SYMMETRY BREAKING AND THE DECAYS

$$
\psi^{\prime} \rightarrow J / \psi \pi^{\circ}(\eta) \text { and } J / \psi \rightarrow \eta\left(\eta^{\prime}\right) \gamma^{*}
$$

Paul Langacker
 Stanford Linear Accelerator Center Stanford University, Stanford, California 94305

and
University of Pennsylvania Philadelphia, Pennsylvania 19104

ABSTRACT

The theoretical mechanisms for the decays $\psi^{\prime} \rightarrow \psi \pi^{0}$ and $\psi^{\prime} \rightarrow \psi \eta$, which violate SU_{2} and SU_{3} respectively, are discussed. It is argued that symmetry breaking in the decay amplitudes may be as important as $\pi^{0}-\eta-\eta^{\prime}$ mixing. The $\pi^{0}-\eta$ mixing mechanism $\psi^{\prime} \rightarrow \psi \eta \rightarrow \psi \pi^{0}$ leads to $\Gamma\left(\psi^{\prime} \rightarrow \psi \pi^{0}\right)=(3.3 \pm 1.0) \times 10^{-3} \Gamma\left(\psi^{\prime} \rightarrow \psi \eta\right)$, but this number may be enhanced by a factor as large as 12 by $\pi^{\circ}-n^{\prime}$ mixing and isospin violation in the decay amplitude. The related decays $\psi \rightarrow \eta \gamma$ and $\psi \rightarrow \eta^{\prime} \gamma$ are also discussed.

[^0]The isospin violating decay $\psi^{\prime} \rightarrow \psi \pi^{\circ}$ has recently been observed $[1,2]$ by the Crystal Ball and MARK II collaborations at SPEAR. The Crystal Ball group [1] find a large branching ratio $\mathrm{B}\left(\psi^{\prime} \rightarrow \psi \pi^{\circ}\right)=(0.08 \pm 0.02$ $\pm 0.02) \%$. They also find $B\left(\psi^{\prime} \rightarrow \psi \eta\right)=(2.06 \pm 0.10 \pm 0.58) \%$, somewhat lower than the old average $[3,4]$ of $(4.2 \pm 0.7) \%$. The ratio $R \equiv B\left(\psi^{\prime} \rightarrow \psi \pi^{0}\right) / B\left(\psi^{\prime} \rightarrow \psi \eta^{\prime}\right)$ is less subject to systematic uncertainties. The Crystal Ball result is $[1] R=(39 \pm 10) \times 10^{-3}$. Similar results have been found by the MARK II group [2].

The first theoretical discussion of the $\psi^{\prime} \rightarrow \psi \pi^{\circ}$ decay was by Segre and Weyers [5], who suggested that the decay could proceed via π° - η mixing, as shown in Fig. la. It was subsequently pointed out by Genz [6] that the η^{\prime} intermediate state of Fig. Ib might also be important since the $\psi^{\prime} \rightarrow \psi \eta$ transition is SU_{3} forbidden while the (virtual) $\psi^{\prime} \rightarrow \psi \eta^{\prime}$ coupling is SU_{3} allowed. In this paper I reconsider the $\psi^{\prime} \rightarrow \psi \pi^{\circ}$ and $\psi^{\prime} \rightarrow \psi \eta$ decays, considering not only SU_{2} and SU_{3} breaking in the states ($\pi^{\circ}-\eta-\eta^{\prime}$ mixing) but also symmetry breaking in the transition amplitudes into the unmixed states. The related decays $\psi \rightarrow \eta \gamma$ and $\psi \rightarrow \eta^{\prime} \gamma$ are also considered.

All of these decays require violation of the OZT ru1e. I assume that this violation takes place via annihilation of a c \bar{c} pair into a ū, d \bar{d} or s \bar{s} pair [7], as shown in Fig. 2. It is irrelevant for my purposes whether I regard this annihilation as generating small $\overline{c c}$ components in the π°, η, and η^{\prime} wave functions or as inducing direct decays into states consisting of $u \bar{u}, \mathrm{~d} \bar{d}$, and $\bar{s} \bar{s}$ only. I will take the latter point of view.

