to host computer, if the host computer
communicaticn is enabled.

HOSINIT - Host Serial Line
Communication Initialization

HoSINIT initializes and enables the host
serial line commfinication subsystem. Host
computer serial line communication can
only come in on the DLVll-J port at
$176510 and interrupt vector $310. If
host communication over the serial line is
not desired, then the user should
HCSTOFF to disable the communication.

We

HOSCMD - Host Serial Line Communication
Command Processor

HOSCMD handles the commands for this
subsystem. The commands provided are:

t+ HOSTOFF - disable host serial line
communication.

tt HOSTON - enable host serial line
communication.

t+ HOSTABORT - abort the loading of
commands from the host computer.

++ HOSTHELP - list the commands associated
with the host serial line communication
subsystem.

INTERFACING SPECIAL PURPOSE SUBSYSTEMS

The basic SAMAC operating system is a
monitoring system. Control systems must
be tailor-made to * individual
specifications. The basic operating
system has been carefully designed to
facilitate the addition of individually
tailored subsystems.

Basically, to add a subsystem, all the
user has to supply is:

tt

tt

tt

++

An initialization routine which does
any special initialization. The
initialization routine must post to the
basic system command processor a L
command routine with the same structure
shown in Figure 3, and, to the basic
system help processor, the address of a
help processor with the structure shown
in Figure 4.

The command processor.

The help processor.

Any routines needed to respond to the
various subsystem commands 01:

interrupts which the subsystem uses.

Any of the facilities used and/or provided
by the basic stand alone system can be
used by the user's subsystem. These
include:

tt

tt

tt

tt

tt

tt

tt

!
Various parsing routines.

The clock subsystem.

The background queue. The user would
have to provide his own background
routine, BKGRND, which, most likely,
would be a modified version of the
basic system background routine.

All of the expression, group
management, variable manaqement, alias
management, histogram, host computer,
and display facilities. The subsystems
can be utilized either by calls from
the subsystem code or by the terminal
or host computer commands.

Buffer management subsystem.

Monitor chassis access routines.

Any of the facilities contained in the
EPROM kernel.

- 11

USEFUL IMPROVEMENTS

As the first system was delivered, it
became clear that it would be convenient
to have a floppy disk or TU58 cartridge
tape for backup resident RAM loading, and
to hold files of commands for generating
various configurations of variable,
display, expression, and histogram
definitions. At some point a subsystem
for handling these needs will probably be
addad.

Ancther useful addition would be some form
of cheap har3copy lineprinter, although
the hardcopy need can now ne fulfilled by
putting a hard copy terminal on one of the
terminal ports.

C0NCLUS10NS

The real, extensive field testing of this
system is just starting. By the end of
January, some real feedback and major
control subsystem tailoring requests will
be implemented. In the extensive
development phase and limited testing
which has been done, the system hardware
and software appear to be adaquate and
reliable. Out of the 64K words of RAM in
the system, 48K words are available in the
form of buffers for the various histogram,
variable, group, expression, and display
;;l;;itions. If needed, more 32K RAM

\. can be added. Exactly how many
variables can be monitored and controlled
by the system will depend on the f'requency
wi th which readings are made and
expressions are evaluated. Carrying
around extensive definitions of groups, -_.
variables, expressions, displays, and
histograms costs nothing in CPU time or
program space. The practical limit of the
maximum number of variables which can ba
handled by the CPU is not yet known. If a
limit is reached in a practical
application, the system can be upgraded
with an LSI-11/23. The RAM and EPROM
boards and the bank switch controller are
compatible with an LSI-11/23, as,
hopefully, is the code.

ACKNOWLEDGEMENTS

I want to thank Patrick Clancey for his
extensive work on the command parsers and
documentation; John Kieffer, Ray Larsen,
and Leo Paffrath for their explanations of
the monitor chassis hardware and
suggestions on facilities needed in the
software; Michael Stoddard for his
research and development of the LSI-11
components and configuration, which have
made this implementation possible; and all
of the above for their encouragement, many
helpful hints, and enlightening
discussions.

REFERENCES

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

Digital Pathways Bank-Switchable
Memory Family for DEC LSI-11 Based
Computers, Digital Pathways Inc., Palo
Alto, California.

CC-LSI-11/A User's Manual, Standard
Engineering
California.

Corporation, Fremont,

Kinetic Systems Model 3553 12-bit A/D
Converter,
Illinois.

Kinetic Systems, Lockport,

Kinetic Systems Model 3061:1/T Input
Gate/Output Register, Kinetic Systems,
Lockport, Illinois.

Kinetic Systems 3821 4K 16-bit RAM
Memory Module, Kinetic
Lockport, Iilinois.

Systems,

R. L. A. Cottrell and C. A.
An IBM 370/36 Software Package Loc?g I

for
Developing Stand-Alone LSI-11 Systems.
Proceedings of the Digital Equipment
Computer Users' Society, Vol. 4, No.
4, PP. 985/991, April 197E.

SLAC Computer Services User

4&L

Note No.
The TRIPLEX Users Guide, June

Robert Russell, PL-11:
Language

A Programming
for the DEC PDP-11 Computer,

Edited by T. C. CERN 74-24
(1974).

Streater,

S. Steppe1 and H. E.
XASMll/XLINKll, Syrett,

A PDP-11
Assembler/Cross Linker User's Cross
CGTM No.

Manual,

CA.
160 (1974), SLAC, STANFORD,

WYLBUR/370, The Stanford
System Reference

Timesharing

Edition,
Manual, Third

November 1975.

1. Monitor Chassis 1 System Description,
?reliminary Technical Note, John
Kieffer, SLAC, Stanford University,
Stanford, California.

- 12 -

