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INTRODUCTION 

In our attempt to understand the strong interactions between hadrons, 

we have inferred a complicated substructure within the particles that we 

actually observe in our laboratories. Over the years, the understanding 

of this physics evolved into a constituent model of hadrons. We have not 

yet been able to detect the constituents by themselves, but most of the 

observed phenomena involving hadrons can be explained by their presence. 

The constituents I am referring to are, of course, quarks. The quark 

model has had particles added to it whose properties would determine how 

quarks interact with each other. These exchanged particles are called 

gluons. These ideas (and more) have now been formalized into the theory 

called Quantum Chromodynamics (QCD). 

In the following discussions, some predictions depend only on the exis- 

tance of point-like constituents inside the hadrons. At a higher level 

of sophistication some predictions depend on the quark make-up of the 

hadrons. At a still higher level of sophistication, some predictions 

depend on the gluon coupling of quarks. At the highest level, the pre- 

dictions depend on the color structure of the theory ("full blown" QCD). 

I have endeavored to identify eat!; of these cases as they occur, so that 
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the reader can gain a clearer picture of what is in one case a test of 

QCD and what is in another, merely a test of, say, the coupling of quarks 

by vector gluons. These concepts form a hierarchy: each successive 

level is an elaboration of the previous one and contains all of its 

general features: 

HIERARCHY OF THEORETICAL MODELS 

Constituent picture - Nucleons are made up of "hard" structure- 

less constituents, from which the lepton 

Quark model - 

probes scatter in deep inelastic processes. 

The constituents are quarks! The character 

of nucleons at high energy is determined by 

Quarks with gluons - 

the momentum distribution of the quarks 

inside. 

The way the quarks interact is via (vector) 

gluon exchange. Evidence of the gluon pro- 

pagator should be visible in some processes. 

Quantum Chromodynamics - Quark and gluon couplings are determined by 

a colored gauge field theory. Vertex re- 

normalization results in a 3 dependence of 

the coupling ~1~. 

The subject of these lectures is Lepton-Nucleon "Inclusive" Scattering. 

I will briefly review some of the experiments which provide us with data 

in the next section of these notes. A discussion of the constituent model 

of the nucleon and the contribution of various types of experiments follows 
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in Sec. 2.1. In Sec. 2.2., data from the experiments are compared and 

some simple predictions of the quark model are covered. In Sec. 3. some 

of the fundamental notions behind quantum chromodynamics are reviewed. 

The subsequent sections cover detailed tests of QCD. Some well known tests 

(like anomalous dimensions in Sec. 6)and others which are perhaps less 

well known (like elastic scattering in Sec. 5, or the ratio of the longi- 

tudinal to transverse total photoabsorption cross sections in Sec. 4) 

are discussed. 

My intention in these lectures is to provide the high energy experi- 

mental physicist with a better understanding of lepton-nucleon scattering 

experiments in the context of contemporary theoretical ideas. New results 

and discoveries will be left to the topical conference which follows the 

summer school. I hope my lectures will set the stage for a better appre- 

ciation of what these new discoveries and results mean. 

1 . . THE EXPERIMENTS 

In this Section, I discuss the fodder for all the theoretical rumina- 

tions... the experiments! I shall briefly review three of the numerous 

lepton-nucleon scattering experiments. I have three reasons for doing 

this. First, I am an experimenter and I couldn't possibly give a lecture 

which doesn't mention nuts and bolts at least once. Second, I want to show 

the origin of some of the data that is considered in Sec. 2.2. - Sec. 6. 

Third, by choosing one electron, one muon and one neutrino experiment, I 

can display the sensitivity of the various experiments and discuss their 

systematic errors. 
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1 begin with a discussion of the nature of experimental accuracy and 

errors and then move on to discuss the specific experiments which form a 

"data base:' for these lectures. I then make comparisons among the experi- 

ments with respect to their statistical significance and systematic errors. 

1.1. Accuracy and Quoted Errors in Counting Experiments 

I will introduce the discussion of deep inelastic lepton scattering 

experiments by making a few remarks on the statistical and systematic 

errors in such experiments. 

