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1. INTRODUCTION 

The decay K-tT e+e- was suggested some time ago as a process in 

which effects due to (virtual) heavy quarks may play an important role. 

In particular, in the four-quark model Gaillard and Lee' considered this 

decay as occurring mainly through a mechanism involving an effective sdy 

vertex whose origin was in diagrams with a virtual u or c quark coupled 

to the photon. 

"For the decay K++-n+e+e- the width predicted from such considerations 

is of the right order of magnitude to agree with its measured value, 2 

which was often regarded as a success of the theory. However, later calcu- 

lations3'4'5 of the QCD corrections to the free (with respect to strong 

interactions) quark result of Ref. 1 show that they not only change its 

magnitude, but, with typical choices of parameters, its sign as well. 

Furthermore, the analysis in Ref. 3 would indicate that other diagrams 

give contributions to the amplitude for K++?T+e+e- which are just as im- 

portant as the mechanism of Ref. 1. From the point of view of making 

accurate predictions it is discouraging that some contributions enter with 

opposite signs. 

In this paper we will reconsider the decay K+IT e+e- in the six quark 

model with QCD corrections. Because of the entrance of virtual heavy 

quarks into the calculation of the effective interaction, the additional 

b and t quarks of the six quark model could be of some importance, as 

could the change in QCD corrections due to their presence. 

Of even more concern to us here, and what led us to undertake this 
I 

investigation, is the question of CP violation. The decay K2+-T"e+e- is 

forbidden with only one intermediate i (or Z") if CP were conserved. The 
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physical situation, where CP is not conserved , permits contributions to 

IcL" +n"e+e- both from the K"-Eo mass matrix and from CP violating decay 

amplitudes. As already noted by Ellis et al. 6 
-- in the six quark model 

without QCD corrections, the presence of a virtual t quark in the diagram 

leading to an effective sdy vertex can yield a CP violating contribution 

from the decay amplitude comparable to that from-the mass matrix. We 

investigate this question here within the context of full QCD corrections 

to both the CP conserving and CP violating amplitudes. 

In the next section we present the general method of calculating an 

effective Hamiltonian for processes of the type K-t?T e+e-, with QCD correc- 

tions performed in the leading logarithmic approximation. The technique 

we adopt is somewhat different than used previously, 4 but equivalent. 

Section III is devoted to examining the results of applying the method 

to the specific case of six quarks, with numerical results given for both 

the CP conserving and CP violating parts. The dependence of QCD correc- 

tions on the choice of parameters is discussed and the physical reasons 

for their sign and magnitude established. This is applied to CP violating 

effects in K L +n"e+e- , where QCD corrections are found to cause a change 

in relative sign between the real and imaginary parts of that portion of 

the decay amplitude arising from the s-+dy+-de+e- single quark transition. 

II. THE EFFECTIVE HAMILTONIAN FOR K+IT e+e- 

The task of deriving an effective Hamiltonian for weak decays of the 

type K-tn e+e- is accomplished in a very similar manner to that for the 

effective Hamiltonian for AS = 1 nonleptonic processes which we have 

recently considered in the six quark model. The only notable but obvious 
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change is that the matrix elements of the effective Hamiltonian are 

generally to be evaluated to order e2, the lowest relevant order in 

electromagnetism. In the particular case of a six quark model of the 

weak and electromagnetic interactions, one successively considers the 

W boson, t quark, b quark, and c quark as heavy and eliminates them 

from explicitly appearing. The resulting effective Hamiltonian contains 

only u, d, and s quark fields and can be written as a sum of Wilson coef- 

ficients times local four-fermion operators, c 
i 

CiQi. 

This sum contains exactly the same six local four-quark operators 

as the previously calculated nonleptonic effective Hamiltonian 7 (which 

are order e" and hence their matrix elements must be evaluated to order 

e2 for K+IT e+e-) plus one more operator. 

41 lJ -5 (1 y)d~y e 
!J , 

which is of order e 2 and hence its matrix element need only be evaluated 

to order e" to get an amplitude correct to order e2. 

Furthermore, on recognizing Syu(l-y 5 )d as the quark representation 

of an isospin rotation of the usual strangeness changing weak current, 

its matrix elements between K and IT can be identified with those involved 

in the decay K-+IT~v. The magnitude of ~'(K+IT e'e-) arising from just 

the new term C7Q7 in the effective Hamiltonian is then directly pro- 

portional to C$?(K+aev), with completely known factors in the proportion- 

ality. 

Having laid out the general features of this problem, especially in 

comparison with the earlier construction of an effective Hamiltonian for 

AS = 1 decays to order e", we proceed to the actual calculation relevant 
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to this paper. Most of the details will be relegated to an appendix and 

we will draw upon some results derived in our earlier work, 7 stressing 

only new aspects of the calculation. 

In the standard SU(2)@U(l) model of weak and electromagnetic 

interaction the six quarks are assigned to right-handed singlets. 

(~1,; (dlR; (4,; (~1~; (t),; .WR 

and left-handed doublets 

of the weak SU(2) gauge group. The primed fields are not mass eigenstates. 

However, they can be related to mass eigenstates by a unitary transforma- 

tion. With the standard choice for the phases of the quark fields this 

transformation has the form 

-s1c3 -s1s3 
i6 

'1'2'3 - s2S3e c1c2s3 + s2c3e 

i6 
'1'2'3 + c2s3e '1'2'3 - c2c3e 

where c i f cos 9 ., s 1i Z sin 8 i, is{1,2,3>. The signs of the quark fields 

are chosen so the el, B2 and O3 lie in the first quadrant. Then the 

quadrant of the CP violating phase 6 has physical.significance and cannot 

be chosen by convention. The measured phase of the CP violation parameter 

E can be used to determine 8 that 6 lies in the upper half plane if s1 and 

s3 can be treated as small quantities. 

In the absence of strong interactions an effective Hamiltonian for 

K-+-IT e+e- can be derived by treating the charged W boson as very heavy 

and keeping only the leading contribution in l/g. Then' 
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Lx eff = + 0:)) + A, (Cl(:) + 0:)) + h.c. , 1 (2) 

where 

(E@d&-A ’ (~ada>V-A (%&-&A 1 - [U+- q ] , (3) 

and 

A; i-6 
= s1c2 (c c c 123 - s2S3e > (44 

At = s1s2 (c1s2c3 + c2s3e 
-i6 

> . (4b) 

In Eq. (3) the color subscripts ~1 and B are summed over {1,2,3) when 

repeated, normal ordering of the four-fermion operators is understood, 

and the notation 

&)V-A (&A - mY,(l- Y5)$(0) 1 [Ji(0)YU (1 -Y,)dw 1 (5) 

is used. Since the electromagnetic fine structure constant is small the 

K-tn e+e- matrix element of the effective Hamiltonian is to be evaluated 

to the lowest possible order in electromagnetic interactions (i.e., 

order e2). 

