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Abstract 

A real-space, zero-temperature renormalization group method is used 

to study a Heisenberg antiferromagnetic spin chain with long-range 

interactions varying as (distance)-P. Simple renormalization group 

equations are obtained and studied analytically, and the results are 

checked against a more accurate numerical calculation. The calculations 

provide evidence for a phase transition at p-1.85 characterized by a 

change in the behavior of zero-temperature correlation functions. For 

~~1.85 the large-distance physics is that of the nearest-neighbor 

antiferromagnet, while there is a line of fixed points for ~~1.85. 

I conjecture that ~~1.85 also marks an order-disorder transition at 

finite temperature such as occurs in the Ising model with power-law 

interactions. 
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1. Introduction 

This is the second of two papers' in which real-space renormalization 

group (RG) methods2-8 are used to study the one-dimensional Heisenberg 

antiferromagnetic chain with long-range interactions, 

N H=+ c (-,)i-j+l 1 Z(i) l 8(j) , 
i,j = 1 Ii-j]' 

i#j 

(1.1) 

at zero temperature. The infinite-volume limit N+a will generally be 

assumed. Paper I was concerned with the nearest-neighbor limit p-t-, 

while this paper investigates the phases of the model as a function of p. 

Although little is known about the model, Dyson and Ruelle have proven' 

that the analogous Ising model, 

N 

H’ = + c i-1) 
i-j+1 1 

i,j =1 ,i-j(p Vi) Vj) ' 

i#j 

(1.2) 

is disordered at all finite temperatures if p>2, while order persists 

at low temperatures if p< 2. The (-1) w-l sign factor is of course 

irrelevant in (1.2), and Dyson conjectured that the Ising results hold 

for the Heisenberg ferromagnet [Eq. (1.1) without the sign factor1 as 

well. This paper will suggest that the results hold in the antiferro- 

magnetic case also. In particular, evidence will be presented that the 

zero-temperature properties of the model (1.1) differ sharply according 

as p 2 1.85 or p 5 1.85. 

The model (1.1) is also of interest in lattice field theory since 

antiferromagnetic power-law interactions of precisely this form appear 

when the continuum field theory gradient is transcribed onto a lattice 
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using the SLAC prescription.2s3 Indeed, the model (1.1) is equivalent 

to the strong coupling lattice Thirring (p= 2) and Schwinger (p=3) 

models restricted to particular sectors of states.3 

The paper is organized as follows. Section II presents some exact 

results for the cases p=O and p+a. Section III reviews the simple 

three-site blocking calculation used in paper I and applies it to the 

model (1.1). Renormalization group equations are derived which are 

sufficiently simple to be studied analytically. In particular, it can 

be seen explicitly how the non-nearest-neighbor interactions in (1.1) 

disappear as the RG equations are iterated when p exceeds a certain 

critical value. Section IV shows that the results of the three-site 

calculation do not change qualitatively when one goes to a more accurate 

calculation using nine-site blocks. The latter calculation, unfortunately, 

must be carried out numerically. Section V contains the conclusions. 

II. Exact Results 

Although very little is known about the model (1.1) some rigorous 

results can be obtained by considering the limiting cases p+m and p =O. 

For p-t- the model becomes the Heisenberg antiferromagnet with 

nearest-neighbor interactions which was discussed by block-spin methods 

in paper I. This model is exactly solublelo and for the present work 

its relevant properties are as follows. The ground state energy density 

is -0.4431 and the low-lying excitations are massless spin waves. The 

end-to-end order <z(l) . z(N)> vanishes in the infinite-volume limit and 

the cluster property 
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lim <z(l) l 3(N)> - <s(l)> l <z(N)>] = 0 

N+-m 

is satisfied. 

