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K. Johnson? 
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Stanford University, Stanford, California 94305 

Please replace Table II with the following corrected Table II. 

TABLE II. Hadron Mass Spectrum for Two Values of "b" 

CASE I Particle T P N A 

b = .65 M/A 0 1.84 2.16 2.86 - 

x = 2.21 M(GeV) 0 .80 .94 1.25 - 

A = .436 GeV R(GeV-') 3.9 4.7 5.2 5.5 

B a = .145 GeV 
a 1.5 1.7 1.9 2.0 

S 

= -332 A 

CASE II Particle 7T P N A 

b = 1.04 M/A 0 3.01 4.21 5.09 - 

X = 2.49 M(GeV) 0 .67 .94 1.14 - 

A = .223 GeV R(GeV-l) 3.4 4.3 5.0 5.3 

B + = .144 GeV ci .83 .97 1.1 1.1 
S 

= .645 A 

NOTE: Ground state masses of hadrons composed of "bare" 
massless up and down quarks, for two values of "b". 
The momentum spread of the valence quarks is parameterized 
by x and this is adjusted to make m,= 0. A is taken 
to fit the nucleon mass, .94 GeV. 

-lO- 

I am indebted to Carleton DeTar and Dale Izatt for bringing 
my attention to the errors in the original of the table. 

* 
Work supported by the Department of Energy under contract number 
DE-AC03-76SF00515. 
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ABSTRACT 

A proposal for the form of the ground state wave function of 
quantum chromodynamics is made. It is shown to lead to the 
phenomenology of the MIT Bag Model. The parameters of this model 
are related to the fundamental scale parameter of QCD. 

I. INTRODUCTION 

There have been many ideas about the ground state wave function 
of quantum chromodynamics. One common feature has been a state 
which involves some sort of condensed phase with color magnetic 
pr0perties.l Here I shall suggest a version of this which is 
extremely simple, but which leads to a quantitative model, in this 
case, the"static" bag model with some additional features, not the 
least of which is a relationship between the ad-hoc bag constant "B" 
and the scale of the running coupling constant of QCD. 

The discussion will proceed in the following order. First, I 
will review the main features of the static bag model with particular 
reference to those aspects which are universal for all hadrons. 
Next, I will make a suggestion of how the strong coupling regime of 
QCD may be handled quantitatively, and show how the MIT Bag Model 
evolves from it. I will then discuss how the large N (equals number 
of quark colors) limit appears. I will briefly allude to the inclu- 
sion of light quarks. Finally, I will, also briefly, discuss how 
the model works phenomenologically with a few examples, and make 
the conclusions. 

II. STATIC BAG 

The bag2,3 has provided a reasonably simple and successful 
model of hadron structure. Colored quark constituents are confined; 
all hadrons are composite, color singlet states. These results are 
obtained in a natural way by the enforcement of simple boundary 
conditions on the constituent wave functions at the surface of the 
bag. In addition, the confinement is associated with a term in the 
energy of the hadron of the form BV, where V is the volume occupied 
by the valence quark wave functions and B-55 MeV/f7 or B1j4= .145 
GeV. B is the same for all particles. Finally, the interior of the 
bag is assumed to be described by the pertturbative QCD vacuum, that 
is, quarks interact within a bag by ordinary, perturbative QCD. 

* 
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In the more elaborate version of the bag model3 used to compute the 
spectrum of light quark hadrons, an additional term of the form -Z/R 
was added to the energy on an ad hod basis (R is the radius of the 
bag). As for the volume term, this term was taken to be the same for 
all hadrons, and the parameter Z determined by a fit to the spectrum, 
which gave Z-1.8. It was subsequently realized that a contribution 
to the mass of this form is associated with a center of mass effect.4 
Since the bag is a localized hadron, it is not a momentum eigenstate. 
If it is assumed that the cost of localization is associated with the 
total momentum of the valence quarks, a correction to the mass equal 
to-Z/R with Z- .75 and independent of the number of quarks is 
obtained. Thus, if this is removed from the Z/R term a universal 
contribution to the energy of all hadrons which is equal to 