Now introduce- the strong interactions in the form of quantum chromo- 

dynamics (QCD). The effective Hamiltonian in Eq. (2) with the W boson 

removed is replaced by9 

Jv eff = (AcOr) + AtOr)) 

(6) 

where the leading logarithmic approximation has been used. In Eq. (6) 

2 a(M ) is the running fine structure constant for strong interactions and 
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a (+) = 6/(33 - 2Nf) 

(7) 
a(-) = -12/(33 - 2Nf) , 

where N f is the number of quark flavors, which equals six at this stage. 

The K+x e+e- matrix element of the effective Hamiltonian in Eq. (6) is 

to be evaluated to all orders in the strong interaction, to zeroth order 

in the weak interactions, and to order e 2 in the electromagnetic inter- 

action. 

The next step is to consider the t quark as very heavy and eliminate 

it from explicitly appearing in the effective Hamiltonian for the decay 

K+IT e+e-. (+I What happens to the operator Oc is identical with the case 

of AS = 1 weak nonleptonic decays' (+) so we focus our attention on Ot . 

Assuming that mt is much greater than all the other quark masses 

and the momenta of the external states allows us to expand the matrix 

cc> element of Ot in terms of matrix elements of operators not explicitly 

containing the heavy t quark field: 9 

<lO(’ = 
t c B(+)(m /v,g) Cl0 I>'+ 6(l/m2) . i t i t (8) 

i 

The primed matrix elements are to be evaluated in an effective theory of 

strong (and electromagnetic) interactions with five quark flavors, strong 

coupling g', and mass parameters m' m' u, d ,*-*> %. That is 

<IOil>': <IOJ>(g:e,p,m:,...$) . 

To carry out the expansion in Eq. (8) in the leading logarithmic 

(9) 

approximation seven linearly independent operators are necessary. The 

first six may be chosen7 just as in the absence of electromagnetism 
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Ol = ($./a>v-A (;BUB>v-a 

O2 = ($s>v-A (‘$$&-A 

O3 = ($a)v-A (;$-b$v-A +. . l + ($bB)v-A 
1 

O4 = (+s>v-A 

[ 

6Bua)v-A +. l .+ ($bJvwA 1 
O5 = ($a>v-A 

[I 

(~BuB)v+A +. l .+ ($,$)v+A] 

‘6 = ($s)V-A ($.pa>V+A +. . .f ($$a)V+A 1 
and close under strong interaction renormalization in the absence of 

electromagnetism. In the presence of electromagnetism a seventh operator 

must be added; it is chosen most straightforwardly to be4 

O7 = $ (Guda>v-A (ee), l (11) 

We choose instead to define for calculational purposes, 

’ = 
O7 (zclda)v-A (ee), . (12) 

The utility of our definition will become clear shortly. 

With either definition of the seventh operator, the Wilson coef- 

ficients Bif)(mt/n,g), as defined in Eq. (8), are independent of the 

electromagnetic coupling e if we work to order e2 in the overall ampli- 

tude. They satisfy the renormalization group equation' 

7 

=K 

lJ & + B(g) +g + Y,W, &- + Y 

(+> 

j=l t 

(9) 6ij 

) 

,T 

- Yij(g' 

3 

B (+-I 

j (m,h,s) = 0 . (13) 

Here B(g) is the QCD beta function, which has the perturbation expansion 
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3 
B(g) = -(33 - 2Nf) + + @ (g5> , (14) 

481~ 

with Nf = 6. The y(') (g) are the anomalous dimensions of 0 (+> , with 

perturbation expansion 

y(+)(g) = 45 
4T2 

-I- @ (g4) (154 

y(-)(g) = - 82 
21T2 

+ a(g4> l (1%) 

The anomalous dimension matrix y' 
i j (g') is that of the operators 0 i and 

is to be evaluated in the effective theory of five quark flavors 

(t quark removed). It is defined by 

Y ij'(g') = 5 zik-ll+ Zkj , 
k=i 

(16) 

where the Z(g') relate unrenormalized to renormalized operators via 

0 (0) = 

i C. 'ij(P') 'j . 
j 

(17) 

With the more straightforward definition of O7 in Eq. (11) y'(g') 

has the structure4 . . 
. ' 56 $7 
. . . . (“” ) 

fh l l 

l Y;6 $7 

>o...oo . 

Tn a perturbative expansion the y!. 
=J 

with 1 < i,j c 6 all start in order - - 

(is'> 2, but the yi7 start in order (g') 0 and this difference in powers 

of g' means that these two pieces of the anomalous dimension matrix must 

be split off and treated separately in solving the renormalization group 



- 10 - 

equations at each stage of removing another heavy quark field.4 On 

the other hand, with the definition in Eq. (12) which we will use, y'(g') 

has the structure 

Now all entries start their perturbation expansion in order (g')2. The 

solution of the renormalization group equations is a standard one which 

may simply be extended from the 6 x 6 matrix case of ref. 7 to the 7 x 7 

case of interest here. After that it is just a matter of brute force 

computation. Both definitions of O7 of course give the same final 

result, as is illustrated by an explicit calculation in Appendix A. 

Notice that in either case the elements y!. for 1~ i,j 2 6 are 
1J 

identical to those that would be present in the absence of electromag- 

netism. An inspection of the renormalization group equation (Eq. (13)) 

then shows that the Bj for 1 < j c 6 obey exactly the same equations as - - 

they would in the absence of electromagnetism. Thus the Wilson coef- 

ficients of the operators Ol,..., O6 will be the same as calculated 

previously for the effective AS = 1 nonleptonic Hamiltonian. 