For p=O the Hamiltonian (1.1) becomes: 

N 
1 H =I C-1) i-j+1 z(i) . z(j) . 
L i,j = 1 

i#j 

(2.1) 

All spins interact with equal strength and the fact that they form a 

linear chain becomes irrelevant. This Hamiltonian can also be solved 

exactly, by introducing the two sublattices containing respectively only 

even-numbered sites and only odd-numbered sites. N is assumed to be even 

so that each sublattice contains LN 2 sites. The Hamiltonian (2.1) may 

be rewritten as: 

H = c Z(i) l Z(j) - 4 c Z(i) * Z(j) - + c Z(i) *Z(j) 
i,j odd i even 

j odd 
L i,j even 

ifj i#j 

= x Z(i) l 
c c 

Z(i) 
i even 

Z(j) - 3 

j odd 1 ieven - 

; 12 = 
even "odd - ? 'even - + ':dd +$N 

= + 'total - 'ken - '?dd +;N , (2.2) 

where I have introduced the total spins on the entire lattice and on the 

even and odd sublattices. The ground state evidently has Stotal=O, 

S even =Sodd = $N, and an energy given by 

N2 -I- N Eo=- S . (2.3) 



-5- 

The energy density diverges linearly with N and the infinite-volume limit 

of the theory does not exist. The first excited state has Stotal= 1, 

S =Sodd = ;N, and the excitation energy is 1. This contrasts with even 

the massless excitations in the p-fm theory. The end-to-end order 

<@o(%1) l &‘J) 1 Oo) in the ground state loo> can be obtained as follows. 

The fact that all spins on a single sublattice are equivalent implies 

that <z(i) *z(j)> depends only on the parities of i and j. Therefore, 

<z(l) l S(N)> = 4 C <c(i) . z(j)> 

N2 i odd 
j even 

= 
$ <'odd ' 'even> 

= 
: <S:otal- '&en- 'idd' 

, 

which explicitly shows the breakdown of clustering due to the long-range 

interactions. 

Additional information can be obtained by using the p=O ground 

state I@,> as a variational trial state to study the full theory (1.1). 

The variational energy obtained in this way is 

<@,IH\@,> = + c C-1) 
i-j+1 1 

<OolZ(i) l Z(j) loo> . (2.5) 
i#j Ii-j\' 

It follows from Eq. (2.4) and the sublattice structure that 

<QoiB(i) l g(j) loo> = (-1) i-j(i + +) . 
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Therefore, 

<Oo\Hl (PO> = 
-6 + 3 zj li_:,, 

= -i- + 
1p 

/ N-l 

(N-2) ei- i- . . . + ' 
2p (N-1)' 1 

The exact ground state energy density is therefore bounded above by 

This shows that the infinite-volume limit does not exist for p 51. Since 

the spin operators in H have bounded matrix elements there can be no 

divergence in Eo/N for p> 1, so the theory does exist in this region. 

In view of the radically different properties of the theory at 

p+m and p=O, two possibilities exist. Either the theory remains in 

the p=m phase all the way down to p= 1 where the infinite-volume limit 

ceases to exist, or a phase transition occurs for some p > 1. In the 

remainder of this paper block-spin techniques are applied to resolve 

this question. 

III.. Simple Calculation Using Three-Site Blocks 

A. Derivation of RG Equations 

This section reviews the three-site blocking algorithm used in 

paper I and applies it to the model (l.l), which is conveniently 

rewritten in the form: 
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N 

Hz+ c C-1) i-j+1 F(i-j) z(i) l c(j) , 
i,j = 1 

i#j 

F(i-j) E 
li_lj,, l 

(3.1) 

One begins by dividing the lattice into three-site blocks and 

relabelling each lattice site with an ordered pair (k,a), where k=1,2,..., 

N/3 labels the blocks and a= 1,2,3 labels the sites within a block. The 

Hamiltonian is separated into the piece Hin which only couples sites in 

the same block, and the remainder Hout: 

H = Hin + Hout , 

H in = $x x (-l)a-a'+l F(a-a') x(k,a) l z(k,a') , (3*2) 
k a,a' 

H = out 
k-k"a-a'+1F[3(k-k1)+a-a'] g(k,a) l <(k',a') . 

