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ABSTRACT 

In a previous paper we showed that a class of real space 

renormalization group calculations could be reinterpreted as an 

orthogonal transformation of coordinates followed by an approximate 

(variational) evaluation of the resulting hamiltonian. Here we shall 

discuss the orthogonal transform method and concentrate on analytic 

rather than numerical results. The transform method may ultimately be more 

accurate because even though similar approximations are made in coupling 

the lattice oscillators, at no time is the system split into 

noninteracting finite sized blocks. 

Approximate variational solutions to a $4 lattice field theory in 

2, 3 and 4 spacetime dimensions are constructed using an anharmonic 

oscillator basis. The solutions exhibit an ordered and a disordered 

phase. Analytic expressions are obtained for certain critical surfaces 

of these theories in regions of parameter space where a spin 

approximation would be invalid. The continuum limit of our solutions 

is discussed. The resultant perturbation expansion is also discussed 

and a method for its evaluation is described. 
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1. INTRODUCTION 

In this paper, which is a continuation of a previous one1 hereafter 

referred to as I, we proceed to analyze polynomial quantum field theories 

defined on a spatial lattice, in terms of an anharmonic oscillator basis. 

There exists at present, two established procedures for analyzing such 

theories. The first is a weak coupling expansion which expands in terms 

which are higher than degree two in the field variables and the second 

consists of a strong coupling expansion which expands in the coupling or 

derivative matrix. The first of these suffers from the drawback that the 

perturbation expansion has zero radius of convergence,2 even in the 

O+l dimensional theory.3 The second has the disadvantage that one is 

effectively expanding in the inverse lattice spacing, which grows without 

bound in the continuum limit? Our approach discussed here may be 

considered as intermediate to the two just discussed. The method involves 

the use of an orthogonal transformation to handle the dominant terms in 

the derivative (or coupling) matrix, while at the same time makes use of 

an anharmonic oscillator basis to handle terms which are higher than 

quadratic in the field variables. We exhibit some useful but simple 

orthogonal transformations that correspond roughly to "blocking" 

procedures but that are not well known in the physics literature. The 

hope of such an ambitious yet simple approach is that the resulting 

perturbation expansion may even have a finite radius of convergence. 

A version of perturbation theory will be described that utilizes a 

variational approach and which can be applied to an anharmonic basis. 

In I we studied a 1+1 dimensionala theory and estimated numerically 

the critical surface of the theory. These results depended on an 
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accurate knowledge of the quantum anharmonic oscillator (actually on E 

and <x2> where needed). In this paper we approach a similar theory but 

in D apacetime dimensions with particularly simple choices for the 

orthogonal transformation (the Walsh and Haar transformation) which is 

susceptible to a more analytic treatment. The results we present are 

approximate and can be improved with a modest amount of effort. 

In Section II we describe our variational method which involves 

a particular product form of a trial variational wave function. 

In Section III the equations which determine the anharmonic parameters 

in the trial wave function are derived for a general orthogonal 

transformation, the Walsh5'6 transform, and in Section V we discuss the 

Walsh solutions to the variational equations which were derived in 

Section III. We then construct the solutions for the Haar' transforma- 

tion in Section VI. Section VII is concerned with general excitation 

energy bounds. Finally in Section VIII we discuss a form of variational 

perturbation theory that can be used to improve our anharmonic solutions. 

Section IX contains a brief conclusion. 

II. THE METHOD 

The Hamiltonian we wish to study is the familiar $4 theory 

H = /dD-'x n2(x) + 
11 

w2w + xo(~(x~2- Q2 1 , (2.1) 

where D is the number of space-time dimensions. Going to a cubic lattice 

D-l of N points, and lattice spacing a, yields 

H = n2 + a -2 

;f c 
&V 
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where V is the set of D-l- tuples of integers such that each component 

lies between 0 and N-l, that is 

v = &Z D-l 
I 

The coupling matrix D+ + is chosen so that the continuum limit of the 
n,m 

lattice Hamiltonian is a local one. 