The actual 7 x 7 matrix y' ijw t o order g is given in Appendix B. 

fT Eigenvectors of y , according to Eq. (13), correspond to combinations 

of operators which are simply multiplicitively renormalized (i.e., do 

not mix with other operators). We denote by V the matrix which diagonal- 

izes y IT to give eigenvalues yJ(g')with 1~ j 5 7. The solution to the 
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diagonalized version of Eq. (13), the renormalization group equation for 

the B 
j 

(') (m,h ,g> , involves a running coupling g(mt/u,g)defined as in 

ref. 7, from which we define 

as (mt2) - [ii (mt/v,g)12/4r (18a) 

as( p2> - g2/4s . I Wb) 

More precisely, in leading log approximation the B. (+)(mth,d are related 
J 

in the solution to linear combinations of the Bi (+I (l,i) weighted by the 

V's and powers of as(m~)/as(~2). Values for the Bi (+)(l,g) are obtained 

by noting that at mt/u = 1 the strong interaction fine structure constant 

is small and no large logarithms are generated when the renormalization 

point is equal to the top quark mass. The coefficients Bi (')(l,g) can be 

replaced by their free (no strong interactions) field values. A direct 

calculation of the effective Hamiltonian to order go and e2 with the W 

boson and t quark removed from the theory gives 

GF 
- - At [CO1 + 02> + G-o1 + 02> ] 

2fi 
(19) 

where u is the renormalization point for electromagnetic interactions 

and the calculation has been done in a mass independent subtraction 

scheme chosen so that the coefficient of 0, has no pieces independent 

of y/v. From Eq. (19) we read off the free field values: 
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e> = 
B1 By (1,O) = 21 

(+I 
B2 = B2(+)(1,0) = i-1 

(+> 
B3 

= B (+I = ,(-‘-) = (+I 
4 5 B6 

= 0 
(20) 

as in ref. 7, and, with our definition of O;, 

(5) = 
B7 B7(+)(mt/u = La 

. . 

This last result follows even though 0; contains l/g 12 , since the loga- 

rithm vanishes when the renormalization point equals the t quark mass. 

Our final aim is to derive an effective Hamiltonian independent of 

the heavy W boson, t quark, b quark, and c quark fields. To do this the 

b quark and c quark must still be considered as heavy and removed from 

explicitly appearing in the effective Hamiltonian. However, the key 

differences between this calculation and that of deriving the nonleptoniq 

effective Hamiltonian for AS=1 weak decays have already been illustrated 

in our discussion of how the t-quark is removed from explicitly appear- 

ing in the theory. From here on we follow the path discussed in detail 

in Ref. 7, defining effective couplings g" and g"' in the 4 and 3 quark 

theories, respectively, diagonalizing the transpose of the anomalous 

dimension matrices y"(g") and y"'(g"') with matrices W and X, respec- 

tively, and treating all the solutions of the renormalization group 

equations in leading log approximation. The actual matrices are found 

in Appendix B. At the last step of removing the c quark some care must 
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be taken because there are only six (instead of the naively expected 

seven) linearly independent four-fermion operators. With the brute 

force portion of the calculation completed we revert from our choice for 

the seventh operator, Q;, to Q,, with an appropriate factor in the cor- 

responding Wilson coefficient. 

In the light 3-quark 

K+v e'e- is the following 

fermion operators. 

.Heff = - 

where the sum is over i = 1,2,3,5,6,7 and 

sector the effective Hamiltonian for the decay 

sum of Wilson coefficients times local four- 

GF 
z s1c2c3 c, CiQi + h-c. , 

i 

Ql = (+a>v-A (;8U&A 

Q, = (Sad&/A (;B’-$V-A 

43 = ($a)V-A I(~Bu6)v-A + ($dB)v-A + (+B)v-Al 

Q5 = (Sada)v-A [(‘&&,+A + ($jd&,+A + (+&J+Al 

Q6 = (Sad&-A [ (k&)V+A +' ($da)V+A +- (+a)v+Al 

(21) 

(22) 

Q7 = f (gada)VaA (&, . 

This is to be compared to the corresponding effective Hamiltonian in the 

"free quark model," i.e., no strong interactions, which with the W, t, b, 

and c quarks removed from explicitly appearing is 
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x GF 
eff = -z Ylc3 

G a ci. V-A ('Sd&J-A u > 

(23) 

x (zuda>v-A (ee), + h.c. 

The matrix elements of the operators Qi in the effective Hamiltonian (21) 

are to be evaluated to all orders in the effective theory of strong inter- 

actions with 3 quark flavors and coupling g"' (since strong interaction 

perturbation theory is probably not valid), and to the lowest possible 

order in electromagnetic interactions. The Wilson coefficients Ci are 

independent of the electromagnetic coupling e. Each Wilson coefficient 

has a real and imaginary part, being of the form a + b-c where 'c = s22 + 
-is 

'2'2'3 e I Y3 and a,b are real numbers. The imaginary part arises 

from diagrams with virtual heavy quarks. The operators Ql, Q,, Q,, Q, 

and Q, occur in the effective Hamiltonian for AS = 1 nonleptonic weak 

decays and their Wilson coefficients are the same as in that problem,7 

where the operator Q, (which arises due to electromagnetic interactions) 

is absent. 
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III. NUMERICAL RESULTS AND DISCUSSION 

We now proceed to choose a parametrization for u(M2) and values for 

the W boson and heavy quark masses in order to evaluate the coefficients 

of the local four-fermion operators in the effective Hamiltonian. 

In leading log approximation, within which we are working, 

as(Q2) = 
12n 1 

33-2Nf J?,n(Q2/A2) 

We shall take A2 = 0.1 GeV2 or 0.01 GeV2, thereby including roughly the 

range of values suggested in recent experimental and theoretical analy- 

ses.1° If the leading log approximation is in fact valid, the calcula- 

tion is insensitive to the precise value of A2. We take mc to be 1.5 

GeV, y, = 4.5 GeV, and mt = 15 GeV or 30 GeV, and do not differentiate 

between, for example, mb and ml', the b quark masses in the effective 

strong interaction theories with 6 and 5 quarks, respectively. MW = 85 

GeV. Finally, since crs(p2) is to be of order unity, we let as(p2) = 0.75, 

1.0, and 1.25. 

Values of the coefficients of the local operators Ql, Q,, Q,, Q,, 

Q, and Q, in Eq. (21) were calculated for the values of the parameters 

given above. As mentioned in the previous section, the coefficients of 

all but Q 7 are exactly the same as in the absence of electromagnetism 

and are found in ref. 7. Values of C7 for A2 = 0.1 and 0.01 GeV2, mt = 

15 and 30 GeV, and as(v2) = 0.75, 1.0, and 1.25 are found in Table I. 