Singling out a particular block for attention, I write: 

H = 
in x k Hblock(k) ' 

H block = F(l)[;(l) l z(2) + z(2) l s(3)] - F(2);(1) . z(3) 

= $F(l) 

- 3W9 

1) +Z(3)12- ;\ 

(3.3) 

This shows that the eigenstates of Hblock are just the simultaneous 

eigenstates of the total spin on a block and [Z(l) +Z(3)12. These states 

are 1 notation is IS,S,>; the subscript, when present, gives the value of 
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the spin z(1)+;(3)]: 

I$,$> = I444> 
I 

energy = iF(1) - $l?(2) , 

I+,+> = i ((4+4> + \+44> + I44+>, 

l$,i>o = -i- (I-+++> - I+++>> , energy = ZF(2) 3 
Jz 

- (+44> - I44+>) , energy = -F(l) - 3(2) , 

(3.4) 

plus the four corresponding states with all spins flipped and negative 

total Sz. It can be seen that Ip'+i >l have the lowest energy regardless 

of the value of p. One then hopes to get a reasonable picture of the 

low-lying states of the lattice by restricting attention to those lattice 

states which are built from the block states I+,?$>1 only. The next 

step is to write an effective Hamiltonian which has the same matrix 

elements as the original Hamiltonian within this sector of states. For 

-t 
this purpose I introduce new spin operators S' which act on the states 

1: ,+ >1 in the usual manner: 1<+,+1 SL I+,$>1 =+,etc. g' is 

in fact just the total block spin, and the Wigner-Eckart theorem gives: 

<$(k,a) > = ua <z'(k) > , 

2 1 
u1 3 3 9 u2=-3 =u =- , 

where the notation < > indicates any one of the four matrix elements 

involving the states 1 i,f$> 1. Using (3.5) to express Hout in terms 

of the block spin operators 5' and observing that Hin is diagonal in 
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the sector of states of interest produces the effective Hamiltonian: 

H(l) = c [-F(l)- +F(2)] + + kFk,(-l)k-k'+lx (-l)a-a' 
k a,a' 

xuu a a, F[3(k-k')+a- a'] z'(k) * z'(k') 

k-k'+1 Fl(k-k') z'(k) l :'(k') . (3.6) 

Since this Hamiltonian has the same form as the original one, apart from 

the overall energy shift El, the blocks of the original. lattice may be 

viewed as sites of a new lattice and the whole blocking procedure 

iterated. This generates a sequence H 6-4 of effective Hamiltonians 

obeying the RG equations: 

N/3m N/3m 
Hcrn) = c Em + $ c C-1) k-k'+1 Fm(k-k') ;(k) . &k') , (3.7a) 

k=l k,k' = 1 
k#k' 

E m-k1 = 3E m - F,(l) - +F,W , E, = 0 , (3.7b) 

3 

F ,l(j) = E 
a,a' =1 

(-l)a-a' uaua, F,(3j+a-a') , Fe(j) =F(j) , (3.7~) 

i.e., 

Fmtl(j) = F,(3j) + $[F,(3j - 2) + Fm(3j - 1) + F,(3j+l) + Fm(3j+2)], 

(3.7d) 

where the primes on the spin operators have been dropped for convenience. 

Note that the formula (3.7d) preserves the symmetry property F,(j) =F,(-j) 

which was assumed in writing Eqs. (3.3) and (3.4). After roughly 

m=log3N iterations of the blocking procedure the entire lattice will be 



I 

-lO- 

reduced to a single block of energy Em. The energy per original lattice 

site is therefore &m ! Em/3m. In the infinite-volume limit the energy 

density is given by &,, with Gm satisfying 

8 m+l = cFrn-& F,(l) + +Frn(2) 1 , 3 
cFo=o . (3.7e) 

This will always be a variational upper bound on the exact ground state 

energy density. The problem now is to iterate the RG equations many 

times to find the Hamiltonian which describes the physics at very large 

length scales. 