First consider $\pi^{0}-\eta-\eta^{\prime}$ mixing. In the absence of SU_{2} breaking, the three bare states are

$$
\begin{align*}
& \left|\pi_{B}^{o}\right\rangle=\frac{1}{\sqrt{2}}|u \bar{u}-d \bar{d}\rangle \\
& \left|n_{B}\right\rangle=\cos \theta_{P}\left|\eta_{8}\right\rangle-\sin \theta_{P}\left|\eta_{o}\right\rangle \\
& \left|\eta_{B}^{\prime}\right\rangle=\sin \theta_{P}\left|n_{8}\right\rangle+\cos \theta_{P}\left|\eta_{o}\right\rangle \tag{1}
\end{align*}
$$

where $\theta_{P} \approx-10.4^{\circ}$ is the $\eta-\eta^{\prime}$ mixing angle and η_{8} and η_{0} are $S U_{3}$ octet and singlet states. For $\theta_{P}=-10.4^{\circ}, \eta_{B}$ and η_{B}^{\prime} are well approximated by [8]

$$
\begin{align*}
& \left|\eta_{B}\right\rangle \simeq \frac{1}{\sqrt{2}}\left|\frac{\bar{u} u+d \bar{d}}{\sqrt{2}}\right\rangle-\frac{1}{\sqrt{2}}|\overline{s s}\rangle \\
& \left|\eta_{B}^{\prime}\right\rangle \simeq \frac{1}{\sqrt{2}}\left|\frac{u \bar{u}+\bar{d}}{\sqrt{2}}\right\rangle+\frac{1}{\sqrt{2}}|\bar{s}\rangle \tag{2}
\end{align*}
$$

When SU_{2} breaking is turned on, the physical states are

$$
\begin{align*}
& \left|\pi^{0}\right\rangle \simeq\left|\pi_{B}^{0}\right\rangle+\lambda_{\pi \eta}\left|\eta_{B}\right\rangle+\lambda_{\pi \eta} \cdot\left|\eta_{B}^{\prime}\right\rangle \\
& |\eta\rangle \simeq\left|\eta_{B}\right\rangle-\lambda_{\pi \eta}\left|\pi_{B}^{0}\right\rangle \\
& \left|\eta^{\prime}\right\rangle \simeq\left|\eta_{B}^{\prime}\right\rangle-\lambda_{\pi \eta}^{\prime}\left|\pi_{B}^{0}\right\rangle \tag{3}
\end{align*}
$$

where $\lambda_{\pi \eta}=\mu_{\pi \eta}^{2} /\left(\mu_{\pi}^{2}-\mu_{\eta}^{2}\right)$ and $\lambda_{\pi \eta^{\prime}}=\mu_{\pi \eta^{\prime}}^{2} /\left(\mu_{\pi}^{2}-\mu_{\eta}^{2}\right)$ are the $\pi^{0}-\eta$ and $\pi^{\circ}-\eta^{\prime}$ mixing angles. One can estimate [9] $\lambda_{\pi \eta}=(0.017 \pm 0.008)$ from the observed $\eta \rightarrow 3 \pi$ decay rate. However, the $\eta \rightarrow 3 \pi$ system is very messy, both theoretically and experimentally. An indirect but more reliable estimate of $\lambda_{\pi \eta}$ can be obtained by using the fact that $\pi^{\circ}-\eta$ mixing is due almost entirely to a mass difference between the up and down current quarks. The relevant formulas are