Choosing one "typical" case (A2 = 0.1 GeV2, mt = 15 GeV, and as(p2) = 1) 

and combining the results here with those in ref. 7, we have 
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2 
GF 

eff = - x s1c1c3 (-0.87 -t 0.036~)Ql 

-I- (1.5 - 0.036r)Q2 

+ (-0.021 - 0.012-r)Q3 

+ (0.011 + 0.007r)Q5 

+ (-0.047 - 0.072r)Q6 

(25) 

+ (-0.066 + O.O58r)Q7 , 

where r = s 2 -iB 
2 + s2c2s3e /c c 1 3' 

To check on the sensitivity to varying other aspects of the calcula- 

tion, Table II contains the values of C 7 that follow in the six-quark 

model with 8 = 0 2 3 = 0 (so that r = 0) and with mixing of the "penguin 

operators" Q,, Q,, and Q, with Ql,Q, and Q, neglected. In Table III on 

the other hand, values of C7 are given which pertain to the four quark 

model, again with mixing of the "penguin" operators Q 3, Q,, and Q, with 

Ql, Q, and Q, neglected. Comparison of Tables I, II, and III quickly 

shows that for a given value of A 2 
and as(u2), changing mt from 15 to 30 

GeV, dropping mixing between "penguins" and the usual operators, or 

going from a six quark to four quark model each results in less than a 

factor-l.5 change in Re C7. Of course, setting B2 = f33 = 0 or going 

from the six to four quark model (Tables II and III, respectively) makes 

22 f s2c2s3e -is? T = s /c c 13 = 0 and therefore forces Im C7 = 0. Changing 

A2 from 0.1 to 0.01 GeV2 or us(p2) from 0.75 to 1.25 makes a somewhat 

larger effect -- over a factor of 2 for either A 2 2 or crs(u > in some cases. 

Note that in the case of changing A2 both Re C7 and, when applicable, 
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Im c7 (proportional to the coefficient of r) change, and that they both 

change magnitude in the same direction. Thus their ratio is somewhat 

less sensitive to changes in parameters than each is individually. 

More interesting is to compare the results with QCD corrections 

to those of the "free quark model," i.e., g = 0. In this latter case 

we read off from Eq. (23) that 

C7=+$bn($-)+r!Ln($)] . (26) 

We need to choose the scale parameter u in Eq. (26), which refers to 

the renormalization point of electromagnetic interactions (QCD is turned 

off!), if we are to make a comparison with the QCD corrected values of 

c7' The obvious choice of p is such that as(p2) has the appropriate 

value when the strong interactions are turned on (i.e., such that 

as(u2) = 0.75, 1.00, or 1.25 in Table I). In Table IV we then list the 

"free quark" values of C7 for A2 = 0.1 and 0.01 GeV2,mt = 15 and 30 GeV, 

and as(u2) = 0.75, 1.00, and 1.25, using this prescription for p in 

Eq. (26). Comparison of Table IV with Table I immediately reveals that 

Re C7 changes sign due to QCD corrections, but Im C7 (proportional to 

the coefficient of T) does not. This result, which is at first glance 

surprising, may be understood physically as follows. 

If we again neglect strong interaction induced "penguin" type 

operators (which we have seen make little numerical difference in C7), 

then the operator Q, comes about from heavy quark loops, as illustrated 

graphically in Fig. 1. It is an "electromagnetic penguin operator," 

whose strength is determined by the integration over the momentum 
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carried around the quark loop and the strength of the four-quark weak 

interaction arising due to W exchange with QCD corrections. Analytically 

we may rewrite the last integration in the formula for C (+> 
7 in Appendix A 

(i.e., Eq. (A.14)) in terms of momentum instead of the running coupling. 

Then we find, as in Ref. 3, that 

c7 cc s 
$ [2c(+)(q2> - c(-)(q2)] , 
9 

(27) 

with C(+)(q2) and C(-) 2 (q ) the coefficients of the operators 

0, = G ct a V-A('gd$V-A + %tdu)V-A u > (U u > 8 B V-A 

and 

o- = ($Ja>v-A (;Bds)v-A - (+a>V-A (;B’JB>v-A 

in the effective Hamiltonian for nonleptonic weak interactions at a mass 

squared scale characterized by q2. The coefficients of C (+I and C(-) in 

Eq. (27) stem from color. In the free quark model C (+I = ,G> =l, and the 

integration in Eq. (27) leads to the characteristic logarithms in Eq. (26). 

In the integration range from p2 2 to m 
C 

the c and t quark contributions 

(with coefficients AC and At, respectively) add, leading to the first 

term in Eq. (26) proportional to !Ln(mc2/p2), while between mc and mt 

only the t quark contributes, leading to the second term in Eq. (26) 

proportional to rl-Rn (mt2/mc2). 

With strong interactions turned on, C (+I (q2> is suppressed, while 

c(-)(q2> is enhanced, having forms [us(q2)/cls(MW2)]-6'25 and 

bs(s2)/as(J$2) 112’25, respectively, with four quarks operative. With 

reasonable choices of strong interaction parameters the enhancement of 

&)(q2> and suppression of C (+)(q2) for values of q2 5 m 2 more than 
C 
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makes up for the extra factor two in the first term in the integrand in 

Eq. (27) and the integral from p2 to mc2 has the opposite sign from the 

free quark model. On the other hand, for reasonable QCD parameters the 

enhancement (suppression) of C (-I (q2> cc(+) (q2) 1 is considerably less at 
2 

q2 t, and the integration range from m 2 
,-m 

C 
to mt2, which contributes 

the term in C7 proportional to T, turns out to yield a result which has 

the same sign as the free quark model result. We then understand in a 

fairly physical manner the change in sign or lack of it in applying QCD 

corrections to the free quark model result for C7. 

Precisely because of the cancellation between the two terms in the 

integrand, the values of C7 after QCD corrections found in Table I are 

in general considerably smaller in magnitude than those of the free 

quark model which are given in Table IV. In any situation where an 

operator is induced only through mixing with other operators its Wilson 

coefficient will be the sum of several terms which partially cancel 

against one another. However, in the case of both Re C7 and Im C it .is 7 
a particularly delicate cancellation and we are wary about taking the 

QCD corrected results for C7 too seriously. Also Re C7, like Re C6, for 

example depends primarily on integration from 1-1 2 to mc2 where the lead- 

ing log approximation is most dubious. 