B. Analysis of RG Equations 

A procedure for numerically iterating RG equations like (3.7) has 

been given by Drell, Svetitsky, and Weinstein.5 At each iteration a 

finite set of function values, say F,(l) ,...,Fm(lOO), are explicitly 

computed and stored in an array. For ljl > 100, F,(j) is parametrized 

, with only even order terms being 

required due to F,(j) = F,(-j). The initial conditions are A,=l, 

B,=C,=D,=O, and substituting this form for Fm into (3.7d) and applying 

the binomial theorem produces formulas from which Am - Dm can be 

computed recursively. The error introduced by using this asymptotic 

form for F, is comparable to the inherent roundoff error in double 

precision computer arithmetic. I have performed the numerical calcula- 

tion using this procedure, but due to the simplicity of Eq. (3.7d) all 

the important results can be obtained by an analytic study of the RG 

equations. This is done by considering Eq. (3.7d) in the limit of very 

large j where it simplifies considerably. Physically this corresponds 

to looking at the interaction between very distant spins. Since the RG 

equations by definition relate the physics of different length scales 
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they can be used to extend conclusions valid at large j to smaller and 

smaller values of j, as will now be shown. 

When j is large, F(j) is sufficiently slowly varying that F(3j + 1) 

and F(3j t 2) can be approximated by F(3j). Then the first (m=O) 

iteration of Eq. (3.7d) becomes 

Fl(j) = -$-F,(3j) = L 25 Fe(j) 5 CFo(j) , 
3p g 

for j sufficiently large. 

(3.8) 

To extend this to smaller values of j assume now that j is not "suffi- 

ciently large" but that 3j-2 is, so that F1(.3j-2) =CFo(.3j-2). Then the 

next iteration of Eq. (3.7d) looks like this: 

F2(j) = Fl(3j) + $[1F1(3j-2) + Fl(3j-1) + F1(3j+l) + F1(3j+2)] 

= C [ Fo(3j) + $[Fo(3j-2) + Fo(3j-1) + Fo(3j+l) + Fo(3j+2)]/ 

= CFl(j) , (3.9) 

and this is valid for values of j roughly l/3 as large as those for which 

Eq. (.3.8) was valid. Continuing to iterate Eq. (3.7d) produces equations 

analogous to (3.9) holding for smaller and smaller values of j until 

ultimately one obtains simply 

F m+l(j) = CF,(j) for all j > 1 and all sufficiently large m. (3.10) 

The restriction to j #l comes about because according to Eq. (3.7d), 

Ftil(l> depends on F,(l); in fact, 

Ftil(l) = F,(3) + $[F,(l) + F,(2) + F,(4) + Fm(5)] * (3.11) 

The reasoning leading to Eq. (3.10) assumed that the smallest argument 
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appearing on the right side of Eq. (3.7d), namely 3j-2, was greater than 

j, and this is only true if j > 1. This fact is crucial physically, 

since it means that the nearest-neighbor coupling F,(l) may behave 

differently under renormalization group transformations than the longer- 

range couplings. The results (3.10) and (3.11) are sufficient to reveal 

the physical content of the RG equations. 

Proceeding with the analysis, the definition C = 25/3 Ps-2 shows that 

C > 1 for p < log325- 2 z 0.93, and C < 1 for p > 0.93. By Eq. (3.10) 

this implies that 

0 if p > 0.93 
lim F,(j) = 

m-+03 m if p < 0.93 . (3.12) 

Actually this follows from Eq. (3.10) only for j > 1, but it holds for 

j =l as well: Eq. (3.11) shows that it is not possible to have F,(j) += 0 

or ~0 for all j > 1 without having F,(l) + 0 or ~0 (respectively) also. 

The value p=O.93 is strikingly close to the anticipated p= 1; unfor- 

tunately, p = 0.93 is not to be identified as the point at which the 

energy density diverges and the theory ceases to exist. It is clear 

from Eq. (3.7e) that the divergence of F,(j) is not sufficient to pro- 

duce a divergence in grn unless F,(j) grows by a factor of at least 3 

at each iteration. This happens for C 1 3, so that p 5 -0.07 is needed 

before this block-spin approximation can detect the divergence in 8,. 