Statistical Accuracy 

The statistical precision of a measurement is determined by the 

number of events in the given kinematic bin. Recall that the statistical 

error is proportional to the tis and hence the relative error changes 

as l/GG.KG. The "counts" for an experiment of this type can be repre- 

sented by 

counts = &?dt . * . 
dRdE dndE l e (1) 

&?is the Luminosity (=number of beam particles k number of target nucleons 

/ (cm2 - see)). da - is the probability of having a scattered particle dG?dE 

within the solid angle (da) and the energy acceptance (dE) of the apparatus. 

E is the probability that the detector responds in such a way as to make 

the event identifiable. 

For some regions of ‘2 and E, the cross section becomes very small 

thus placing an overriding limit on the statistical accuracy of an experiment. 
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Only by a proportionate increase in luminosity can we hope to obtain a 

viable result in such regions. 

Systematic Accuracy 

Time and money eventually result in acceptably small statistical 

errors for most experiments, but understanding and controlling systematic 

errors can often be much more difficult. Major sources of such errors are 

encountered in the measurement of 9, dndE and E. Verification of the 

measurements by means of experimental cross checks is usually more reliable 

than corrections calculated deep in the bowels of a Monte Carlo computer 

program. For example, in inclusive scattering experiments at SLAC, the 

intensity of incident electrons is measured using two, non-intercepting 

toroid flux monitors. The toroids have been calibrated against a Farady 

cup and a standard capacitor pulse. The spectrometer acceptances and 

optics are measured by using the primary electron beam as a probe to 

trace the electron trajectories directly. And so on... The reproduci- 

bility of these kinds of experimental cross checks leads to an overall 

systematic error estimate in the SLAC measurements of about 5%, coming 

mostly from uncertainties in.JZ?and dfidE. (1) 

The systematic errors entering in the determination of E can also be 

significant. Often the information produced by the equipment is suffi- 

ciently imprecise to allow misidentification so that some "good" events 

may be eliminated while some "background" events are retained in the 

sample. This "grey area" is usually corrected for by using statistical 

subtraction techniques. The associated systematic errors will be small 

provided these corrections are small. Therefore, experimenters must take 

care to design the experiments to have a large signal-to-noise ratio. 
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Calculated corrections made to the data can also be a source of syste- 

matic error. Two such corrections in all deep inelastic experiments are: 

. (1) radiative corrections, and (2) Fermi motion corrections (except for 

H2 targets). For electron scattering, radiative effects can be large 

(typically of the order of 20%). For the muon, the radiative effects are 

4- 5 times less than those for electrons through most of the kinematic 

ranges covered by present experiments. But near the extremes of the 

range, muon radiative corrections do become comparable to the largest 

corrections that occur in the published electron scattering data. (2) 

Radiative corrections are usually made only for the incoming and 

outgoing lepton. No corrections are made for target radiation which 

(especially in the case of experiments involving muons) could be comparable 

in size. The radiative correction procedures used are themselves only 

approximations to "exact" lowest order QED calculations. (3) Exact 

calculations are still much too costly in computer time. The approximation 

procedures have been spot checked for accuracy at many kinematic points 

using the lowest order QED formulas, Data points which have a large 

radiative correction should be used with caution. These data points are 

usually located at the extremes of the kinematic region covered in an 

experiment. 

Fermi motion effects exist in all targets except hydrogen but this 

correction is significant only near threshold. The Fermi motion effects 

are less well understood than the radiative correction and controversy 

exists as to the correct method to employ. (4) Fortunately these 
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effects are small and have little influence on the important results to 

be discussed in these notes. 

Quoted Errors 

Properly accounting for systematic errors when comparing data with 

theory is difficult. Some systematic errors are uncorrelated data point to 

data point while others affect only the overall normalization. A common 

procedure is to combine systematic errors with the statistical errors in some 

fashion and then treat the resulting errors as if they were purely statistical. 

Then, for example, when integrals over the data are calculated or global 

fits are made, the systematic errors "disappear" as l/d No--of-data points 

used and the correlated errors are not properly accounted for. In this way 

experimental data with a ?5% overall normalization can be used to produce 

results with a much smaller (and inaccurate) error. in general, a simple, 

practical method to treat systematic errors does not exist. Different 

experimental groups have adopted different procedures, and serious students 

of the data must familiarize themselves with these procedures before com- 

bining data for comparisons with theory or other experiments. 