With these limitations on the accuracy of the calculation in mind, 

let us now look at the predicted rates for K+rre+e-, and especially 

Et 
o+- +-IT e'e which to order e2 proceeds through violation of CP. First 

let us calculate the contribution arising through the "electromagnetic 

penguin" operator Q, in the effective Hamiltonian in Eq. (21). For 

K+&r+e'e- we find an amplitude 
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A(K+-+s+e+e-) 

(28) 

x f+ (K + $ eYUe 5 

where KU and IT 
lJ 

represent the K and 'TT four-momenta, respectively, and f f 
is the form factor in K G3 decay. For comparison, 'this latter process 

has an amplitude: 

G 
A(K+%r"e+v) = 2 s c f+ (K + r)p <yV(l-y5)e 

fi 13fi 
. (29) 

Similarly, the amplitude for Ks+,"e'eB (neglecting CP violating effects) 

is 

C7 (-f+)(K+r)ueyue . (30) 

As already noted, to order e2 the amplitude for %-+r'e+e- involves only 

CP violating effects. Recall that 

Iy = (1-t-c) IK*> - (l- E) Ii?"> 

d'zgi- 
. (31) 

The value of E depends on the phase convention used for the IK"> and IK'> 

states. We adopt the usual phase convention where the K" (E") states 

have a quark content e 
--is- ' 

sd (e"&) and 5 is chosen to make the K'+TIT 

(I= 0) amplitude real, apart from final state TIT strong interactions. 

Then E z (2x10-3)ei"4 and 

(-f+)((E - iS)Re C7 + i Im C7) 

x (K+~)~ey~e . 
(32) 
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In Ref. (7) it was shown that 

5 = f Im C6/Re C6 

when the fraction of the K'+ITIT (I=O) amplitude arising from the operator 

Q6 in the effective Hamiltonian for AS-1 weak nonleptonic decays, f, is 

large. The only measured decay of the form K-rrre'e- is K'%r'e+e- with a 

branching ratio2 of (2.6 + 0.5) x 10m7. If this were all to arise from 

the C7Q7 piece of the effective Hamiltonian it would imply 

Ic,l 3 0.3 (33) 

The values of C7 which are found in Tables I to III (with QCD cor- 

rections) are all a factor two or more smaller than this.ll In addition 

to those of Q,, other possible contributions, illustrated in Figs. 2a 

and 2b have been estimated by Vainshtein et a1.3 In our effective -- 

Hamiltonian formalism contributions such as thesel* arise from taking 

matrix elements of Ql, Q,, Q,, Q, and Q, to order e2. With the "vacuum 

insertion" method of estimating matrix elements they find comparable con- 

tributions of differing signs for the decay K++-r+e+e-. It is particu- 

larly interesting that for Fig. 2b they find that the "penguin" term 

C6Q6 in the effective Hamiltonian gives comparable contributions to the 

normal (V-A)X (V-A) terms ClQl -I- C2Q2. This is unlike the case for 

ordinary nonleptonic AS =l weak decays (such as K-IT) where matrix 

elements of Q, are argued to be strongly enhanced over those of Q, and 

Q2* In the case at hand such an enhancement factor again arises, but is 

2 compensated by a factor <r > 2 
K + - <I: >r+ in terms involving Q, versus 

just CIZ~>~+ in those involving Ql and Q,. Note that in applying this 

method of estimating matrix elements to either Kso+rroe+e- or \+T"e+e- 
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the relevant electromagnetic charge radius squared that enters is that 

of the K" which, as expected, is measured13 now to be much smaller than 
-I- that of the K' or IT . This gives some indication that the terms in the 

matrix element of CIQl -I- C2Q2 involving the charge radius will be less 

important in KQ-Voe'e- than they are in K++tr'e+e-. 

One should also note at this point that the matrix elements of 
6 

c CiQi taken to order e2 must be v dependent. This follows since C7 is 
1 

1-1 dependent while the matrix elements of Q, are not,14 so that matrix 

elements of C7Q, are explicitly n dependent. However, the total ampli- 

tude obtained from the effective Hamiltonian cannot depend on the renor- 

malization point, whose choice is arbitrary. Therefore the matrix 
6 

elements of the remaining terms, c C-Q must somehow compensate for 
1 i i' 

that of C7Q,. 

This fact can be seen most strikingly in the "free quark model" 

effective Hamiltonian of Eq. (23). Here only the operators Q, and Q, 

enter. The logarithmic coefficient of Q, is explicitly dependent upon 

n, while matrix elements of the operator Q, itself are not. The opposite 

pertains to Q,: its coefficient is explicitly 1-1 independent, and hence 

its matrix element must be 1-1 dependent in just such a way as to exactly 

compensate the coefficient of Q,. Explicit calculation verifies this. 

The same kind of situation occurs in the case of AS=1 nonleptonic 

decays.' There the Wilson coefficient of the "penguin" operator Q, is 

explicitly P dependent, but u dependence in the matrix element of Q, as 
5 

well as in the matrix elements of c CiQi must compensate that of C6 
1 

in just such a way as to make the net physical amplitude independent of 
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the choice of renormalization point u (at least if the Wilson coeffici- 

ents are calculated exactly). On top of this, the accuracy of the 

"vacuum insertion" approximation, which is usually used to evaluate the 

matrix elements , must be p dependent since it separates a renormalized 

local four quark operator into a product of renormalized quark bilinears. 

Consequently, both in our previous application of the AS=1 nonleptonic 

effective Hamiltonian' to K+~Tv decays and in the present paper we are 

wary1 5 of making quantitative predictions using this method for evaluat- 

ing the matrix elements of Ql...Q6. 

If we stick to just Q,, whose matrix element (but not Wilson co- 

efficient) is unambiguous, we see from Eqs. (28) and (32) that 

A(KI+noe'e-) 
=- 

A(K*&r'e+e-) _ 
(34) 

Since Im C7 arises from Im T = -s2s3c2sin6, we see that Table I has 

Im C7/Re C7 = C s2s3c2sin6, with C a positive number with a magnitude 

roughly in the range one to four. The sign of C is opposite to that in 

the free quark model, which was used previously to estimate it.6 In 

the six quark model the K"-zo mass matrix gives a contribution to E of 

roughly' (3 to 6) x s2s3c2sin6 e ia/ , so that the E and Urn C7/Re C7 

terms in Eq. (34) give comparable contributions to the net CP violating 

amplitude and Ime interferes constructively with Im C7/Re C7 and -5 

when 03 can be treated as a small quantity. 