The significance of p=O.93 is that for p > 0.93 this approximate 

calculation predicts that the theory has a massless spectrum: any mass 

gap, if present, must vanish along with the couplings F,(j) as m + ~0. 

For p < 0.93 no statement can be made without actually solving the theory: 

Eq. (3.12) does not imply an infinite mass gap because a massless theory 

remains massless even when multiplied by a large scale factor. 
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The really interesting question, left open by Eq. (3.12), is how 

F,(l) behaves relative to the other terms in the Hamiltonian. In parti- 

cular, under what conditions will F,(l) + 00 relative to the other F,(j) 

so that the effective Hamiltonian ultimately contains only nearest- 

neighbor interactions? According to Eq. (3.11), if F,(l) is much greater 

than the other F,(j) then Ftil(l) = $F,(l). Comparing this with Eq. 

(3.10) requires C < 4/9 if the assumption F,(l) >> F,(j >l> is to be 

maintained as m + a. C < 4/9 corresponds to p > log3F z 1.67, and 

it is easy to see that p > 1.67 is sufficient as well as necessary for 

H Cm> to approach nearest-neighbor form. On the other hand, for p < 1.67 

it is impossible to have F,(l) + m relative to the other F,(j). But 

F,(l) -f 0 relative to the other F,(j) is also impossible since by Eq. 

(3.11) Fmtl(l> > F,(3) = $Fti1(3) for large m; thus Fm(l>/Fm(3> is 

bounded below by l/C as m + m. Assuming that H Cm> does in fact iterate 

to a fixed form, the only possibility for p < 1.67 is that all the ratios 

Fm(l)/Fm(j) approach finite nonzero values as m + m. The interaction 

thus remains long-range; furthermore, since F,(j) N l/j' for large j, 

the form of the interaction will be different for each p. In this sense 

each p < 1.67 is in the domain of a separate fixed point. 

The energy density computed numerically from Eq. (3.7e) is displayed 

as the upper curve in Fig. 1. The precise location of the vertical 

asymptote (p= -0.07) is not apparent due to the limited range on the 

vertical axis. As discussed in paper I, the curve lies 12% above the exact 

answer in the nearest-neighbor limit p -t 00. 
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c. Discussion 

Several remarks are in order regarding the significance of each of 

the three points p=-0.07, 0.93 and 1.67 at which the character of the 

fixed-point Hamiltonian H (a> changes. (Of course, it is the change in 

the behavior of H (a> that is significant, rather than the precise numeri- 

cal values found for the critical points. One would not expect the 

critical points to be very accurately located by the present crude 

calculation.) It should be realized at the outset that there are 

basically two ways to obtain information about a theory from a block- 

spin calculation such as this one. The first way is to solve the fixed- 

point Hamiltonian. In the present case this will not work for p < 1.67 

where the fixed-point Hamiltonian contains long-range interactions and 

is at least as difficult to solve as the original theory. The second 

way is to study the lattice states iteratively constructed by the 

blocking procedure. This is not always practical, and in the present 

case it will not distinguish the phases of the theory because the same 

lattice states are constructed for all values of p. Therefore, the 

conclusions drawn from the present calculation are necessarily rather 

sketchy. 

The present calculation does not detect the energy density 

divergence until p 5 -0.07, which compares poorly enough with the 

anticipated p 5 1 to warrant some discussion. Recall that the ground 

state energy density was identified as lim Em/3m on the basis of an 
m-f00 

argument which iterated the blocking procedure until the entire lattice 

was reduced to a single block. Suppose instead that one performs some 

fixed number M of iterations, then takes the infinite-volume limit and 

studies the resulting Hamiltonian H (M) . The energy density may be 



I 
-15- 

estimated by 3-M< ~I(H(~) I$> with some variational trial state I$>. 