E0 = BV - Z'/R (2.1) 

with Z'*l, and B1i4= .145 GeV, h as been found to yield the best 
phenomenology. The energy E" can be thought of as an "inside" vacuum 
energy. One may note that the principal effect of the Z'/R term has 
been to lower the energy difference between the vacuum inside a bag, 
and the true vacuum outside. At the same time, the confinement 
"pressure" 

po = aEO/av = B + Z1/4nR4 (2.2) 

has been left about the same. 
R- 5 GeV-l, 

In practice, for a typical state where 
we find a substantial cancellation in the energy;(4r/3)BR3 

= .23 GeV, whereas, - Z'/R=-.20 GeV. At the same time the integra- 
ted pressures, 41~rR~p, are ~T~BR~= .14 GeV2, and Z'/R2= .04 GeV2, so 
Z'/R2 is a small part of the total. 

III. A MODEL OF THE QCD VACUDM 

Here I shall try to relate some of these bag ideas to a proposal 
for the form of the ground state wave function of QCD. I shall show 
that the ad hoc "inside" vacuum energy is related to a simple ansatz 
for the form of this wave function. I will derive an improved form 
for this energy, and obtain an expression for the constant B. 

QCD involves no parameters, only a scale A, which gives the 
variation of the running coupling constant in arbitrary units. 
B114 should come out proportional to A, 

Hence 
with a specified numerical 

coefficient. 

QCD.l 
Several authors have suggested ideas about the ground state of 

The proposal most closely related to the one which will be 
developed here is that of a Bose condensate with color magnetic 
properties. I will suggest a model for such a condensate which per- 
mits one to make quantitative and manifestly gauge invariant 
calculations. 

In an asymptotically free theory, for momentum changes which are 
large on the scale A, the interactions are weak. For changes small 
in comparison to A, the interactions are strong. It is reasonable 
that these separate regions be treated by distinct approximations. 
It is obvious that the weak coupling domain should be treated 
perturbatively. The strong interaction is presumably associated 
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with confinement. Confinement should mean that it costs a lot of en- 
ergy to separate colors over distances long in comparison to l/A. 

One would then believe that in QCD ground state wave functional 
colors are not so separated, that is, the magnitude of the wave func- 
tional should be negligible if it corresponds to a configuration of 
separated colors. This suggests the use of boundary conditions, 
viewed as a strong coupling approximation, to define a trial wave 
functional in which color separation is absolutely forbidden. The 
use of gauge invariant boundary conditions to handle the strong 
coupling features, seems particularly useful in a non-Abelian gauge 
theory. At the same time, perturbation theory should be used in the 
domain of its validity. Thus, start with the fields in a box with 
volume V, which is subdivided into N smaller equal boxes with volume 
V,=V/N. One may take the small boxes, 
use of perturbative QCD.5 That is, 

small enough to permit the 
each small box contains a pertur- 

bative vacuum. On the walls of the small boxes, color confining 
boundary conditions are imposed; 

ii*“, =o, lxia=o . (3.1) 

These are gauge invariant boundary conditions which specify a 
complete set of operators for each box. That is, together with the 
use of perturbation theory, we have defined a vacuum wave function 
for each small box, and hence also for the large box. I shall brief- 
ly discuss the addition of quarks to the boxes in section V. Their 
introduction can be made in a straightforward way. The imposition 
of color confining boundary conditions means that color does not 
flow between boxes. Color separation in the large box is ruled out 
over distances longer than the scale defined by the size of the small 
boxes. This would be expressed by the absence of correlations in 
color density fluctuations in distinct boxes. The boundary condi- 
tions (3.1) imply that a thin layer of induced color magnetic poles 
(and currents) lie "between" the boxes (that is, on the surfaces). 
The effect of this on the energy of the boxes is expressed in the 
dependence on the size of the box of the perturbative energy associa- 
ted with each box. Let Eg and Vg be the energy and volume, respec- 
tively, of the small boxes. The total energy density is then, 

E/V = Eo/VO . (3.2) 

The field energy associated with each box may be calculated using the 
following method. 