The branching ratio for KI,+roe+e- may be calculated from 
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BR(KI,+rroe+e-) = 
J? (\+rr”e+e-) 

JY(Y;tall) 

= JY(K++all) l?(K+%+e+e-> . I: (\-m"e+e-) 
, 

r(KI+all) 
r (K++-all) I'(K+%r'e+e-) 

(35) 

with the first two factors on the right-hand side taken directly 

from experiment.* *I6 To obtain a crude estimate, the ratio 

rQy-lT" + e e-)/T(K+q+e+e-) is assumed to follow the ratio of contribu- 

tions from C7Q7 in Eq. (34). These assumptions yield 

I 

ImC7 2 
c-iS+i- 

BR(KI,+roe+e-) ~0.5~ 10-l 
ReC7 

E 

The final factor on the right-hand side of Eq. (36) seems unlikely to 

gain us much more than a factor of two. This is very far below the 

recent upper limit 17 

BR(KI,+soefe-) 2 2 x 10D6 , 

and, moreover, at a level where it seems likely that the CP conserving 

decay process through two intermediate photons, Y;t+?"~y+~oe+e-, also 

contributes. In addition there are CP violating contributions from the 

matrix elements of Ql, . . . . Q, which must be added to that of Q, to get 

the full qT"e'e- amplitude. It would seem that the change in sign of 

Im C7/Re C7 due to QCD corrections will remain a theoretical curiosity 

incapable of being checked experimentally. 
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APPENDIX A 

Here we derive the effective Hamiltonian for Kwe+e- in the four- 

quark model when the mixing with penguin-type four-quark operators is 

neglected. The purpose of this appendix is to compare the result of 

the method used in Ref. 4 to that of the method used in Sec. II in a 

situation where analytic expressions can be stated in each case. 

After the W-boson is treated as heavy and removed from explicitly 

appearing in the theory the resulting effective Hamiltonian density is 

ew 
-GF 

eff = - sin@ 
ZJZ 

case 
C C 

i 

12/25 

CA- P 

1 
-615 

,(+> 
C 

> 

I 
+ h.c. . 

(A. 1) 

The operators e> Oc are defined in Eq. (3). The matrix elements of this 

Hamiltonian are to be evaluated to order e2 in the electromagnetic inter- 

actions. 

The next step is to treat the charm quark as heavy and remove it 

from explicitly appearing in the theory. ($1 The matrix elements of Oc 

may be expanded in terms of matrix elements (evaluated in an effective 

three-quark theory with coupling p'(> ,g)) of operators not explicitly 

involving the heavy charm quark field. When the mixing with penguin- 

type operators is neglected this expansion has the form 

</oc(‘)l> = p i,, 
( ) -I- P 

<IO 
-I- 

I>) f L(+) yg <IO I>’ 
-( 1-I ) - 

(A. 2) 
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where 

0, = (S u 1 a ~1 V-A (‘@d&-A ’ (‘ad&-A (‘&V-A 

and, using the definition of Ref. 4, 

(A.3) 

(A.4) 

The primed matrix elements in Eq. (A.2) are evaluated in an effective 

3-quark theory with coupling g'. The factor of is inserted into 

the definition of 0 7 so that if we work to the lowest possible order in 

the electromagnetic interactions the operators O., j E C+,-,7) undergo J 
a renormalization 

o (0) 
j = c zjioi 

i 
(A.5) 

where the Z ji are independent of the electromagnetic coupling e. A 

simple calculation of the renormalization of the operators O., at the 
1 

one loop level, gives 
18 

zij ($2) = 

l- 2g'2/16=2c 0 8/9r E 

0 1+4g' 2 /161~ 2 E -4/9x E 1 . (A.61 

0 0 2E 
lJ 

The factor of 1-1 2E 2 2E 2 
arises from the relation e = u e . From 

0 
(A.6) 

4g12/16a2 0 0 

pdz = dl.l 0 -8g12/16r2 0 1 . (A.7) 

0 0 2ElJ 2E 

The term proportional to E is not negligible since it combines with terms 

of order I/E in Z -1 to give an anomalous dimension matrix 
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= 

2gv2/8n2 0 -16/9r 

0 -4gr2/8x2 8/9r 

Lo 0 0 

(A. 8) 

The Wilson coefficients L 

equations 

satisfy the renormalization group 

Z 0 . (A.9) ,' 

The y(') (g) are the anomalous dimensions for the operators 0, and were 

calculated in Ref. 19. The renormalization group equations (A.9) may be 

solved with the aid of a running coupling constant g(y,g) defined by 

Il,ny = (A.10) 

Because of the structure of the matrix y'(g') in Eq. (A.8), the re- 

(+-I normalization group equations for L+ and L(+) relate them only to 

themselves and they have a standard solution. 9 (+I The equation for L7 

(+I relates it to L+ , L(+) , and itself, and has the solution 



x [exp ~y')dx(8~22~~x))] Li')(l,g) 

+ g~~R)dz(g&z))[exp g~YZ)dx(8V:,;(x))] 

g' Z 

Now defining 

.(+> z 6125, a c-1 = -12125 , 

(A.11) 

(A.12) 

and utilizing 

B(x) = -25 x3 
48n2 

+ @(x5), B'(x) = -27 x3 f @(x5) and g'(l,g) =. g, 
481~~ 

(A. 13) 
the solution Eq. (A.ll) becomes 

L;i)(> ,g)= [:::r’:!‘ii:,[- J pdz 2z-3 - 12/27 g 12/27 $1 tl,gj 

g’ 
(A.14) 

/ 

E 
+ dz z-3+24/27 --24/27L(+) g 

g’ 
Noting that the Li')(l,g) may be replaced by their free field values 

(see Sec. II) in a leading log calculation and using the solutions to 
(*> 

the renormalization group equations for L+ and L(*) gives 
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Lx? = 
-GF 

eff - sinSc cosSc i(:ii:f:T"2~~:~~j*l150+ 
2Jz 

_ ~(l-(:i::f:i15'27)(~~~~~'25]07~ + h.c,. (A.15) 

as the effective Hamiltonian desnity in the light 3-quark sector. This 

is the result in closed form derived starting from the definition of 0 7 
in Eq. (A.4), which is similar to that 'in Ref. 4. 