1.2. Three Experiments 

The three experiments are: (1) the electron scattering experiments 

performed here at SLAC, (1) (2) the CHIO collaboration's muon scattering 

experiments at Fermilab, (2) and (3) the CDHS collaboration's neutrino experi- 

ments at CERN. (5) Fig. 1 is a sketch of the three experimental setups. 
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Figure 1. Experiment Setups: a) SLAC, b) CHIO, C> CDHS. 
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Electron - Proton Scattering at SLAC 

A schematic picture of the electron scattering experiments is shown 

in Fig. la. The electron beam (energies 3-24 GeV) from the SLAC linac 

is momentum analyzed and focused on a target located in End Station A. 

The setting error in the incident energy is + 0.1%. Upstream of the 

target are two precision non-intercepting, toroidal flux monitors which 

have been independently calibrated against a Faraday cup. In view of 

these calibration checks we believe the toroids measure the number of 

incident electrons with an absolute precision of slightly better than 1%. 

Liquid hydrogen and liquid deuterium targets of various lengths 

(7 cm to 30 cm) have been used in the SLAC experiments. The number of 

nucleons/cm2is known to t 1%. The error comes mainly from uncertainties 

in determining the density of the liquids. Most of the electron beam 

passes through the target and into a beam dump behind the end station. 

A few electrons scatter in the target, lose a fraction of their energy 

(y), and are deflected through some angle (0). The scattered electrons 

may be detected by one of three focusing magnetic spectrometers making 

up the SLAC spectrometer facility. These spectrometers are located on 

rails to allow measurements over a range of scattering angles. 

The acceptances of the spectrometers (both dR and dE) are probably 

the least understood quantities used in calculating cross sections. The 

acceptances are determined by using Monte Carlo techniques and magnetic 

models of the spectrometers. The results of such calculations have been 

experimentally cross-checked using the primary electron beam as a probe 
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of electron trajectories. Other experimental checks include the 

"floating wire" technique used to measure the optics of the 1.6 GeV 

spectrometer and "jail bar" runs used for the 20 GeV spectrometer. In 

the latter case masks are used to establish patterns in the spatial dis- 

tribution of electrons entering the spectrometer and the patterns .are 

traced through the spectrometer (See M. Mestayer, Ph.D. Thesis, in Ref. 1). 

The agreement between the various determinations and comparisons between 

data taken with the same kinematics but with different spectrometers 

results in an estimated 1 - 5% systematic error. 

Electrons scattered into the acceptances of the spectrometers are 

detected and identified using threshold gas Eerenkov counters, shower 

counters, and hodoscopes. The experimental challenge is to identify 

electrons in the presence of pions. The chance of a pion being identified 

as an electron is typically l-in-lo4 to l-in-lo5 and the electron detection 

efficiency is typically > 95%. Systematic errors of about 2% have been 

ascribed to identification of scattered electrons. 

The analysis of the electron data requires the application of radia- 

tive corrections. These corrections typically range from -20% tc +20% 

and are never larger than 30% for the presently published data. Errors 

enter this correction through misestimations of the actual radiators in 

the experiment (target walls, vacuum windows, etc.) as well as in approxima- 

tions made in the (rather complex) calculation of the corrections them- 

selves. 
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Because of the high intensity oE the SLAC beam, counting rates for most 

of the attainable kinematic range are large. The many deep inelastic experi- 

ments performed at SLAC, accumulating more than 2,000 data points, have al- 

most completely covered the deep inelastic region presently accessible at 

SLAC . Each data point represents hundreds (usually thousands) of events. The 

accuracy of the SLAC data is almost everywhere limited by systematic errors. 

Muon - Proton Scattering at Fermilab - the CHIO Data 

In Fig. 1 b. the setup of the CHIO collaboration is sketched. (4) 

A muon beam is created by allowing pions and kaons to decay and then ab- 

sorbing any remaining hadrons in a Be filter. The phase space of the re- 

sulting beam is large: the diameter is approximately 4 cm; the angular 

divergence is + 1.5 mrad; and the energy spread is approximately + 2.5%. 