$$
\begin{align*}
& \mu_{\pi \eta_{8}}^{2}=\frac{-2}{\sqrt{3}}\left(\mu_{\mathrm{K}}^{2}-\mu_{\pi}^{2}\right) \frac{\mathrm{m}_{\mathrm{d}}-\mathrm{m}_{\mathrm{u}}}{2 \mathrm{~m}_{\mathrm{s}}} \\
& \mu_{\pi \eta_{0}}^{2}=\sqrt{2} \mu_{\pi \eta_{8}}^{2}, \tag{4}
\end{align*}
$$

where m_{i} is the current quark mass of quarki. The expression for $\mu_{\pi n_{8}}^{2}$ is based on lowest order SU_{3} breaking, and the formula for $\mu_{\pi \eta_{0}}^{2}$ expresses the OZI rule ansatz that the π^{0} is not directly mixed with the ss state. From a combined study [10] of the baryon mass splittings (e.g. $M_{p}-M_{n}$), $m_{K^{+}}-m_{K}$, the $n \rightarrow 3 \pi$ decay, and $\rho-\omega$ mixing, one has $\left(m_{d}-m_{u}\right) / 2 m_{s}$ $=0.011 \pm 0.002$, which implies (for $\theta_{P}=-10.4^{\circ}$) $\mu_{\pi \eta}^{2}=-3.6 \times 10^{-3} \mathrm{GeV}^{2}$ and $\mu_{\pi \eta^{\prime}}^{2}=-4.1 \times 10^{-3} \mathrm{GeV}^{2}$. Hence $\lambda_{\pi \eta}=0.013 \pm 0.002$ and $\lambda_{\pi \eta^{\prime}}=0.0039 \pm 0.0007$.

I now turn to the $\psi^{\prime} \rightarrow \psi \pi^{\circ}$ decay. The relative width is

$$
\begin{equation*}
R^{\prime}=\frac{\Gamma\left(\psi^{\prime} \rightarrow \psi \pi^{0}\right)}{\Gamma\left(\psi^{\prime} \rightarrow \psi n\right)}=\left(\frac{p_{\pi}^{0}}{p_{\eta}}\right)^{3} \lambda_{\pi n}^{2} \Delta^{2}=(3.3 \pm 1.0) \times 10^{-3} \Delta^{2} \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta=1+\frac{\lambda_{\pi n^{\prime}}}{\lambda_{\pi n}} \frac{g_{\eta^{\prime}}}{g_{\eta}}+\frac{g_{B}}{\lambda_{\pi \eta^{\prime}} g_{\eta}} \tag{6}
\end{equation*}
$$

and $\left(p_{\pi} \mathrm{o} / \mathrm{p}_{\eta}\right)^{3}=19.4$ is a phase space correction factor. g_{η}, g_{η}, and g_{B} are the amplitudes for $\psi^{\prime} \rightarrow \psi n, \psi^{\prime} \rightarrow \psi \eta^{\prime}$, and $\psi^{\prime} \rightarrow \psi \pi_{B}$, respectively. g_{η} vanishes in the SU_{3} limit while $\mathrm{g}_{\mathrm{B}}, \lambda_{\pi \eta}$, and $\lambda_{\pi \eta}$, all vanish in the SU_{2} limit. The three terms in Δ represent the contributions of $\pi^{\circ}-n$ mixing, $\pi^{0}-n^{\prime}$ mixing, and the direct decay of ψ^{\prime} into ψ and π_{B}, respectively, and are illustrated in Fig. 1.

Before proceeding, let us consider the decays [11] $\psi \rightarrow n \gamma$ and $\psi \rightarrow \eta^{\prime} \gamma$. These decays also require the annihilation of a c \bar{c} pair into
a $u \bar{u}, \mathrm{~d}$ or ss pair. If the dominant decay mechanism involves radiation from a c quark [12], (Fig. 2, but with ψ^{\prime} and ψ replaced by ψ and γ, respectively), then it is reasonable to assume that the relevant amplitudes \hat{g}_{n} and \hat{g}_{n}, are proportional to g_{n} and g_{η}^{\prime} ' Then

$$
\begin{equation*}
r \equiv \frac{\Gamma\left(\psi \rightarrow \eta^{\prime} \gamma\right)}{\Gamma\left(\psi \rightarrow \eta \gamma^{\prime}\right)}=\left(\frac{p_{n^{\prime}}}{p_{\eta}}\right)^{3}\left(\frac{g_{\eta^{\prime}}}{g_{\eta}}\right)^{2}=0.813\left(\frac{g_{\eta^{\prime}}}{g_{\eta}}\right)^{2} \tag{7}
\end{equation*}
$$