Consider the small boxes. Each is surrounded by several neigh- 
bors. If one takes quasi-spherical Wigner-Seitz boxes, each would 
have fourteen neighbors. No matter how the large box is subdivided, 
each small box will be surrounded by many neighbors each containing a 
perturbative vacuum. As the walls are moved, the total number of 
modes in the large box is left unchanged. We assume that one may 
approximate the energy of each small box by calculating the effect 
on the zero point energy stored in the perturbative vacuum of a shell 
enclosing a sphere with radius R in empty space. One now has the 
classic, Casimir6 stress problem first estimated for a sphere by 
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Boyer.7 The term in the energy which depends on the radius R was 
obtained recently8pg with great accuracy with the result, 

EQED = aQED/ R , aQED = .04618 . 

Although E was calculated in QED for a conducting sphere (no E= 0, 
nx B= 0), the symmetry of the free Maxwell equations under the inter- 
change E+B, B-t - E, means that the energy with the boundary condi- 
tions (3.1) is the same. Since there are eight vector fields in QCD, 
the magnitude will be eight times larger, that is 

EQCD = a/R , a = .3694 . (3.3) 

It is important to discuss briefly the physical basis of this result. 
In the case of the Casimir stress the computation is made by intro- 
ducing a cut off on the frequency of the fields. This cut off may be 
imagined to be of the order of the plasma frequency w associated with 
the material of the metal boundaries. The metal excl;des fields with 
lower frequencies, that is, the boundary condition is maintained by 
the dynamics of the metal. Since the dependence of the energy of the 
shell on its radius is insensitive to the cut off, as long as l/R << 

the stress on the shell can be computed with the aid of the 
kndary condition. The boundary condition expresses the effect of 
the strong coupling between the field fluctuations and the induced 
currents in the metal. It is important to stress that the finite 
result (3.3) depends upon a cancellation between cut off dependent 
terms which came from short wave length fluctuations localized near 
the inside and outside of the spherical shell. That is, the energy 
(3.3) should be regarded as being closely associated with the surface 
carrying the induced charges and currents. 

In the QCD problem one may have a similar picture. The differ- 
ence is that in the QCD case, the boundary conditions correspond to 
a screening by induced color magnetic poles and currents; these 
sources are present in the non-Abelian gauge fields. They will be 
produced automatically if the ground state can lower its energy with 
them present. The boundary dependent terms represent the field ener- 
gy associated with these sources. However, one may see that if there 
is only the term indicated in 

+ x 
11-79 3736Al 

Fig. 1. Diagrams which lead 
to an attractive interaction 
between colorless pairs of 
gluons. 

(3.3), then 

E/V = E"/Vo = a/ (4*/3)R4 . (3.4) 

The lowest energy comes with one large 
box, i.e., R==J. 

It is in the first order that the 
effects of the non-Abelian gauge theory 
within each box become apparent. It 
has been emphasized by several people 
that the Feynman diagrams indicated in 
Fig. 1 lead to an attractive interac- 
tion with gluons in a color singlet 
state. This suggests a pairing insta- 
bility in the QCD vacuum and the 
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formation of a condensate with color screening properties. In the 
present case, all color singlet states in the vacuum will be paired 
in each box. (In lowest order we have a "pairing" effect, in higher 
orders we get multiple gluon effects). Since the gluons attract 
each other, when they are confined in a box the attraction should be 
enhanced, that is, increase as R-to. Thus, one expects a finite term 
of the form 

- (b/Na, , (3.5) 

with b>O. This energy corresponds to the sum of Feynman diagrams 
indicated in Fig. 2. -bn including the higher order effects which 

transform the perturbative 
coupling constant into a running 
coupling constant (3.5) becomes 

(b) 

3736A2 

Fig. 2. (a) Diagram corresponding 
to the term (3.4) in the energy. 
The x indicates the vector field 
propagator for all space, with 
the boundary condition (3.1) im- 
posed on the surface of a sphere. 
(b) Diagrams corresponding to 
the energy in the next order. 