The trajectories of incident beam particles are individually measured by 

a system of multi-wire proportional chambers (MWPC's) designed to operate 

at high instantaneous rates. Since each beam particle is "tagged," the 

beam is in principle as well defined in position, energy, and angle as 

the electron beam used at SLAC. Intensities of up to 8 x lo5 muons per 

pulse were used in these experiments. 

Muon beams by their nature have large halo: for the experiment under 

discussion the halo muons illuminating the apparatus were approximately as 

numerous as the muons "in" the beam. But beam halo is a source of acci- 

dental triggers since a beam particle may traverse those portions of the 

apparatus designed to detect scattered muons. A veto of scintillators 
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located in front of the target was used to suppress this background. 

The effects of both the fast veto and the (high rate) tagging system 

introduce dead times into the experiment, with consequent systematic 

errors. 

The target cell in the CHIO experiments was 120 cm long, and 18 cm 

in diameter. To achieve acceptable statistical levels in the experiment, 

the target was an order of magnitude longer than targets used at SLAC. 

The Fermilab target cell could be filled with either hydrogen or deuterium 

to allow proton-neutron comparisons, but most of the data weremeasured 

using the hydrogen target. 

Downstream of the target, eight MWPC's were used to establish the 

trajectories of emerging charged particles. The muons then passcld through 

the large uniform field of the Chicago Cyclotron Magnet. After the magnet, 

spark chambers again measured particle trajectories so that the deflection 

of the particles in the 7.5 T-m of magnetic field could be determined. 

Various other detectors followed the spark chambers, the most important 

being the hadron filter. It consisted of 2.5 meters of steel (15 hadronic 

interaction lengths) followed by scintillators and spark chambers to 

identify penetrating tracks. 

The solid angle and momentum acceptance were calculated using Monte 

Carlo computer simulations of the experimental apparatus. Inputs to the 

computer model were a set of detailed survey information and magnetic 

field measurements. The experiment dces not include direct e:c;~eri.m?ntal 
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cross checks of these calculations. The calculated acceptance varies 

from less than 10% to greater than 90% over the kinematic range covered. 

Over most of the range the acceptance is over 70%. The systematic error 

associated with the acceptance calculation is + 8%. 

Radiative corrections must be applied tothese data before comparing 

with the predictions of theoretical models. As muons are some 210 times 

more massive than electrons such corrections are considerably smaller 

(typically < 5%). Fermi motion corrections also do not affect these data 

as these experiments had insufficient luminosity to make measurements in 

the threshold region where such effects are important. 

The muon beam energies of up to 220 GeV used in the experiment poten- 

tially provided for a considerable extension of the kinematic range over 

that attainable at SLAC. But because of the low intensity of the muon 

beam and the diminishing cross sections at large scattering angles much of 

the available kinematic region had negligible numbers of events. Further- 

more, many of the reported data points consisted of small numbers of events 

(less than 100) in large kinematic bins. 

Neutrino - Nucleon Scattering at CERN - the CDHS Data 

The apparatus of the CDHS collaboration at CERN (5) is shown in 

Fig. 1 c. A "narrowband" neutrino beam is produced by allowing a well 

focused'beam of (momentum and sign selected) pions and kaons to decay. 

The remaining hadrons anti decay muons are then absorbed and ranged o-ut 

in over 300 meters of iron and earth shielding. This type of neutrino 
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beam has an energy-angle correlation which results in an energy-radius 

correlation at the detector. Thus, at the detector, neutrinos at large 

distances from the beam center line have lower energy than those at smaller 

distance. This feature is very important for neutral current studies 

(although the latter are not discussed in these lectures). A level of 

about 10 3 neutrinos per pulse has been achieved in the narrowband beam 

at CERN. The flux of neutrinos is calculated from the measured flux of 

charged particles and the relative abundances of pions and kaons in the 

incident hadron beam. This measurement is cross checked by measuring the 

flux of decay muons and the total energy of the remaining hadrons in a 

calorimeter located at the end of the decay pipe. The largest systematic 

error in the experiment is associated with the flux measurement of incident 

neutrinos and is estimated to be around + 6%. 