In particular, since FM(j) N l/j' asymptotically, the expectation value 

of H(M) in the ordered state IQo> of Section II will contain a divergence 

at p=l coming from the operator part of H (M) . In this way one recovers 

the correct result. This illustrates that it is always better, when 

possible, to extract information from the effective Hamiltonian than to 

continue iterating until the lattice is reduced to a single block. The 

point is simply that in any variational approximate calculation better 

trial states exist than the ones being used. In the present case, for p 

near 1 the state (Q~> is better than the states built using the blocking 

procedure. 

As noted above, the significance of the point p=O.93 is that for 

p > 0.93 the theory is expected to be massless based on the RG equations 

alone, while for p < 0.93 the issue cannot be resolved without further 

study of the fixed-point Hamiltonian. The theory may be massless for 

p < 0.93 or a mass gap may exist. It might seem that the mass gap 

would have to be infinite if nonzero because it should diverge with 

the coupling function F,(j), but this is not correct. The proper 

conclusion is that the blocking procedure has identified a class of 

block states whose energies diverge with the block size when p < 0.93. 

These states certainly need not be the lowest-lying excitations in the 

system, although to the extent that they are not, the motivation for 

the blocking scheme as a probe of the low-lying spectrum is weakened. 

Nevertheless, the suppression of this class of excitations at finite 

temperature is useful thermodynamic information. 

Por example, if the Ising model of Eq. (1.2) is treated by the 

block-spin method of this section one finds that I..$ F,(j)=w for p < 2. 

The states constructed by the blocking procedure in this case are the 
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exact ground states plus states formed by flipping blocks of spins. 

The divergence of F,(j) means that at finite temperature flips of large 

blocks of spins are suppressed. This is responsible for the persistence 

of order in this model up to a finite critical temperature when p < 2. 

Based on this example one may conjecture that the Heisenberg antiferro- 

magnet also is ordered at low temperatures in some range of p, given as 

p < 0.93 in this very crude calculation. 

The point ~~1.67 represents the approximate location of a true 

phase transition, separating the "nearest-neighbor phase" p > 1.67 from 

the "long-range phase" p < 1.67. The phases may be distinguished, for 

example, by the behavior of the correlation function <s(i) -z(j)> of 

very widely separated spins. The correlation function will be governed 

by the fixed-point Hamiltonian which is quite different in the two phases. 

In practice one may consider the translationally invariant correlation 

function W(k) = $lrna f c <z(i) l z(i+k)> so as to average out edge 
i 

effects associated with the block walls in a block-spin calculation. 
-+ 

Following the treatment of the Hamiltonian, S(i) l E(i+k) is replaced by 

an effective operator at each iteration, using Eq. (3.5). When the 

Hamiltonian achieves its fixed form the required expectation values are 

computed in its ground state. If the fixed-point Hamiltonian is not 

solvable, one has no recourse but to continue iterating until the dot 

products of spins are reduced to squares of single spins with expectation 

value 314. This yields much poorer results: in the present case it 

leads to correlation functions with no dependence on p, since the block - 

states have none! Indeed, one may be skeptical about the results of the 

present calculation on the grounds that the same variational trial states 

are used for all values of p. This problem is corrected in the improved 

calculation to be discussed next. 
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IV. Improved Calculation Using Nine-Site Blocks 

Although the three-site calculation definitely indicates the pre- 

sence of a phase transition at p M 1.67, one would like some assurance 

that the conclusions do not change qualitatively when more accurate 

calculations are done. The greatest single drawback of the three-site 

calculation is that the block eigenstates are completely determined by 

the rotational invariance, rather than the detailed structure, of the 

interactions. The nine-site calculation to be discussed now does not 

suffer from this problem. 