- (b/R) as (AR) (3.6) 

where A is the basic scale of 
QCD. Unfortunately, the dia- 
grams in Fig. 2b are difficult 
to evaluate, and so at present 
the numerical value of b has 
not been obtained. Thus, the 
energy per unit volume, taken 
to second order is, 

i-tas(RA) +pO 
1 

(3.7) 

with 

a = .3694 
(3.8) 

b = ? (>O) 

and where p0 is the (divergent) boundary independent vacuum energy. 
As a consequence of asymptotic freedom, as R-to, E/V-+1/R4 . 
However, as R increases, as(AR> also increases and when R is such 
that as> a/b, the vacuum subdivided into boxes has an energy density 
below pg. As R-t-, the boundary dependent term vanishes, so (3.7) 
has a minimum. Thus, the subdivided vacuum has its lowest energy for 
"boxes" with a size given by the solution of 

a-bus (R) )I = 0 . 
R=Rg 

Boxes with this size shall be called "empty bags". 
It is now possible to consider the excited states of this 

system, that is, the hadron spectrum. For convenience let 

(3.9) 

e(R) = f a - as(RA)b . 
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One may now imagine an excitation of this ground state which corres- 
ponds to locally exciting the system in one of the boxes. It will 
be convenient to call the valence energy TV. The box with the 
excited modes is taken to have a size R. For simplicity, the excited 
box is assumed to have the same shape as the empty bags. At the same 
time, assume that the remaining empty bags change their size to Ri. 
With V as the total volume, 
(V - V(R)) / (V @;I), 

the number of empty bags will be 
and the total energy is therefore 

E = [pOV(R)+e(R)+eV(R)] + '-V(R) [pOV(R;))+e(Ri)l 
VCR;) 

= POV+e(R) + %(R) + V(R,) 
V-V(R) e(R') 

0 
0 

The minimum occurs with R;1 =R,,, as before, and at the minimum 
with respect to R of 

E B*G(R) = e(R) + eV(R) - V(R)* , 

V(Ro) 

This is recognized as the static bag model with 

B = a-as(Rg)b . 
1 

(3.12) 

(3.13) 

Since e(Rg) at the minimum given by (3.9) is negative, B, is of 
. course positive. 

Using this simple model for the vacuum, an effective "inside" 
vacuum energy equal to 

B4* 3 3R ++ a- as(R>b 
1 

= E(R) (3.14) 

has been obtained. The empty bags with fixed sizes outside provide 
the pressure B, and (3.13) together with (3.9) determines B in terms 
of the scale parameter of QCD. The model has also provided an 
extra term which has roughly the same phenomenological effect as the 
ad hoc -Z/R term. This is because for R>Rg, the second term in 
(3.14) is negative, and this acts to reduce the cost of "drilling" 
the hole in the vacuum occupied by the valence particles. Indeed, 
not only does (3.14) vanish when R= R,-,, but its derivative is also 
zero at R= Rg, that is, the "inside" vacuum energy E(R) takes the 
form 

+ WRO) (R-R~)~ . 

near Rg. Thus for low energy excitations the cost of enlarging the 
bag is small. The enlarged bag associated with a given hadron is 
close to the size of the empty bags found in the vacuum. The 
"inside" and "outside" vacua are not very different. This explains 
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qualitatively why large renormalization effects on quark operators 
are absent. The fact that the vacuum is filled with such bags also 
explains why it was consistent to assume that the only cost for 
localizing a bag is that associated with the total momentum of the 
valence particles. These features of earlier work were the principal 
motivation for the proposal made here. 

In summary, I have shown that a vacuum densely filled with 
bubbles of perturbative vacua, with the pairing effect of the many 
colored gluons in each computed in lowest non-trivial order, has a 
minimum energy at a finite size RO of the order l/A. In such a 
vacuum, color density correlations between neighboring bubbles are 
absent. Neighboring bubbles are screened by a surface layer of in- 
duced color magnetic poles and currents. 