The CDHS detector itself is a large target-calorimeter-spectrometer 

comprising toroidally magnetized iron plates interspersed with plastic 

scintillators and drift chambers. The useful target length is about 6500 

gm/cm2 which would correspond to a liquid hydrogen target almost 1 km long. 

The calorimetric properties of this device were investigated experimentally 

with a pion beam. It was determined to have energy resolution for hadrons 

of AE/E = lO~%/~~G~. The momentum resolution for outgoing muons is 

limited by multiple scattering in the iron and was found to be about 3% 

(independent of the muon's momentum). The muon momentum measure- 

ment and the calorimeter information from the hadron shower are combined to 

estimate the incident neutrino energy. An experimental cross check can 

bc: made by comparing this 2alctiLited neutrino energ, io tbt-1 neut J ink) energy 
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derived from the interaction radius in the detector. The differences be- 

tween the two methods for measuring the incident neutrino energy are well 

accounted for by the energy resolution of the detector and the imprecision 

in the energy-radius correlation due to the finite decay length (300 in) 

of the hadron beam. 

The acceptance of the CDHS apparatus is quite uniform due to its 

large volume and is nearly 100% except for muons below about 15 GeV. In 

the analysis of the data the experimenters have placed cuts well inside 

the edges of the calorimeter to ensure containment of the hadronic showers. 

They also impose an effective muon momentum cut-off of about 7 GeV by 

requiring a penetrating muon track. Because of the flat acceptance and 

detector uniformity only small corrections need be made to the raw data. 

Thus, the systematic uncertainties associated with these corrections 

are small. 

Muon identification and track reconstruction introduces perhaps the 

largest correctionto these data. Occasionally the outgoing muon from a 

neutrino interaction will suffer a hard scatter producing a kink in the 

track, or worse, deflecting the track out of the spectrometer altogether. 

To estimate the reconstruction efficiency of the computer programs, 

a few thousand events were hand scanned and compared with the automated 

procedure. An efficiency of about 93% was observed. The systematic 

error associated with this correction will be small as the correction is 

only 7%. 
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Radiative and Fermi motion corrections are similar to those of 

the muon scattering experiments: radiative effects are only a few per- 

cent, and the experiment doesn't measure in the kinematic region where 

Fermi motion effects are important. 

The energy of neutrinos in the narrow band beam were as high as 

f-200 GeV. The large neutrino flux and massive target (detector) resulted 

in large event rates for most of the kinematic region. At present, only 

data taken in 1977 have been published but much more data exist (taken 

in 1973)and arebeing analyzed. 

1.3. Comparison of the Experiments 

In Table I the three experiments discussed in the last three sections 

are compared vis-a-vis the quantities used to calculate the cross section 

in Eq. 1. The specific numbers in this Table represent typical values 

but may vary widely for some kinematics. The event rate for the electron 

scattering experiments at SLAC is the largest by an order of magnitude. 

This allows the STAC experiments to have more sensitivity in regions 

where the cross section is small. The neutrino experiments have in- 

creasing sensitivity with increasing neutrino energy, as the cross 

sections are rising 1inearl.y with energy. (5) (The typical cross 

section quoted in Table I for CDHS is for 100 GeV incident neutrinos.) 

Both the electron and muon cross sections fall rapidly with increasing 

energy and so become less and less competitive with neutrinos. The 

estimated overall systematic errors qi.roted in the last row of i"able I 
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are my own estimates arrived at after reviewing these experiments. The 

various experimenters have tended to claim slightly better systematic 

errors. Let me emphasize again that only with the greatest care can one 

reduce the measurement errors on cross sections, or derived results such as 

moments, below these figures by combining results within experiments or 

combining data from different experiments. Even trends (i.e. relative 

changes in data) must be carefully examined if one wishes to eliminate 

the possibility that the trend is due to some systematic effect. 