There are other contributions involving radiation from a light quark, but these are presumably smaller by α_{S} / π. The value usually given [13] for r is 1.8 ± 0.8 but new measurements $[1,14]$ suggest that r may be closer to 5. The Crystal Ball group [1] find $\mathbf{r}=5.9 \pm 1.5$.

One can regard measurements of R and r as a determination of $g_{\eta}, / g_{\eta}$ and g_{B} / g_{η}. However, let us consider several theoretical models for these couplings. The results are summarized in Table 1.
a) Setting $\Delta=1$ in (5) corresponds to the Segre-Weyers [5] model (only $\pi^{0}-\eta$ mixing), except for the value of $\lambda_{\pi \eta}$ used [15]. The predicted value of $R=(3.3 \pm 1.0) \times 10^{-3}$ is very small.
b) If all SU_{2} and SU_{3} breaking is due to $\pi^{\circ}-\eta-\eta^{\prime}$ mixing, then $g_{\eta 8}=0, g_{B}=0$, and $g_{\eta}, / g_{\eta}=-\cot \theta_{P}=5.45$. This implies a large value of $(23 \pm 7) \times 10^{-3}$ for R but also an unacceptably large value of 24 for r.
c) Genz's model [6] includes $\pi^{\circ}-\eta$ and $\pi^{\circ}-\eta^{\prime} \operatorname{mixing}\left(g_{B}=0\right)$ but takes $g_{\eta}, / g_{\eta}$ from r. For the old value of $r=(1.8 \pm 0.8)$ this ansatz yields $R=(6.9 \pm 2.3) \times 10^{-3}$. For $r=5$ one has a slightly larger value $R=(9.9 \pm 3.0) \times 10^{-3}$.
d) Let us allow for symmetry breaking in the decay amplitude, so that $g_{n 8} \neq 0$ and $g_{B} \neq 0$. Define A_{q}^{i} as the amplitude for $\bar{c} \bar{c}$ to annihilate into a $q \bar{q}$ pair in meson i (see Fig. 2). I assume that up to an overall factor the same amplitudes are responsible for $\psi \rightarrow\left(n, \eta^{\prime}\right) \gamma$. Then

$$
\begin{gather*}
g_{B} \sim \frac{1}{\sqrt{2}}\left(A_{u}^{\pi}-A_{d}^{\pi}\right) \tag{8}\\
g_{\eta} \sim \sqrt{\frac{2}{3}} \cos \theta_{P}\left(A_{\ell}^{\eta}-A_{s}^{\eta}\right)-\frac{1}{\sqrt{3}} \sin \theta_{P}\left(2 A_{\ell}^{\eta}+A_{s}^{\eta}\right) \sim A_{\ell}^{\eta}-\frac{1}{\sqrt{2}} A_{s}^{\eta} \tag{9}
\end{gather*}
$$

and

$$
\begin{equation*}
g_{\eta^{\prime}} \sim \frac{1}{\sqrt{3}} \cos \theta_{P}\left(2 A_{l}^{\eta^{\prime}}+\Lambda_{s}^{\eta^{\prime}}\right)+\sqrt{\frac{2}{3}} \sin \theta_{P}\left(\Lambda_{l}^{\eta^{\prime}}-A_{s}^{\eta^{\prime}}\right) \sim \Lambda_{l}^{\eta^{\prime}}+\frac{A_{s}^{\eta^{\prime}}}{\sqrt{2}}, \tag{10}
\end{equation*}
$$

Where

$$
A_{\ell}^{i} \equiv\left(A_{u}^{i}+A_{d}^{i}\right) / 2
$$

If I take all of the A's equal, which corresponds to no symmetry breaking in the decay amplitudes, I recover model (b) above.