IV. LARGE N 

Because the behavior of non-Abelian gauge theories for large N 
(order of color group) has been of continuing interest," it is appro- 
priate to study the model of the ground state which has been proposed 
here in this limit. Vacuum energy is of order N2. Thus, the con- 
stants a and b are of order N2. Consequently the radius of the empty 
vacuum bags given by the solution of (3.9) is independent of N, for 
large N. Since a color singlet gluon field (or meson) exitation with 
just two valence gluons (or a quark and antiquark) can be made, the 
"valence" term is of order zero in N, so the energy (3.12) is dominated 
by the "inside" vacuum term which is of order N2 and has its minimum 
(=O) at Rg. The "glueball" (or meson) mass is thus independent of N. 
For baryons which are color singlets, the valence term is of order N, 
so the "inside" vacuum term still dominates. The minimum radius is 
asymptotically equal to Rg and the mass is of order N. These results 
are consistent with what is known about the spectrum for large N. It 
should be remarked that as N increases a ground state in which the 
condensed empty bags organize themselves to spontaneously break trans- 
lation invariance (and also Lorentz invariance) might not be unexpected 
since the repulsion between empty bags increases as N2. We are, of 
course, optimistically assuming that for N=3, when translation in- 
variance is restored to our ansatz, the symmetry will not be spontane- 
ously broken. 

V. THE ADDITION OF LIGHT QUARKS TO THE VACUUY 

Quarks whose "bare" (QCD independent) masses are small in com- 
parison to the scale A, also can produce long range separation of 
color in the ground state. In practice only the up down and, perhaps 
marginally, the strange quarks have such bare masses. One would thus 
also expect a surface boundary condition of the color confining form, 

,. 
n* ia ; q,., = ' (5.1) 

on the light quark wave functions. That is, the trial ground state 
for the light quarks will consist of filled Dirac seas of light 
quarks in each small box. The complete sets of wave functions asso- 
ciated with each box are defined by solutions of the free Dirac equa- 
tion with a linear boundary condition which implies (5.1) on the 
surface of each small box. 
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Although for massless quarks, the boundary condition (5.1) and 
free Dirac equation are chirally symmetric, the realization of (5.1) 
in a linear form requires the breaking of chiral symmetry. The most 
general linear boundary condition which implies (5.1) is 

&I x y5 
-iy*flq, = e2 a a 

'a (5.2) 

where X, are the flavor generators together with the singlet 
generator and wais arbitrary. Since there is no particular reason 
also to break flavor symmetry, one may take oa= 0 (also for the U(1) 
component). Chiral symmetry is now broken in order to prevent the 
high energy cost of color separation in the ground state. Since the 
energy of the light quarks is independent of which of the boundary 
conditions is chosen, we have the signal of a spontaneouslyl' broken 
chiral symmetry. 

One can now include in the vacuum energy, the energy of the 
light quarks. The Feynman diagrams are pictured in Fig. 3. 

(b) 

Fig. 3. Diagrams for the quark 
contributions to a and b. The 
x indicates a quark propagator 
for all space with (5.2) imposed 
on the surface of a sphere. 

ll- 79 3736A3 

The additional contribution to "a" of massless up, down and strange 
quarks is 

aQuarks z & x 3 x 3 = .28 (5.3) 
color flavor 

The number 2/64 is based upon an approximation12equivalent to one 
made for the vector fields,* which gives aQED= 3/64. The total 
value of "a" from both gluons and light quarks is then 

aTotal = .37 + .28 = .65 . 

As for the gluons, one expects that the second order term will be 
attractive, so the quark contribution to "b" will increase it. 

VI. PHENOMENOLOGICAL APPLICATION - THE SPECTRUM OF 
THE UP AND DOWN QUARK STATES, IT, p, N, A 

Because the constant "b" has not been calculated, a detailed 
quantitative comparison of this vacuum model with reality is not 
possible. However, a comparison of the predictions of the model 
with the observed mass sprectrum can be made for values of "b" which 
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are such that a- ash becomes negative in the region where as-l. 
Since "a" is approximately .65, there are no free parameters other 
than "b". The energy of the valence quarks has not been computed 
beyond order as so to be consistent one should use a "lowest order" 
form for as, 

1 as = . (6.1) 

In (6.1) the liberty has been taken to fix a form which is not sing- 
ular at R-l/A, since if propagators associated with the boxes are 
used there is no infrared singularity in the energy for finite values 
of R. The nature of the singularity at R=m is irrelevant in this 
application since RA will be of order 1. 

With (6.1) chosen for as@!), in Table I the parameters B 1/4/A 
and (Rgh), as determined by (3.13) and (3.9), are given for several 
values of 'lb". The value of "a" is taken to be .65. as for the 
corresponding values of RQA is also shown. 