TABLE 1 

Summary of Experiments 

Item 

Luminosity 
(Hz/cm2) 

Electrons Muons Neutrinos 
at SLAC at Fermilab at CERN 

5 x lo37 4 x lo2g 3 x 1o35 

Cross 
Section 

(cm2/GeV) 

0.0007 0.75 1.0 

0.04 0.95 0.95 

I -__- 

0.93 

Overall 
Systematics (acceFtnccc i 

reconstru;rion) 

0.10 
(flux) 
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2. THE SIMPLE QUARK MODEL 

2.1. Phenomenological Development 

Constituent Scattering Picture 

These lectures are concerned with the process shown schematically in 

Fig. 2. An interacting probe (electron, muon, or neutrino), R, of energy 

E. impinges on a nucleon. Usually nothing happens and the trajectory of 

the probe is unaffected. But occasionally an interaction occurs, scattering 

the probe particle to a final state, R', of lower energy, E', and deflecting 

it through an angle, 8. The energy lost by the probe is 

v=E -E'. (2) 
0 

This is also the energy transferred to the hadronic system (i.e. 

v=EHAD). Denoting the initial nucleon by the four-vector p and the 4- 
u 

momentum transfer by 

qlJ = h,-k;) 
the mass of the final hadronic state can be written 

w2 = (p,, -I- q,)2 = p2 + 2p.q+ q2 

where p 2 is the nucleon mass squared. Also we have 

q2 zz -L+E~E’ sin B/2)- -Q2 2c 

(3) 

(4) 

(5) 
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and 

P .q=Mv (6) 

Thus, in terms of the above parameters, Eq. 4. can be written 

W2 = M2 I- 2 Mv - Q" . (7) 

For elastic scattering the recoiling hadronic state is the target 

nucleon itself. This is perhaps the simplest final state and in this case 

W2 = M2 , (8) 

thus 

Q2-1. 2Mv- (9) 

Now consider the nucleon as a system of interacting constituents. 

This situation is depicted in Fig. 3. An exchanged quantum, q, is ab- 

sorbed by one of the constituents which carries a momentum fraction, 5, 

of the nucleon. "Quasi'! elastic scattering of the constituent would re- 

sult in the constraint: 

(6~~ + q,)2 = m2 (10) 

where m is the mass of the constituent. Multiplying out this expression 

gives 

or 

22 CM f2MvS - Q2 =m2 

2 
5 = Q +m2 ---- .T------- 

pf(v + Jv2 -i- Q2 + m") 

(11.1) 

(11.2) 
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Figure 3. Constituent scattering of nucleon and photon. 
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If v2 >> Q2 >> ni', then this becomes 

Q2 5== fx. (12) 

This "scaling" variable, x, is the original variable introduced 

by Bjorken in the early days of the parton model and deep inelastic 

(7) electron scattering . For elastic nucleon scattering x = 1, while 

final hadronic states of larger mass result in x values which are positive 

but less than 1. In this simple picture x can be interpreted as the 

fraction of the nucleon momentum carried by the particular constituent 

which interacts with the lepton probe. 

The cross sections for lepton-nucleon scattering can be written as 

the product of a lepton scattering piece and nucleon structure functions. 

The constituent scattering picture described above results in structure 

functions which depend only on the scaling variable x in the limit of 

large Q2 and v. What has traditionally defined the energy scales of 
n 

"large QL and v" has been the minimum energies at which the data are ob- 

served to "scale". Theory doesn't set values of Q2 and v above which 

scaling should occur but the popular prejudice was that this phenomenon 

should be observed for energies much greater than the proton mass. To 

everyone's surprise scaling was observed to begin for Q2 > 2 GeV2 and 

v > 2.5 GeV (which corresponds to W > 2 GeV). This discovery was dubbed 

"precocious scaling". 

Why the word "scaling"? This is easy to understand. The value of a 

structure function (e.g. F2), measured at Q 2 and v, uill be equal to the 
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same structure function measured at other values of Q2' and v', provided 

V’ is scaled along with Q2'. That is: 

implies that 

(13) 

F2(Q2,v) = F2(Q2' ,v’) (14) 

An "improved" scaling variable which takes into account nucleon recoil 

effects is (Eq. 11.2 with m2 = 0) 

(15) 

This variable was first suggested in the light cone analysis of deep 

inelastic scattering (8) and is now commonly referred to as the Nachtmann 

variable. Many people believe that this is a more accurate scaling vari- 

able to use in the Q 2 
and v ranges currently available at various accel- 

erators. At small values of x, the two choices of scaling vari- 

ables are equivalent since the Q 2 
dependence in 5 vanishes as x 2 (e.g. 