In order to obtain a rough estimate of the A_{q}^{i}, observe that if the η, n^{\prime}, and π° are treated nonrelativistically, then [16]

$$
\begin{equation*}
A_{q}^{i} \sim \frac{\alpha_{s}^{2} \psi_{q}^{i}(0)}{M_{q}} \tag{11}
\end{equation*}
$$

where M_{q} is the constituent mass of q and $\psi_{q}^{i}(0)$ is the $\bar{q} \bar{q}$ wave function at the origin. It is by no means clear that the π°, η, and η^{\prime} are really non-relativistic, but (11) should suffice as a rough approximation. It is assumed [16] that the effects of anomalies are phenomenologically incorporated in (11). The dependence of A_{q}^{i} on M_{q} is complicated, in that the running coupling α_{s} should decrease with increasing M_{q}, while
$\psi_{q}^{i}(0)$ should increase. Two possibilities are [17] $A_{q}^{i}=$ constant, which reproduces model (b), and $[16] A_{q}^{i} \sim C_{i} / M_{q}$.

The latter ansatz has been used successfully [16] by Isgur and by Cohen and Lipkin to describe the $\eta-\eta^{\prime}$ system [18].

I will assume $A_{q}^{i} \sim C_{i} / M_{q}$ with C_{i} independent of i as a simple model of symmetry breaking [19]. I choose for the constituent quark masses M_{u}, M_{d}, and M_{s} the values $327 \mathrm{MeV}, 333 \mathrm{MeV}$, and 550 MeV , respectively, obtained [20] by Copley, Isgur, and Karl from quark models of the baryons and mesons. These values are in reasonable agreement with the current quark mass ratio assumed above (one expects $\left(m_{d}-m_{u}\right) / m_{s} \approx\left(M_{d}-M_{u}\right) /$ $\left(M_{s}-M_{u}\right)$). I then obtain $g_{\eta} \cdot / g_{\eta} \simeq 2.5, g_{B} / g_{\eta} \simeq 0.022$, and $\Delta^{2}=12$, which implies $r=5.0$ and $R=(40 \pm 12) \times 10^{-3}$. In this model the direct decay into π_{B} is as important as the $\pi^{\circ}-\eta$ and $\pi^{\circ}-\eta^{\prime}$ mixing contributions combined.

In conclusion, π° - η mixing alone (model (a)) is insufficient to account for a large $\psi^{\prime} \rightarrow \psi \pi^{\circ}$ decay width. $\pi^{\circ}-\eta$ and $\pi^{\circ}-\eta^{\prime}$ mixing considered together can give a large $\psi^{\prime} \rightarrow \psi \pi^{\circ}$ width (model (b)) or a small (1.8 to 5) value for r (model (c)), depending on the assumed value for $g_{\eta}, / g_{\eta}$, but cannot satisfy both constraints simultaneously. In order to obtain reasonable values for both r and R one must consider SU_{2} and SU_{3} breaking in the decay amplitudes in addition to $\pi^{\circ}-\eta-\eta^{\prime}$ mixing. A simple symmetry breaking scheme (model (d)) yields the values $r=5$, and $R=(40 \pm 12) \times 10^{-3}$, in excellent agreement with the data. An additional check on this model (and its assumption that C_{η}, C_{η} $\simeq C_{\pi 0}$) involves the decays $\left(\eta^{\prime}, \eta, \pi^{\circ}\right) \rightarrow 2 \gamma$. Assuming that the constituent quark picture incorporates the effects of anomalies, then
a calculation analogous to Eq. (11) yields for the amplitudes the ratios $T_{\eta^{\prime}} / T_{\eta} / T_{\pi^{\circ}}=1.4 / 1.0 / 1.0$ if $\psi_{q}^{i}(0) / M_{q} \sim 1 / M_{q}$, in reasonable agreement with the experimental $[4,21]$ ratios $1.4 \pm 0.3 / 0.78 \pm 0.06 / 1$. (The ansatz $\psi_{q}^{i}(0) / M_{q} \sim$ constant is actually better, yielding the ratios 1.5/0.83/1.0.) These decays have recently been considered from a more canonical point of view by M. Chanowitz [22] and H. Goldberg [23].