In order to write the lattice Hamiltonian in terms of dimensionless 

fields we perform the transformations 

2-D 

4-b 
n 

(2.4) 

and the Hamiltonian becomes 

H = a -1 x1/3 
q-t D (2.5) 
n 

where A= hoa4-D,A= ;\1'3 and f2= h1'3aD-2 fi, The dimensionless variables 

p, and q, satisfy 
- 

[ 1 p4q-P = -6 (2.6) n m -f+ ' 
n,m 

The basis of our approach is very simple. We will construct a 

variational ground state wave function of H, which is of the product 

form 

(2.7) 
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where the r+ are related to the q+ through an orthogonal transformation 
n n 

2 = c 
t r 

&V 
?i,m' zi 

(2.8) 

and 

The functions $(A, f2; q) which appear in 

oscillator wave functions, which satisfy 

Y are ground state anharmonic 

d22 + X(q2- f2)2 -- 

1 

0(X, f2; 4) = E(A, f") $(A, f"; q) , (2.10) 

dq 

and were discussed in I.8 The main problems associated with constructing 

such a variational wave function are in determining the orthogonal 

transformation t, + and the parameters X+,fl which appear in Y. In our 
n,m mm 

previous paper we showed that the standard blocking procedure could be 

interpreted in the above terms. For example, a two site blocking 

procedure was shown to correspond to a particular orthogonal transforma- 

tion, the Haar transform, along with a simple sequential procedure for 

determining the anharmonic parameters which appear in Y. Thus in our 

approach a blocking procedure is not essential; it is simply one way 

of choosing the orthogonal transformation and of determing the parameters 

of the base problem. In this paper we shall discuss procedures which 

are more general than blocking. 
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111. GENERAL ORTHOGONAL TRANSFORMATION 

In this section we will determine the conditions on the parameters 

A 
S' 2 which appear in Y and decompose H into an unperturbed part H 

n 0 

and a perturbation H1 which will be useful for discussing the induced 

perturbation expansion later. Ho will be determined using a variational 

principle so that (Y, H2 Y) = 0 by design. 

Since our trial state Y is simple in terms of the r+'s it is 
n 

convenient to express H in terms of the r's. One finds that 

+ 
c 

t t t t -h-h -t+ -t-t -t-P If+ r+ r+ r+ ' 
+-f-t++ n,m n,m n,m n,m 
n,mlm2m3m4sV 1 2 3 4 ml m2 m3 m4 

I 

where 

H = (am1h1'3) pi-2f2 rz+ f4 r3 d r-+ 
n n &TV n' 

(3.1) 

d = . 3-s- c 
t D L 

n,m 
3+ -f-t, 

d,PEV 
R,n I1,R al,; 

(3.2) 

To determine the optimal set of anharmonic parameters one must minimize 

E= O', H y). One might also consider the parameters that characterize 

the orthogonal transformation tb ;I: as parameters to be varied. However, 
, 

it is then very difficult to solve the resulting equations. It is far 

simpler to assume a form for the orthogonal transformation that does not 

do violence to the anharmonic nature of the problem nor to the coupling 

between oscillators, and it is this latter procedure that we shall pursue. 



-7- 

Using the simple product form of Y in terms of the h's and the 

above expression for H, we find that 

-2f2+Ad Q2[hnf’ f@ + It* - ";: :@ 

where 

T = a 1 t 4 + 
n 

LV 
G! 

and 

Finally OJ 

QN(A,f2) = 
SI 

$(a, f2; 4) 2 qN dq . 
I 

(3.3) 

(3.4) 

(3.5) 

(3.6) 
-0) 

Varying this expression with respect to X 
ii' 

that is by setting 

B-=0 
ah-b n 

and LE.-= 
af2 

0 , 

n3 
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one finds after a few manipulations and an application of the 

Feynman-Hellman theorem that 

and 

A+ = T + 
n n 

(3.7) 

A+ f2 = f2 - $ A d 
n ;: 

Using this optimal set of anharmonic parameters one obtains an upper 

bound on the ground state energy of the vacuum 

E true s [A1'3 a-') E , 

where (3.8) 

It will prove interesting to decompose H into an unperturbed part HO 

to which Y and E are the exact energy eigenstate and eigenvalue, and 

Hl the perturbation; that is 

H = [A1'3 a-'] [HO + Hl] 

where 

(3.9) 

J = f4 + n - Tf; - 3 z T;,g Q2[$.f@ Q2[h;,f;] 



-9- 

and 

Hl = 

+ 

where 

-k-+-+-k 
k,R,m,nsV 
i&d#Z#Z 

since (Y,Hl,Y) vanishes by construction it will first contribute to the 

energy in second order. 

(3.10) 

In a later section we shall show how to 

calculate this correction to any desired accuracy. 