M2x2 5 = x(1 - -- 
Q2 

+ . ..)>. At large x and low Q2, 
22 

the 'K2L term in 5 (Eq. 
Q 

15) can result in significant differences between the variables 5 and x. 

This in turn can effect the physical interpretation of the data as we 

will see later on. 

Exam&s of Scaling in the Simple Quark Model -- 

In the constituent picture of the nucleon, the StruCtuTC funCtiOiIS 

become functions of a scaling variable, rather than functions of QL 
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and v separately. The data exhibit a strong tendency in this direction as 

shown in Fig. 4 where the structure function F;' , calculated from measured 

electron scattering cross sections off hydrogen, is plotted against the 

Bjorken variable, x. In general, F;' would be a function of both v and 

Q2. We see that the data scale in this Q2 range (of 2 GeV2 < Q2 < 18 GeV2) 

and this tends to support the constituent model. A careful observer will 

note, however, that there is a small but significant spread in the data 

for any specific value of x. This remaining Q2 dependence of the data will 

be discussed in more detail in Sec. 3 - Sec. 6. 

Some examples of constituent scattering are shown in Fig. 5 where 

structure functions are plotted against x. In elastic ep scattering (solid 

points) (one "constituent"), there is a sharp peak at x = 1. Here the 

electron scatters from the entire proton, which always has a momentum 

fraction of unity. The peak is broadened by experimental resolution 

and by radiative effects which produce a tail extending toward lower x 

values. 

Quasi-elastic scattering from deuterium is illustrated by the open 

data points. The peak is due to scattering from the proton and neutron 

inside the deuterium nucleus. Each of these constituents has-/half the 

mass of the deuteron and therefore half the momentum fraction, so the 

peak appears at x = &. (Elastic ed scattering would appear at x = 1, as 

I have used the deuteron mass in place of nucleon mass in the definition 

of x.) This peak is broader than in the elastic nucleon case due to the 

Fermi motion of the nucleons in the deuteron. 
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Figure 4. Proton structure function F2 derived 

from electron scattering data. 
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Finally, the data points given by "x 's" show the structure function 

F;' - F2 en from inelastic electron scattering measurements. Here we see 

a fairly broad peak with a maximum near x = l/3. This suggest an effective 

mass for the constituents of-l/3 M. The broad peak suggests strong binding 

for these nucleon constituents. We interpret these data as quasi-elastic 

scattering from three constituents in the nucleon (the proton-neutron 

difference has been chosen to eliminate any contributions from q-4 pairs 

in the nucleon). 

The constituent picture is the basis for the simple quark model 

which gives quantitative predictions for the connections between charged 

lepton and neutrino/anti-neutrino deep inelastic experiments and e+e- 

annihilation. This model has been embellished to include particles through 

which quarks interact with each other and is now formalized into the 

theory called Quantum Chromodynamics, making possible a more sophisticated 

account of the interaction of not only leptons with quarks, but of the 

quarks with each other. 

Kinematic Range of the Experiments 

Before discussing the lepton-nucleon cross sections in more detail, 

some kinematics are in order. The variable 

E. - E' 
yzE $- 

0 0 
(16) 

is often used in describing neutrino scattering because for elastic 

Scdttering at ener:;ie.s wilere 21: is i,iuch larger thzn the target :T:ass , 
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1 + case 
(l-y) = 2 cm . (17) 

As a consequence, simple angular distributions in the center of mass 

result in simple y dependences in the data for "quasi-elastic" quark- 

neutrino scattering. 

The variables introduced so far (W', Q2, x, y, and v) can be related 

to each other in many ways. Two useful expressions are: 

Q2 = 2MEoxy 

and 

1 -=1+ 
w2 - g 

X Q2 * 

(18.1) 

(18.2) 

The kinematics of each structure function data point can be specified 

by x and Q*. On an x-Q2 plot, Eq. 18.1 defines a family of curves for 

a given E o and various values of y. Similarly, Eq. 18.2 defines curves 

of constant W. In Fig. 6, I have plotted the kinematic ranges of,the 

three experiments in x versus ln(Q2). Since the QCD theory suggests a 

deviation from scaling like l/ln(Q2>, I chose ln(Q2) rather than Q2 itself 

for the x axis. Where W=M (x=1) and W = 2 GeV are also shown on Fig. 6. 

w= 2 GeV is traditionally taken as the demarkation between the "resonance 

region" and the "inelastic region". 