TABLE I. "Empty Bag" Parameters for Various Values of "b" 

The scale R corresponding to the bag size, and the momentum 
transfer q used in perturbative QCD are not necessarily related in 
the simple form q=l/R, so A cannot be directly related to the corre- 
sponding QCD scale. They presumably are related within a factor of 
2 or 3. To judge which of the values in Table I corresponds most 
closely to previously obtained results using the bag model, one may 
determine A by the requirement that a,= 2 when R-5 GeV-l which is 
what was obtained previously.3 In this case, A -.5 GeV. Since, in 
Ref. (3) Bli4=.145 GeV, one may see that the case of b= .65 agrees 
well (B1j4= .165 GeV) with the earlier work. One should also note 
that with A w .5 GeV, the empty bag size Rg is such that l/R0 "-.38 GeV. 
l/R0 should be compared with the "primordial" transverse momentum 
observed in strong interactions, since the quark constituents of 
hadrons are made in "empty bags" with the size Rg. 

To make a crude but more accurate assessment using previous 
bag model results which also includes a "center of mass" correction 
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one may use the formula 
2 

EBAG = M2 + <Pzm> (6.2) 

with 

<PEm> = n(z/R)2 (6.3) 

and with 

E 
as(RA) 

BAG = 9 BR3 + (a-a,(RA)b) $ + u 
I 

R l (6.4) 

Here, n=number of quarks. To roughly estimate the center of mass 
effect we have included the term n(x/R)2 = <Pz,>. We fit z so that 
mr"O. For consistency, G/R should be close to the momentum of a 
valence quark, that is, 2.04/R. We then use the same value for all 
other states. u is determined by the free quark wave functions3 
and the color-spin matrix elements in the various states, u,=-.70, 
vp= l 70/3, !J 

P 
=- .70/2, PA= .70/2 . We determine the minimum M2 as 

a function o R. The results for two different values of "b" are 
given in Table II. We again see that b- .65 corresponds well with 
the previous bag model calculations (and the observed masses). 

TABLE II. Hadron Mass Spectrum for Two Values of "b" 

CASE I Particle 71 P N A 

b = .65 M/A 
x- 1.43 

0 1.50 1.85 2.50 

M(GeV) 0 .76 .94 1.27 - 
B: = = .510 .168 GeV GeV R(GeV'l) 3.8 4.3 4.7 4.8 

US 1.7 1.8 2.0 2.1 
= .332 A 

CASE II Particle ?T P N A 

b=1.04 M/A 0 2.45 3.67 4.48 
ii= 1.81 

- 
M(GeV) 0 .63 .94 1.15 - - 

A = .256 GeV &, . 165 GeV R(GeV-l) 3.5 4.0 4.6 4.7 

US .94 1.0 1.14 1.16 
= .645 A 

Note: Ground state masses of hadrons composed of "bare" massless 
up and down quarks, for two values of 'lb". The momentum 
spread of the valence quarks is parameterized by x and this 
is adjusted to make %= 0. A is taken to fit the nucleon 
mass, .94 GeV. 

-lO- 
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VII. CONCLUSIONS 

I have indicated how the attractive interaction between colored 
particles can lead to a vacuum densely filled with bubbles of pertur- 
bative vacua consisting of paired quanta. The bubbles are separated 
by walls of induced color magnetic poles and currents which screen 
long range color density correlations. Naturally, only the long wave 
length fluctuations will actually experience this pairing, but the 
energy of the ground state is insensitive to the short scale fluctua- 
tions. We have shown how this vacuum state leads directly to the 
static bag model phenomenology. It should be needless to remark on 
all the difficiencies which exist in this treatment. Although the 
vacuum wave function is manifestly gauge invariant, it is not 
translation invariant. It is also not Lorentz invariant. We have 
indicated how chiral symmetry may be spontaneously broken, but we 
have not given a complete treatment of this symmetry breaking. 
Since as must be of order unity to accommodate the large spin-spin 
interaction observed in the mass spectrum, the calculation must be 
extended to higher orders of as. 

In spite of these problems, I believe that this picture provides 
a simple, intuitive, and quantitative basis for the development of 
more detailed phenomenologies for the theory of hadron structure. 
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