In terms of the variational wave function Y, the two point correla- 

tion function is quite simple to evaluate, to lowest order in Hl: 

(3.12) 

The lowest mode of the system is the d.c. component t + = N -(D-1)/2 
8 

. 
4 

The behavior of the correlation function at large distances is strongly 

affected by the d = 0 mode. For example if fi is large and positive, 

this contribution to <q+q+> becomes 
nm 

t t Q2 A f2 +-k 3-h 
n,k m,k I 1 z’ iI (3.13) 

l&V 
k# 0 
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Therefore the signal for a constant correlation function at large 

distances I;-$1 + m D-l is that f2 grow like N 
6 

asN+m. 

In I we showed that blocking two sites at a time corresponds to 

choosing t, + to be the classical Haar transform and gave generalization 
RSm 

of this transform that corresponds to blocking M sites at a time. One 

can and should treat M as a variational parameter, since the optimum size 

"block" clearly depends on the values of the parameters f2, X and A. 

In Section IV the Walsh transform eill be discussed and in Section V we 

present a solution to the variational equations which utilizes this trans- 

form. In Section VI, a short discussion of the Haar transform and its 

solution will be given. 

IV. WALSH TRANSFORM 

The Walsh transform is an orthogonal transformation with elements 

equal to (+ 1) only.6 Since it was defined in I, only a brief review 

will be given here. Define the base 2 representation of the integer 

as (0 5 R s N-l = 2n- l), 

n- 1 

R = 
c 

Rr 2’ , 

r= 0 

(4.1) 

where by definition R = 0. The Walsh function on 2n points can then n 
be written as (sequency ordered) 

n- 1 

Wal(a,j> = l-l C-1) 
'r t jnmr + jnmr-l 1 (4.2) - 

r= 0 

where 

Wal(a,j> = Wal(j,E) 
(4.3) 

bal(E,j)12 = 1 
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and 
N-l 

c 
Wal(k,j) Wal(j,%) = N 6kR . 

j=O 

The Walsh functions obey the multiplication relation 

Wal(k,j) Wal(%,j) = Wal(k $ &,j) , 

(4.4) 

(4.5) 

where (k @ a) is bit by bit addition Modulo 2 under the rules 

0 + 1 = 1 + 0 = 1, and 1 + 1 = 0 = 0 + 0. It is also the logical 

exclusive OR operation. Clearly the Walsh functions are closely 

associated with.the discrete dyadic group. 

Even though the Walsh functions take on the values of (+ 1) only, 

it is possible to define a derivative operation. This has been termed 

the "logical derivative" by Gibbs.6 It is a difference operation 

defined by 

v'(x) = x 2r-1[v(x) - v(x @ (2n-r- l))] . 

The Walsh functions are easily shown to satisfy 

(wal(~,x)) ’ = R Wal(R,x) . 

A Walsh lattice theory is defined by choosing 

A Wal(L,j) , t!?,j = fi 

and one easily finds 

TR = l/N , 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) T R,n = [l- dJ?n)'N 
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and for k, R, m and n distinct and unequal 

TkRmn = 6k@R,m+Bn ' (4.11) 

where 6 is the Knoenecker delta function. 

There are several convenient choices for the derivative matrix D in 

the Hamiltonian. In general an interesting type of D to consider is one 

that is strongly correlated with the choice of the orthogonal transforma- 

tion t and its associated basis functions. In the present case, if D is 

the square of the logical derivative operator then (in one space dimension) 

DkR = Do 6k,(e/N)2 . (4.12) 

If the more familiar nearest neighbor derivative is chosen then 

1 
Dk% = = ~ ‘ti. )‘ Wal(k,a) Aab Wal(E,b) , 

ab 

where 

(4.13) 

A = 
ab 2 'a b- 'a b+l- &a b l- 6a O&b N-l- 'a N-16b . , , , - , , , , 0 1 

One finds that the D matrix is not fully diagonal, but its diagonal 

part is given by 

D RR = f [2R+l- (-)") 

8 R+l 
=N 2 [ 1 3 (4.14) 

where Czl is the nearest integer below or equal to Z. It is straight 

forward to explicitly see that the D matrix is diagonal for N= 2 and 4, 

and that the zeroth and (N-l)St modes are uncoupled for any N: 

D =0 RO 
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and 

DQ ,N-1 = 4QNl . 
, - 

As an example of our technique, and to motivate the choice of the 

coupling between lattice sites (the D matrix) consider a free scalar 

field theory. The transformed Hamiltonian is 

H = F k; + m2 rj + & "k DkR r~ ' 
, 

and if the D matrix is chosen to be the square of the "logical" 

derivative6 

DkR = 6kk(%)2 ' 

Then H can be directly diagionalized. The result for the ground state 

is 

E = 2 [m2 + (;;fi)2]1'2 , 

R=O 

The continuum limit is easily performed by defining K= 2-n /Na, and the 

sum becomes 

which is the exact result in the limit a + 0, Na=L. 