The decays $\psi \rightarrow\left(\eta, \eta^{\prime}\right) \gamma$ have been discussed from more formal points of view by H. Goldberg [23] and V. A. Novikov et al. [24]. Novikov et al. argue that the η^{\prime} has a large gluonium component. This effect is presumably incorporated in the constituent quark model by the annihilation amplitudes A_{q}^{i} used here and in the description $[16,17]$ of the n and η^{\prime}. However, I have found no evidence for the quark wave function of the η^{\prime} to be either anomalously small at the origin [19] or anomalously large [23].

It is a pleasure to thank F. G. Gilman for several useful discussions, S. Drell for the hospitality of the SLAC Theory Group, the members of the MARK II and Crystal Ball Collaborations for making their results known to me before publication, and D. Geffen and J. Rosner for a useful suggestion.

REFERENCES

1. C. W. Peck, presented at the 1979 Montreal meeting of the APS.
2. T. Himel, private communication.
3. W. Tanenbaum et al., Phys. Rev. Lett. 36, 402 (1976).
4. Review of Particle Properties, Phys. Lett. 75B, 1 (1978).
5. G. Segre and J. Wcyers, Phys. Lett. 62B, 91 (1976).
6. H. Genz, Lett. a1. N. Cim. 21, 270 (1978).
7. An alternate possible mechanism has been suggested by R. Bhandari and L. Wolfenstein, Phys. Rev. D17, 1852 (1978). It is not clear that their mechanism is totally independent of the one considered here.
8. N. Isgur, Phys. Rev. D12, 3770 (1975) and D13, 122 (1976).
9. P. Langacker and H. Pagels, Phys. Rev. D19, 2070 (1979).
10. P. Langacker, Phys. Rev. D, to be published. See also P. Langacker and H. Pagels, Ref. 9; S. Weinberg in Festschrift For I. I. Rabi, ed. L. Motz (NY Academy of Sciences, NY, 1977); P. Minkowski and A. Zepeda, Berne preprint; C. A. Dominquez, Phys. Lett. 86B, 171 (1979) ; N. Isgur, H. R. Rubinstein, A. Schwimmer, and H. J. Lipkin, Toronto preprint.
11. The dominant contribution to $\Gamma\left(\psi \rightarrow \pi^{\circ} \gamma\right)$ is presumably the isospin conserving $\psi \rightarrow \pi^{\mathrm{o}} \rho \rightarrow \pi^{\mathrm{o}} \gamma$ mechanism rather than $\pi^{\mathrm{o}}-\eta-\eta^{\prime}$ mixing.
12. R. N. Cahn and M. Chanowitz, Phys. Lett. 59B, 277 (1975); T. Walsh, Lett. al. N. Cim. 14, 290 (1975); R. Heimann, Nuovo Cim. 39A, 461 (1977) ; H. Fritzsch and J. D. Jackson, Phys. Lett. 66B, 365 (1977); I. Cohen and H. Lipkin, Nuc1. Phys. B151, 16 (1979).
13. W. Bartel et al., Phys. Lett. 66B, 489 (1977).
14. D. Scharre, SLAC-PUB-2321.
15. The large value for $\lambda_{\pi \eta}$ used in Ref. 5 was based on an old and incorrect value for the $\eta \rightarrow 3 \pi$ width.
16. I. Cohen and H. Lipkin, Ref. 12, and N. Isgur, Toronto preprint.
17. H. Fritzsch and P. Minkowski, Nuovo Cim. 30A, 393 (1975);
A. DeRujula, H. Georgi, and S. Glashow, Phys. Rev. D12, 147
(1975) ; H. Fritzsch and J. D. Jackson, Ref. 12; N. Isgur, Ref. 8; H. F. Jones and M. D. Scadron, Nucl. Phys. B155, 409 (1979).
18. N. Isgur, Ref. 16 , obtains $\lambda_{\pi \eta}=0.02, \lambda_{\pi \lambda^{\prime}}=0.003$ from a constituent quark model. The resulting predictions for R are very similar to those obtained here. Also the ansatz for $\mu_{\pi \eta_{0}}^{2}$ in Eq. (4) is modified slightly by symmetry breaking in the annihilation amplitudes, but this effect appears to be small.
19. I. Cohen and H. Lipkin, Ref. 16, assume $C_{\eta} \neq C_{\eta}$, due to mixing with radially excited states. If g_{B} is neglected, the results of $C_{\eta},<C_{\eta}$ are very similar to model (c). For $g_{B} \neq 0$ one can obtain a smaller value for r without significantly reducing R.
20. N. Isgur and G. Karl, Phys. Rev. D20, 1191 (1979); L. A. Copley, N. Isgur, and G. Kar1, Phys. Rev. D20, 768 (1979); N. Isgur, Toronto preprint.
21. G. S. Abrams et al., Phys. Rev. Lett. 43, 477 (1979).
22. M. Chanowitz, LBL preprint 9639.
23. H. Goldberg, Northeastern preprint NUB 2411.
24. V. A. Novikov, M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Phys. Lett. 86B, 347 (1979) and ITEP preprint 73-1979.