To perform the expansion in Eq. (A.2) in a manner similar to that 

used in Sec. II we use an operator 0; defined by 

2 
0; = 5 

( ) 
(iada>vmA (eel, . (A.16) 

This has the advantage of giving an anomalous dimension matrix propor- 

tional to the coupling squared, for when O7 is given by (A.16) 

Y!. 
iJ 

(g’) = 8,2 
8a2 

. (A.1 7) 

In this case the renormalization group equations for the coefficients 

mC Lj T, g are still given by Eq. 
( > 

(A.9), but now with the anomalous 

dimension matrix in Eq. (A.17). (t) The equations and solutions for L+ 



I 

and L<" are as before. For L:+) the solution now is 

x Ll+)(l,g) + L;+I,g) 
I 

. (A.18) 

Using the perturbation expansions for B, B' and Y (k) it is easy to show 

that Eq. (A.181 together with the solution for L+ ("(T, g) and L(')($, 4 

lead to an effective Hamiltonian density which is identical with that 

(in Eq. (A.15)) d erived starting with the other definition of 0 7' Thus, 

although the anomalous dimension matrices which correspond to the two 

definitions of O7 are quite different, the effective Hamiltonian density 

in the light 3-quark sector is independent of the way O7 is defined. 

Finally we note that the results derived in this appendix are 

equivalent to those in Ref. 3. This is most easily seen by converting 

Eq. (A.141 to an integration over the momentum variable q2 through the 

substitution 

with 

cxs(q2) = 12T 

27 an(q2/A2) 

(A.19) 
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APPENDIX B 

In this section numerical results are given for various quantities 

which play a role in deriving the effective Hamiltonian for K -f re+e-. 

When the top quark is treated as heavy, and removed from explicitly 

appearing in the theory, a straightforward calculation of the renormali- 

zation of the operators' (Ol,...,O;} (defined in Eqs. (1) and (12)) at the 

one loop level gives an anomalous dimension matrix 

-1 3 0 0 0 0 -813 
3 -1 -l/9 l/3 -l/9 l/3 -8/9 
0 0 -1119 1113 -219 213 -413 
0 0 22/9 2/3 -5/9 5/3 -4/9 
00 0 0 1 -3 -413 
0 0 -5/9 513 -5/9 -19/3 -419 

-0 0 0 0 0 0 -2313 

+@(d4) (B.l) 

The element y7; (g') arises because the coupling constant in the defini- 

tion of 0; (see Eq. 12) gets renormalized. The matrix y ii (g’> can be 

diagonalized by the transformation 

where 

Vkj = 

‘0 0 .69589 0 0 -.70658 0 
0 0 -.69589 0 0 -.70658 0 
0 -.20236 -. 23196 .95985 .17132 .10094 -.40226 
0 r28103 .23196 -.83058 .083375 .10094 -.77672 
0 -.044316 0 -. 079869 .96445 0 .31309 
0 -.82989 0 -.16334 -.35439 0 -.26431 
1 .74268 -.28117 -.16537 -.1587 .24133 .053852 - 

and 

-7.6667 
-6.8954 
-4 
-3.2429 

1.1166 
2 
3.1327 I + @W4> 

03.2) 

(B.3) 

(B-4) 
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Note that the last six of these eigenvalues are the same as those which 

occur in the diagonalization of the anomalous dimension matrix in 

Eq. (A.7) of ref. (7) where the effective Hamfltonian for hS= 1 weak 

nonleptonic decays was discussed. 

When the b-quark is treated as heavy the renormalization of the 

operators' {Pl,...P;} where 

p1 = ($a)v-A ('$-j&-A , 

p2 = ('ad&A ('$-&-A , 

P3 = $dalVBA [ 
($-p& A f.. .+ (+Qv A -1 , 

p4 = (~~4&v-A 

[ 

(‘&.&-A f. l .+ (cBca>v-A 1 , 

p5 = (sada)V-A 

[I 

($f-j&+~ +. l .+ (+&+A 1 , 

'6 = (+s)v-A (&$-$v+A +. . .+ c 
(&>v+A 1 , 

2 
(+Jv _ A(ee)v , 

gives rise to the anomalous dimension matrix 

T 

y;; (8") is diagonalized by the transformation 

-1 3 0 0 0 0 -813 
3 -1 -l/9 l/3 -l/9 l/3 -819 
0 0 -1119 1113 -2/9 213 -813 
0 0 23/9 l/3 -419 4/3 -819 
00 0 0 1 -3 -813 
0 0 -4/9 4/3 -4/9 -20/3 -8/9 
00 0 0 0 0 -2513 

03.5) 

I 
+d(gtf4) . 

0.6) 
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c w-1$ &(g") Wkj = Aij ylj' (g") 
k,R 

(B-7) 

where 

0 0 .6558 0 0 .70643 0 
0 0 -.6558 0 0 .70643 0 
0 .14452 -.3279 -.78005 .1414 -.11774 -.67561 

w .3279 .71236 .067442 -.11774 -1.1468 
.032867 0 .041364 .96775 0 .42931 
.72549 0 .096564 -.35021 0 -.34187 

-.72643 -.13452 .25884. -. 28698 -.20256 .17641 i 

G3.8) 

and 

-8.3333 
-7.0428 
-4 
-3.501 

1.0974 
2 
2.8909 I + @(gff4) . (B.9) 

When the charm quark is treated as heavy and removed from explicitly 

appearing in the theory only the six operators Q,, Q,, Q,, Q,, Q, and 

Q; <Q; = (l/a~'Q2))Q7) defined in Eq. (22) are required. Calculating 

their renormalization at the one loop level gives the anomalous dimension 

matrix 

1 + @(gtff4) . (B.10) 
The matrix yyj Tw') is diagonalized by the transformation 

c x-l 
k,R 

iR v;;cT(p, sj = 6ij yljll(g”‘) (3.11) 
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where 

0 .17524 -.69547 -.051101 -.81229 .73489 
0 -.17524 .69547 .051101 -.54153 -.73489 
i -:iZfZ -:i:iiZ: :::;:5 .27076 0 -1.2212 

.24709 
0 .81415 .048407 -.34686 0 -.186 
1 -.17523 .23577 -I-.0090159 .24068 -.11186 

and 

-9 
-7.2221 
-3.7559 

1.0761 
2 

2.6797 1 + @(gfTV4) . 