These relations are easy to generalize for higher spacetime 

dimensions. In D spacetime dimensions one defines 

D-l 
t = 
ii,;: 

l-l 
i=l tRini (4.15) 

Most of the previous formula are generalized by replacing the scalar 

indices by vector ones(i.e., 6 -+6 -+ +, etc.). 
R,n R,n 

The generalization of 
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the Walsh transformed nearest neighbor derivative, Eq. (4.142,becomes 

d (4.16) 

which we shall utilize in the next section. Note that N is the number 

of lattice points in any one direction. The total number of lattice 
D-l points in V is therefore N . 

V. WALSH SOLUTIONS 

In this section we provide the solutions to the variational equations 

which were derived in Section III, for a particular choice of the ortho- 

gonal transformation, the Walsh transformation. The solutions are parti- 

cularly simple, due to the fact that the Walsh matrices contain only the 

elements +l. The solutions are analytical in nature and we are able to 

compare the critical regions of these solutions with the numerical ones 

obtained in paper I. As will be evident from the solutions, choosing 

the full Walsh transform is equivalent to a block size of N; hence the 

solutions will share certain good and bad features with the mean field 

approximation. 

As was shown in Section IV, one has the relations for the Walsh 

transform that 

T = N1-D 
-f 
n 

and 

T 
t,;t 

(5.1) 



-15- 

One finds that with this choice of the orthogonal transformation that 

the variational equations of Section III take the simple form 

N1-Df2 = f2+ A 2 
+ 
n 

~,;: - 3N1-D c' Q2 [N1-D,f;] (5.2) 

where the prime on the sum means that the term with g= z is omitted. 

It is convenient to rewrite this in the form 

&-D f2 
0 

= f2 _ 3N1-D 
(5.3) 

and 

N1-Df2 = N1-D f2 
1 0 -iAd t,~ - 3N1-D[Q2b1-D,f;j - Q2[N1-D,f;fl . (5.4) 

For the case that f2 s 0, one sees that fi -< 0 and thus ft < 0 for 
R 

all X. Hence if f2 is not too positive, one can define a mass by 

l.42 = a 2N1-D f2 
0' Using the fact that 

Q2(X,f2) = x-1’3 2 Q (l,h1'3,f2] 

where 

lim Q2(Lg2) = I. 1 _ % + g2 << -1 24x9 81g13 

one sees that 

-,l-Of2 = l T u2++Ad++ . 
t R,R 
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Neglecting the small corrections which go to zero in the infinite volume 

limit where N + OJ, one has the self consistency condition that 

The energy becomes 

. (5.6) 

E = cd- + ND-'[f2-4 If'-+ u'1' 

R 

+ ?. N1-D 
4 c [li’+AQ]-’ l 

R 

(5.7) 

and the last term is negligible as N + 03. 

By extrapolating these results to larger f2, we may estimate the 

point at which the mass u2 vanishes (the critical point). This occurs 

when f2 
2 reaches fc where 

r 
f2=3 1 

C z ND-l 
(5.8) 

In order to compare with the numerical results which were obtained 

in paper I, we make use of the nearest neighbor derivative where 

dd,t = (8/N) cs=: C(ai+1)/21. In this case the infinite volume 

limit of the previous equation may be taken explicitly and one finds 

that 1 

p2 = -2f2 + 3 
I 

dxl . . . dxD-l 
0 

The critical point is obtained by requiring that u2= 0 or 

f2 = 3 r 1 
C QiT D 

(5.10) 
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with 1 
1 ID = 2 

s 
dxl . . . dxD 

0 

(5.11) 

and one finds 12= 1, 13= (4/3)(fi-11, 14= (4/5)(1+3fi -4n)~ etc* 

With D= 2, we see that 

4ic f2 = 312 (5.12) 
C 

which we can compare with the numerical results of I. For A= 10 we found 

that fi f% = 1.483 to be compared with the above, an error of only 1%. 

We expect that the accuracy of these results should be improved at 

larger A; for smaller A the reverse is true and indeed one finds a larger 

discrepancy at A= 2, about 5% (see Fig. 2 in I). 