The algorithm employed here is just as in Section III. One restricts 

the full Hamiltonian (3.1) to a nine-site block and, by diagonalizing, 

determines the lowest-lying spin-l/2 doublet of eigenstates. Taking 

matrix elements between these states produces the relations analogous 

to (3.5): 

< s(k, a> > = U,<b)> , a=1,2,...,9, (4.1) 

which may be used to construct the effective Hamiltonians. The ua, 

however, will no longer be constants but will change with the value of 

p and from iteration to iteration. The RG equations will take the form: 

N/grn N/grn 

Hcrn) = x Em + + c (-1) k-k’+lFm(k-k’) &k) . ;(k’) , (4.2a) 
k=l k,k'=l 

kfk’ 

9 

F ,l(j> = x (-l)a-a'up)u(am)Fm(9j+a-a') , 
a,a'=l 

Fe(j) =F(j) , (4.2b) 

Em+l = 9Em + e m , Eo=O , (4.2~) 

where e m are the energies of the doublet of states constructed at 
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successive iterations. These RG equations must be iterated numerically 

using the method of Drell, Svetitsky, and Weinstein described in Section III. 

Although there are 512 independent states on a nine-site block, one 

does not need to diagonalize 512 x 512 matrices to carry out the above 

program. It suffices to determine the Sz = l/2 member of the lowest- 

lying spin-l/2 doublet, which will have even parity. Simple combinatorics 

shows that there are exactly 22 spin-l/2, Sz = l/2, even parity states on 

a nine-site block. One of these states can be constructed by two itera- 

tions of the three-site blocking procedure [compare Eq. (3.4)l: 

I+> = -!- 
v% C 

2j;,+>1 1; ,-$1 1~,~>1-1~,~>1~~,~>1~~,-~>1 

- $3 -~~1/++11~+1] , 

where l$+>1 = -i- (21+++> - I+++> - I+++>> , 
dz 

and I+,-+>1 = ; (-2(+++> + I+++> + (W>) . (4.3) 

The next state is obtained by applying the block Hamiltonian to I$> and 

eliminating the component of the resulting state along I+>, and the 

remaining 20 states are constructed by repeatedly applying the block 

Hamiltonian to the last state constructed and orthonormalizing the whole 

set. The matrix to be diagonalized is then 22 x 22. 

In paper I an alternative scheme was suggested, in which only the 2x2 

matrix representing the block Hamiltonian in the subspace spanned by I$> 

and Hblock 1 G> is diagonalized to obtain approximate nine-site eigenstates. 

This is based on the idea that I+> is already a reasonable approximation 
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to a nine-site eigenstate and in perturbation theory would mix most 

strongly with the state % lock 1 JI>. Indeed, one finds by diagonalizing the 

22x22 matrices that the exact lowest-lying eigenstate typically gets about 

90% of its amplitude from the two states I+> and H,~~~~(+>. Since the 

error in an energy goes as the square of the error in a state vector, 

energies computed by the 2 x 2 diagonalization typically are within 1% 

of the exact nine-site energies. The approximation is thus very good. 

For definiteness, however, the results to be reported in this section 

come from the exact nine-site diagonalization using the 22 x 22 matrices. 

Numerical iteration of the RG equations (4.2) shows that there are 

still three critical values of p with the same qualitative properties 

discussed in Section III. The region in which the energy density diverges 

is found to be p 5 0.18 (as compared to -0.07 from the previous, less 

accurate, calculation), the couplings F,(j) diverge for p 5 1.11 (as 

compared to 0.93), and the transition separating the long-range and 

nearest-neighbor phases occurs at p z 1.85kO.05 (as compared to 1.67). 

This last value is hard to estimate from numerical data because as the 

transition point is approached from above the long-range couplings 

F,(j >l> decay more and more slowly. Very near the transition it is 

impossible to tell whether the long-range couplings ultimately vanish 

or not. However, it is significant that this critical point moved LIJ 

from 1.67. Had it moved down one might have suspected that an exact 

calculation would reveal no transition in the "physical region" p > 1. 