(B.12) 

(B.13) 
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TABLE I 

Coefficient of the operator Q, (defined in Eq. (22)) in 

the effective Hamiltonian, X eff = (-GF s1y3/fi) Cc CiQi) , 

for decays like K+r e+e- 
f 

in the six-quark model. 

T f .si + sjc2s3e -i6 /c c 1 3' 

Parameters 

h2) = 0.75, mt = 15 GeV, A2 = .l GeV2 

oh2> = 1.00, mt = 15 GeV, A2 = .l GeV2 

dv2> = 1.25, mt = 15 GeV, A2 = .l GeV2 

c*h2> = 0.75, mt = 30 GeV, A2 = .l GeV2 

dU2> = 1.00, mt = 30 GeV, A2 = .l GeV2 

ah2) = 1.25, mt = 30 GeV, A2 = .l GeV2 

dlJ2) = 0.75, mt = 15 GeV, A2 = .Ol GeV2 

ah2> = 1.00, mt = 15 GeV, A2 = .Ol GeV2 

dv2> = 1.25, mt = 15 GeV, A2 = .Ol GeV' 

h2) = 0.75, mt = 30 GeV, A2 = .Ol GeV2 

a(u2> = 1.00, mt = 30 GeV, A2 = .Ol GeV2 

d?J2> = 1.25, mt = 30 GeV, A2 = .Ol GeV2 

c7 

-.036 + .056 T 

-.066 + .058r 

-.091 + .059r 

-.034 + .12-c 

-.064 + .12r 

-.088 + .13-c 

-.055 + .10-r 

-.089 + .lOr 

-.12 -I- .lOr 

-.051 + .18~ 

-.085 + .18r 

-.ll + .18r 
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TABLE II 

Coefficient of the operator Q, (defined in Eq. 22)) 

in the effective Hamiltonian,X eff = (-GF slcl/fi) 

x Cc CiQi) , f or decays like K -f x e+e- in the six- 
i 

quark model with t32 = f33 = 0 and mixing with the 

penguin-type operators Q,, Q, and Q, neglected. 

Parameters c7 

a(u2) = 0.75, mt = 15 GeV, A2 = .l GeV2 -.037 

a(!J2> = 1.00, mt = 15 GeV, A2 = .l GeV2 -.069 

a h2> = 1.25, mt = 15 GeV, A2 = .l GeV2 -.096 

dP2> = 0.75, mt = 30 GeV, A2 = .l GeV2 -.036 

dv2> = 1.00, mt = 30 GeV, A2 = .l GeV2 -.067 

ah2> = 1.25, mt = 30 GeV, A2 = .l GeV2 -.093 

d!J2> = 0.75, mt = 15 GeV, A2 = ;Ol GeV2 -.063 

a(i2) = 1.00, mt = 15 GeV, A2 = .Ol GeV2 -.lO 

a(?J2> = 1.25, mt = 15 GeV, A2 = .Ol GeV2 -.13 

a(p2) = 0.75, mt = 30 GeV, A2 = .Ol GeV2 -.060 

a(p2) = 1.00, mt = 30 GeV, A2 = .Ol GeV2 -.097 

ah21 = 1.25, mt = 30 GeV, A2 = .Ol GeV2 -.13 
- 
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TABLE III 

Coefficient of the operator Q, (defined in 

Eq. (22)) in the effective Hamiltonian, 

3z eff = (-GF sineC COS~~/~> ( C CiQi) y 
i 

for decays like K+m 3; in the four-quark 

model when the mixing with the penguin-type 

operators Q,, Q,, and Q, is neglected. 

Parameters 5 

a(u2> = 0.75 , A2 = .l GeV2 

ah21 = 1.00 , A2 = .l GeV2 
\ 

a(~~> = 1.25 , A2 = .l GeV2 

d!J2> = 0.75 , A2 = .Ol GeV2 

dlJ2> = 1.00 , A2 = .Ol GeV2 

dv2> = 1.25 , A2 = .Ol GeV2 

-.045 

-.081 

-.ll 

-.lO 

-.15 

-.19 
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TABLE IV 

Coefficient of the operator Q, (defined in Eq. (22)) in the free 

quark model (T.e., no strong interactions) effective Hamfltonian, 

se eff = (-GF s1c1c3/fi) (c C,Q,), given in Eq. (23). Par given 
i 

values of a(p2) and A2 the renormalization point is determined by 

u2 = A2 exp (121~/27a(u~)). 

2 
Parameters u c7 

ah21 = 0.75, A2 = .l GeV', = 15 GeV mt .64 GeV2 .089 + .33 T 

ah2> = 1.00, A2 = .l GeV', = 15 GeV mt .40 GeV2 .12 + .33 T. 

ah2> = 1.25, A2 = .l GeV2, = 15 GeV mt .31 GeV2 .14 -I- .33 r 

a(u2> = 0.75, A2 = .l GeV2, = 30 GeV mt .64 GeV2 .089 + .42 -c 

ah2> = 1.00, A2 = .l GeV2, = 30 GeV mt .40 GeV2 .12 + .42 II 

a(~~) = 1.25, A2 = .l GeV2, = 30 GeV mt .31 GeV2 .14 + .42 -r 

a(?J2> = 0.75, A2 = .Ol GeV2, = 15 GeV mt .064 GeV2 .25 -I- .33 'c 

a(p2) = 1.00, A2 = .Ol GeV2, = 15 GeV mt .040 GeV2 .28 + .33 'c 

du2> = 1.25, A2 = .Ol GeV2, = 15 GeV mt .031 GeV2 .30 -i- .33 T 

a(p2) = 0.75, A2 = .Ol GeV2, = 30 GeV mt .064 GeV2 .25 + .42 T 

dlt.12> = 1.00, A2 = .Ol GeV', = 30 GeV mt .040 GeV2 .28 + .42 T 

du2> = 1.25, A2 = .Ol GeV2, = 30 GeV mt .031 GeV2 .30 + .42 T 
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FIGURE CAPTIONS 

1. Diagram contributing to C7. The black box represents W exchange 

plus all strong interaction corrections. 

2. Some diagrams contributing to K+re+e-. The black box represents 

the action of the effective Hamiltonian for AS=1 nonleptonic 

weak decays. 
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