Specializing to the case D= 2 we have 
1 

p2 = -2f2 +J- 
s 

dx 1 

2fi o 4($/4A> + x 

= - 2f2 + ..Z-. [J l+ (u2/4A) - m 
?G 1 

For p2 << 1 we may invert this relation to obtain 

u = y Ei-f2][l + @[f:-f2)] 

. (5.13) 

(5.14) 

which implies that the critical exponent v is one. This is what one 

might expect since this theory should belong to the same universality 

class as the two-dimensional Ising model where v =1 exactly. A similar 

analysis for D =3 and 4 implies that v = l/2 in both cases. Numerical 

studies have hinted toward v3= 0.638, and v4= 0.5. 
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If f2 is sufficiently positive we may define a positive magnetization 

byM2=N o. 1-Df2 In this regime we may use theeprevious scaling relations 

and the fact that 

lim 

f2 >> 1 
Q2(1,f2) = f2- & 1 

to find a solution in which the f 
t 

's are negative for 1 # 0 and 

- N1-D f2 
t 

= 2M2 ++Ad 
t,t 

(If 0) 

along with a self consistency condition 

f2 1 3 -- - 
ND-l 2 . 

(5.15) 

(5.16) 

(5.17) 

In this case we call the system ordered and the two-point function goes 

to the constant M" at large distances. The energy can be easily evalu- 

ated to leading order in N: 

E =xdw +;ND-'[f2-M212 * (5.18) 

R 
To compare to the previous results for the disordered phase we again 

take the infinite volume limit N + 0~ and make use of the nearest neighbor 

derivative to obtain 
1 D-l -l/2 

M2 = f2- ; 
J 

dxl . . . dxDB1 M2+4A i 1 c 
xi (5.19) 

0 i=l 

Note that the magnetization M vanishes at precisely the same point where 

the mass u vanished in the disordered region, i.e., in this approxima- 

tion the two critical points coincide. 
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This is perhaps fortuitous because the magnetization itself behaves 

incorrectly near the critical point. There are two possible values of 

M2 for a given f2 (for f2 near ff). This region of double valuedness 

decreases as A increases. Indeed the solution M2 (f2) should be single 

valued. A more detailed analysis shows that the wave function with the 

larger of the two M2' s is the one with the lowest energy. This flaw is 

perhaps reminiscent of the first order behavior found by Drell et al.,' 

where a variational principle was also applied. This result is surprising 

to us since the numerical result of paper I predicted essentially the 

"correct expected" behavior for the magnetization using the Haar transform 

with the simple parameter determination given by the 2-site blocking 

scheme. Perhaps the problem here is in our approximate analytic solution. 

VI. HAAH TRANSFORM SOLUTION 

The Haar transform was discussed in some detail in I. In this 

section a brief review of its properties will be given and the resulting 

form of the Hamiltonian and its lowest order solution. For reasons of 

simplicity, only one case of D=2, or one space dimension, will be 

discussed in detail. The Haar transform is constructed by first 

"blocking" two sites at a time; that is, one forms the sum and differ- 

ence coordinates and then proceeds by re-"blocking" the sum coordinates 

two at a time until the top of the coordinate pyramid is reached. Thus 

the discrete Haar transform is an orthogonal matrix made up on the 

elements 0 and *<Jz>' only. Examples and a complete definition were 

given in I. 

If the above construction procedure is applied to N=2n coordinates, 

at the first stage, or level, there are N/2 difference coordinates that 
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are not affected by later steps in the construction. At the second 

level, there are N/4 difference coordinates that are fixed and at the 

Lth level, there are 2n-L difference coordinates. The magnitude of 

the nonzero elements of the Haar matrix depend only on the level; one 

finds (2) -L/2 for the size of all elements in level L. 

In the equation the F's, one needs TQ, TR n, and the sum over the 
, 

Q2's. First note that TR R1 can depend only on the respective levels 
, 

that R and R' are in. If R(R') is in level L(L'), then one finds that 

where L, is the larger of L or L', and 

TR =TL = 2-L . 

In the equation of the F's, Eq. (3.7), one needs 

form 

since h F2 
R' R' 

r!L- This sum 

L' > L and L' 

W-l n 
= I3 T 2 

R,R' Q,’ = c 
T 2 

L,L' Qv 
R'=l L'=l 

and hence Qi , depend only on the level 

is easy to evaluate by dividing it into 

K L. For the latter case, one needs to 

(6.1) 

(6.2) 

a sum S R of the 

(6.3) 

L of the coordinate 

two terms in which 

know the number of 

terms in level L' that contribute to a given L, this is seen to be 2 L-L' . 