Table I. Several models for $R=\Gamma\left(\psi^{\prime} \rightarrow \psi \pi^{\circ}\right) / \Gamma\left(\psi^{\prime} \rightarrow \psi \eta\right)$ and $r=\Gamma\left(\psi \rightarrow \eta^{\prime} \gamma\right) / \Gamma(\psi \rightarrow \eta \gamma) . \quad \lambda_{\pi \eta}=0.013 \pm 0.002$ is used throughout. The Crystal Ball group has found $R=(39 \pm 10) \times 10^{-3}$ and $r=5.9 \pm 1.5$.

Model	$\frac{g_{\eta^{\prime}}}{g_{\eta}}$	$\frac{g_{B}}{g_{\eta}}$	Δ^{2}	r

a)	Segre-Weyers	0	0	1	-	3.3 ± 1.0
b) $A_{q}^{i} \sim$ constant						
	($\pi^{0}-\eta-\eta^{\prime}$ mixing)	5.45	0	6.9	24	23 ± 7
c)	Genz	1.5 -.3 -.4	0	2.1 ± 0.3	1.8 ± 0.8	6.9 ± 2.3
		2.5	0	3.0	5	9.9 ± 3.0
	$A_{q}^{i} \sim \frac{1}{M_{q}}$	2.5	0.022	12	5	40 ± 12

Figure Captions

1. Three contributions to $\psi^{\prime} \rightarrow \psi \pi^{0}$:
(a) $\pi^{0}-\eta$ mixing;
(b) $\pi^{\circ}-\eta^{\prime}$ mixing;
(c) A direct isospin violating decay into the unmixed π_{B}° state.
2. The amplitude A_{q}^{i} for $\overline{c c}$ to annihilate into a $q \bar{q}$ pair in meson $i\left(i=n, \eta^{\prime}, \pi_{B}^{0}\right)$.

Fig. 1

Fig. 2

[^0]: * Work supported by the Department of Energy under contract numbers DE-ACO 3-76SF00515 and EY-76-C-02-3071.