The ground state energy density resulting from this calculation is 

given by the lower curve in Fig. 1. For p + m the energy density is 

-0.4212, 5% above the correct value. 
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Since the block states now depend on p, correlation functions 

computed using nine-site blocks will have p-dependence and will dis- 

tinguish the long-range and nearest-neighbor phases. In a simple block- 

spin calculation of the present type (non-variational) one obtains a 

power-law falloff at large distances, where the exponent is a constant 

throughout the nearest-neighbor phase but depends on p once the long- 

range phase is entered. It is worth emphasizing that no evidence will 

be found for the violation of the cluster property known to occur at 

p=o. The effective operator representing the end-to-end order after 

m iterations satisfies the RG equation: 

[z(l) l g(N)] 
b+l> 

= u;~)u~)[;(~) l <(N)] 
Cm> 

, (4.4) 
Eff Eff 

and since u Cm> , u(m) 
19 < 1 [this follows from Eq. (4.1) and the fact that the 

magnitude of the expectation value of S, in a non-eigenstate is less 

than l/23 one has ii+rnm <z(l) l z(N)> = 0. This is because a cluster 

property is really built into block-spin calculations: at any iteration 

correlations between spins in different blocks are ignored. This is 

also why the calculations locate the energy density divergence poorly. 

The most one could hope for is that if the cluster property is violated, 
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then <;(l) *z(N)> will go to zero more slowly as the accuracy of the 

calculation is improved. 

v. Concluding Remarks 

The most accurate calculation discussed in this paper indicates 

that the Heisenberg antiferromagnet (1.1) has a phase transition at 

P 22 1.85. The phases can be distinguished by the form of the fixed- 

point Hamiltonian and the behavior of correlation functions such as 

<Z(i) l Z(j)>. The large-p phase has the physics of the nearest-neighbor 

antiferromagnet while for p 5 1.85 there is a line of fixed points. 

The calculation predicts that the model is massless for p 2 1.11. More 

detailed statements cannot be made due to the intractability of the 

fixed-point Hamiltonian for p 2 1.85. 

It is interesting to speculate on how these numbers will change in 

more accurate calculations. As the accuracy increases, the point at 

which the energy density begins to diverge must approach p=l. The 

point at which the couplings begin to diverge must be at a larger value 

of p, since the couplings must grow by a factor L at each iteration to 

get a divergent energy density, with L the number of sites per block. 

The calculations done here suggest that the divergent couplings and the 

divergent energy density are separated by about 1 unit of p. It is 

tempting to suppose that the onset of the divergent couplings occurs 

at P x 2 and coincides with the nearest-neighbor to long-range phase 

transition. The divergent couplings in the long-range phase then make 

it possible that there is long-range order at finite temperature in this 

phase. Thus, Dyson's conjecture for the Heisenberg ferromagnet (see the 

Introduction) may hold for the antiferromagnet as well. 
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It is difficult to recommend reliable ways to improve the present 

calculations. Simply going to bigger blocks soon becomes cumbersome 

due to the size of the matrices to be diagonalized. Another possibility 

is to write effective Hamiltonians valid for more block states than just 

the lowest pair. This method generally gives large increases in numerical 

accuracy because the additional states contain information on energy 

levels and the density of states not present in the lowest-lying pair of 

states alone. For example, the two-site calculation using four states 

per block for the nearest-neighbor Heisenberg model (paper I) gives 

almost the same accuracy in the energy density as the nine-site calcula- 

tion discussed here. However, this method will not preserve the form of 

the original Hamiltonian but will embed it in a more general (and more 

complicated) theory after the first iteration. As discussed in paper I, 

it is then necessary to study the phases of the more general theory and 

to understand how the original theory has been embedded. Finally, 

variational calculations in which the block states are chosen to minimize 

the ground state energy after many iterations rather than to diagonalize 

the block Hamiltonians can give excellent results,4 but how to choose 

good variational trial states is an open question. 
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wre Captions 

1. Renormalization group results for the ground state energy density 

of the Heisenberg model with (distance)-P interactions. The upper 

curve is the three-site calculation of Section III; the lower curve 

is the nine-site calculation of Section IV. The exact result in 

the limit p -+ ~3, -0.4431, is marked. 
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