Thus the sum becomes 

S& = 
c (6.3) 

L'#L 

where XL1 
= x2-L’ and L' runs from 1 to n. 
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The nearest neighbor derivative term is straightforward to evaluate 

after some thought. Its diagonal elements are found to be 

D 2 -n RR = (0,8,302~, . . . ,302 n+l-L 
, . . . ,3*2n) , 

N-.1 
where the 0 value is for the variable ro= c xi, etc. 

i=O 
The final reduced form for the equations that determine 

3 

(6.4) 

the 

parameters in Ho are easily written down in terms of F' (associated 

with the variable ro) and Gi, ngL,<l, associated with the (degenerate) 

difference coordinates at level L. The result is 

f2- 3 n 2-L' Q2 

c 
L'=l 

and (6.5) 

2 GL = - 3*2-n Q2[An,F2] - c 2-L' 2 

L'#L 
Q [,1,G+[3+ BLn]. 

Approximate solution for these equations can be found if the para- 

meters are in suitable domains. For example, if A is large and F2 is 

not too near zero, one may write 

F2 = 2n M2, 
k 

where M is the magnetization and then by taking the difference of (.6.5), 

2 
GL 

r - 2L+1 M2 +a x , (6.6) 

if G; I I is large enough so that the term 3Qt can be neglected 

compared to 2 %f2. 

Some useful relations for the quartic oscillator which can be used 

to derive and discuss these solutions for F2 and Gi are: for g2 3 + -, 

Q2 [A,g2) = q2 - -&- + . . . 
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and for g2+ -a , 

Q2 b’l z J-&y I- 2[2Al;:l]3/2 i 1 
or to this order 

3Q2 [A,g'l - g2 g [8A[ i2[A,g2]]2] -' . 

The consistency relation that determines M2(f2) to this approxima- 

tion is then n r M2 = f2 
Ln +2L+1AM2/A 1 -l/2 

. (6.7) 

For M2 =0, the critical value of f2 is 
n 

3 
f2 = c = - f2 

c [ 
2-L/L 

m 1 I I -l/2 
3+ 'Ln 

or 

GfZ = 
A- 

+ d 2-n'2 . 
I 1 

(6.8) 
4(Jz- - 1) 

The numerical value of the first term is 1.478. Recall that the 

Walsh transform gave the result 1.50, and the iterative numerical Haar 

transform used in I gave the value 1.483 (at A= 10, X= 1). Again, 

just as in the Walsh transform case, while the value of fz is given 

quite accurately by these analytical results, the critical exponent is 

not very satisfactory. 

The energy estimate takes the form (A= 1) 
n 

E = 2M + c 2n-LJ4m + $2". [f"-M21' , (6.9) 

L=l 
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where 

eLL = 
21-L 

I 1 
3 + 6Ln. . 

These should be compared with the result for the Walsh transform given 

in equation (5.18) for D= 2. As one expects, the main difference is in 

the form of the A term. This kinetic term has a geometric spectrum 

(w~-~A) for the Haar transform and a linear spectrum (-%A) for the 

Walsh transform. 

VII. EXCITATION ENERGY BOUNDS 

In this section we shall show how to bound and to estimate the 

excitation energies of quantum systems. An exact bound between the 

excitation energy and the correlation function will be derived. The 

techniques to be used are probably familiar in the literature but we 

will reformulate them for convenient application to the present lattice 

theory. The feature we will use is the fact that for f2s 0, the quartic 

oscillator has matrix elements and moments that are quite different 

in magnitude from a harmonic oscillator but the selection rules are 

very accurately satisfied. 

First consider a single general oscillator in which the exact 

ground state (13). is known: 

HjO> = Eo(O> q 

Define an "excited" state by 

jh> = h(x)lO> , 

then one finds by simple manipulation that 

Eh ,< <hlHjh>/<hjh> 
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satisfies 

Eh - EO s <O((h')210> <Olh2(0> . (7.1) 

For example, choosing h=x,(x2- <01x210>) respectively, yields 

bounds on the excitation energies 

El - E. s l/<O~x2~0> 
(7.2) 

E -E 2 0 s 4<0(x2~0>/(<0~x4~0> - <olx2(o>2). 

If v= (x2- f2)2 the first inequality is only off by 0.8% and the second 

by 1.8% for f2= 0. They are more accurate for f2 negative and less 

accurate for f2 positive. For large positive f, a more sensible choice 

for h is h=tanh ax, where a*2f. The resultant energy gap is exponen- 

tially small in f (El-E0 N exp(-f3)). 

Now consider a general lattice theory. Using the above line of 

argument one finds (h=h(qo . . . 'N 1)) _ 

El - E. s z (01 [p]' /O>/<O[h210> . 
i=O 

Now consider the choice 

h = 
c qi 

and then 

c <01[~]~10> = N 
i 

<Olh2j0> = 
c <O I qi4j I O' 

Lj 

= N 
c 

<O 1 ClOqj I O’ 



-25- 

by translational invariance. The bound on the excitation energy is 

El - E. -< 1 
I= 

“lqO4j 1” l (7.3) 

j 

The denominator is the volume integral of the correlation function 

(which is also its Fourier transform at k= 0). Thus if the correlation 

function is infinite at k= O., then El and E. be degenerate. 

VIII. VARIATIONAL PERTURBATION THEORY 

Let us now turn to perturbation theory and show how to improve the 

zeroth order (but variational) results of the previous sections. The 

methods we shall use are straightforward extensions of familiar and well 

tested ideas in lower dimensional contexts.lO Since the first order 

energy shift due to the perturbation ?I is zero, it first contributes to 

second order. If one is not going to compute third order, it hardly 

makes sense to evaluate the second order shift exactly. Therefore we 

will review the derivation of a variational principle for the second 

order energy shift due to Hl. The main feature we can utilize here is 

that the anharmonic oscillator satisfies the harmonic oscillator 

selection rules to high accuracy. 

Write the first order change in the wave function as a function 

F(q) times the unperturbed I$>. The second order energy shift can be 

written in the equivalent forms (Hl Z W) 

E2 
= <$(wFIJI> = <*lm+4> = - <$I lijF12/@ 

by simple manipulation. A stationary principle for E2 can be constructed 

out of these forms: 

II 1 E2 = <I$ WF + FW + j;;F12 $J> , 
I I 

(8.1) 
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which is stationary with respect to variations in F. This can be 

derived directly from equation (7.1) of the previous section by 

writing h=l+F, H=HO+W, and choosing IJI> to be an eigenstate of Ho. 

An expansion in powers of F then yields (8.1) 

A* The first type to be considered is the nondiagonal part of the 

derivative matrix 

WA = 
c r:k DkRrR ' 
k,R 

where D RI1 =DllO= 0 and D is symmetric. Assume F is of the form 

FA = c "kAkRr'R 
k,R 

where A RR =ARO= 0. The stationary form for E2 takes the form 

The stationary solution for FAis 

%a = -DkR $+ +- -' [ 1 k R 

and 

1:l E2 = -2 c 
2 2 l;l -l 

DkR DQk Qk Q, Q% [ 1 q * k,R (8.2) 

Using the previous bounds for El-Eo, this form can alternatively be 

interpreted as a closure approximation to the familiar second order sum 

over states. However, more general forms for F allow one to calculate 

E2 to any desired accuracy using only properties of the ground state I$>. 
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The first order correction to the correlation function is 

<qoqj> = + c tOk tjn. <ill (“F)rk’R(‘+F) 1 Ji’ 

k,R 

1 
= a- c tj& ‘$1 rkrR(1+2F+...)l$> 

k,g 

1 
= Fl c tjkQi+$ C tjaAakQiQi+ .e. (8.3) 

R k,R 

Recall that DllO= 0, hence AgO =0 and therefore there is no first order --- 

correction to the magnetization from this perturbation(as in fact required 

by the structure of Dke). 

B. The second term in W is of the form (recall TRRE 0) 

Since the operators of the form (r2 - Q2) excite the modes to even states, 

it is'natural to try an F of the form 

where B RR =O. The stationary solution for B is 

B 3X T 
In=-4 , 

where RR= Q4- R Q;Q; 9 and the resultant energy shift is 

= 9x2 -- 
2 

Qf 
I 
-1 

R, . (8.4) 
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This is also easy to interpret in terms of a sum over states by 

recalling that E2- EO 3 4Q2/R. This formula has been applied to two 

coupled quartic oscillators in 1 and found to substantially increase the 

accuracy of the energy calculation. 

Finally, we note that FB does not effect the correlation function 

to first order since <$1F,(J1>=0. 

C. The final type of term in W is of the form 

WC = A c T kRmn rk rR rm 'n ' 
# 

And for simplicity we will assume that TkRmn is of the Walsh form-that 

is, T vanished if any two indices are equal. A more general T only 

requires a more general notation. Now since the 0 th mode could have a 

large positive Fi, it is necessary to separate the terms in the sum 

that involve r 0 and those that do not; thus we write 

wC = WE + w; , 

where 

WE = 4XCT ORmn rO r9., rm 'n 

and 

Wi = X c TkRmn rk r'R rm rn . 

PO 

Consider the second term in WC first. It is natural to assume 
1 an FC of the form 

1 FC = c chmn rk rQ 'rn 'n 
#o 
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and one easily finds that the stationary solution for Cl is 

The stationary form for this contribution to E2 is simple to write down. 

The term in WC involving r. must be treated differently because 

this mode may have a large positive F2 and a different choice for FC is 

necessary. Based on our previous discussion, we will write 

0 FC = 
c 

CO O!LTml h(rO) 'J, 'm rn 

where h(ro) will be chosen below and neither R, m, nor n can be equal 

to zero. The solution for Co is 

1 1 1 + <(h'j2> . 

I 

-1 
0 

CO&m = - A TOhnn %+q+q < h*> 

If F2 is very large and positive this form can be simplified. Since a 

reasonable choice for h is h= tanh (ar,), one sees that <h12>/<h2> is 

exponentially small in F2, and that <roh>/<h2> y F, to a very high 

accuracy (exponential in F2>. Thus 

co z 
Ollmn -' TO!Lmn F [+++++J 

and its contribution to E2 is 

s -X2(3!)Q;F 

One again sees that WC does not affect the two point correlation function 

to first order. The above choice for h(.ro) includes the important 

contribution of the (almost degenerate) odd excited state to the sum 

over intermediate states. A more general choice will do a better job of 

including the less important higher excited odd states. 
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D, In this paragraph a counting of the terms in the second order 

energy shifts in the case of the Walsh transform will be given in 

order to estimate the importance of the various terms in the perturbation 

W. We shall perform the counting by setting the Q's and R's equal to 

their average values and take them outside the sum over modes. 

(By setting the Q's and R's equal to their extreme values one can get 

bounds on E2 but this will not be pursued here.) Again, the R= 0 mode 

will be treated differently from the R> 0 modes. The Haar transform 

can be discussed in a similar way. 

Proceeding in the above manner one finds 

A III E2 N - @2>3 c DkR DRk 
#a 

where.the average of Q2= Cj2 for R > 0. For the nearest neighbor form 

for the gradient, the sum can be performed with the result 

A ‘I f2 - -(q2)3 ; A2N 

Thus WA can contribute to the energy density as N + ~0. 

The perturbation WB contributes terms of the form 

Cl EB N _ 9A2 N-l 2Roi? 

2 2 

-- 

N2 [ I Q; 02 1 
+ E3 N-2 -- -++ Ro R 62 2 1 

(8.7) 

(8.8) 

Finally, the term WC is computed by using the explicit form of the 

WALSH matrices and one finds 

- h2(4!) (N-l)(N-2) 
N 
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1x. CONCLUSION 

In this paper we have constructed some non-trivial variational 

wave functions for a 44 field theory in terms of an anharmonic oscillator 

basis. Our results seem qualitatively correct and we hope that these 

results may be improved upon with a modest amount of effort. 

In I, we gave a general procedure for constructing orthogonal 

transforms that corresponded to an arbitrary block size M. It was 

applied to the case M= 2 and numerical results were given for the $4 

theory in D= 2. In this paper, the full Walsh transform was applied 

and shown to correspond to a block size which was the same as that of 

the sample, M=N. Approximate analytic solutions were given for the 

Walsh and Haar transform cases which are valid in restricted regimes 

of the parameters. A more exact numerical treatment is necessary. 

However, one significant feature of these solutions is that they are 

analytic in nature and there is no need for accurate computation 

involving anharmonic oscillators. The disadvantages of our analytic 

solutions is that they behave incorrectly near the critical point. 

In particular, the Walsh case with M=N is essentially the same as 

mean field theory. It is clearly possible to improve these results by 

discussing an arbitrary block size M and then choosing M variationally 

(i.e., the optimum M value will depend on f2, A and D). Further improve- 

ments will result from performing a more accurate analytic treatment and 

by applying the perturbation expansion as outlined in Section VIII. 
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