From Eq. 18, we see that for y 2 0‘95 and E. corresponding to 

the maximum energy in each experiment, we will obtain the maximum values of 

x for a given Q2. These curves are shown in Fig. 6. At SLAC most of the 

kinematic region attainable with E. < 20 GcV has been covered (including 

the resonance region and elastic scattering). The muon experiments and 
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Figure 6. Kinematic range of the experiments, 
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the neutrino experiments have used beam energies up to about 220 GeV. 

The kinematic regions covered by these experiments is also shown in Fig. 6. 

Note that some of the high x region is not accessible to these experiments 

because the effective luminosity is lower than in the ST..& experiments. 

The muon and electron experiments undergo an additional decrease in cross 

section with increasing beam energy (like E. -2 ) compared with the neutrino 

experiments where the cross sections are rising with E . 
0 

2.2. Lepton - Nucleon Scattering Cross Sections -~-_ 

The cross section for high energy electron (muon) scattering from 

nucleons may be written (in the one photon exchange approximation) as 

do 

dQ2dx Q4 [( 

1 Mxy 
F;N (x,4*) 2 

-Y-2E X 
+ ;- 2F;" (x,Q') 1 (19.1) 

0 

or, in terms of y, 

- = d (2MEo) da 
dxdy 

Q4 
[(l - Y - 2) F;%,Q2) + < 2xFy(x,q2) ].(19.2) 

Here u is the coupling strength for electromagnetism (~1 = l/137) and 

F,;;kQ*) are two independent structure functions which describe the 

interaction of the virtual photon with the nucleon. In an older notation 

eN vW2(= F2 ) and MW,(= FTN > were used to designate those functions but I 

will use the now popular Fl and F2 exclusively. 
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Gottfried Sum Rule and Callan-Gross Relation 

To understand the physical significance of F, and F, consider the 

limit of small y. In 

small fraction of its 

1 L 

this case the incident electron (muon) loses a 

energy and Eq. 19.1 then becomes 
? 

da g 32!LL 2 F2kQL) 

dQ2dx Q4 X 
(20.1) 

An example of a process described by this approximation would be forward 

elastic scattering from very heavy target particles. Integrating over 

x in Eq. 20.1 gives 

da 4?rcr2 1 -=-- 
' F2h,Q2) 

dQ2 Q4 ' 
-- dx 

X 

This is the old Rutherford formula if we identify 

F2(x,Q2) 

0 dx = 
X c z2 i 

(20.2) 

(21) 

where Z is the charge of the i th 
i target particle. This relation, 

equating the integral of F2 weighted by l/x to the sum of the squared 

charges, is the Gottfried sum rule (9) . In the simple quark model for 

the proton 

cz: =.2 (5)' + 1 ($2 = 1 . (22) 

For the SLAC data, this sum rule has been evaluated: 

.82 F;' (x,Q2) 
I dx = 1.05 + 0.09 

.02 x (23) 
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over the Q2 range 1 GeV2 < Q2 < 20 GeV2. (lo) Since FTp is very small 

at large x, extrapolation to x = 1 would introduce a negligible contri- 

bution to.the integral. But extrapolating towards x = 0 is problematical. 

In this region the simple quark model with only 3 valence quarks is a 

poor model for the data. Quark-anti-quark pairs produce the dominant 

contribution to F 2 at low x and complicate the simple picture. The ap- 

parently good agreement with the simple quark model may just be a coinci- 

dence. 

Next consider the case of a "point-like", spin % target particle of 

charge Z. The x dependence of both F1 and F2 is then proportional to 

6(x - 1). We can write the cross section as 

Comparing this with Eq. 19.1 suggests the following relationship: 

2 x Fl(x,Q2) = F2(x,Q2) . 

(24) 

(25) 

This is called the Callan-Gross relation (11) and is observed to 

agree fairly well with the measured data. Thus, assuming the Callan-Gross 

relation holds for electron-nucleon scattering, Eq. 19.2 becomes (neglecting 

the M/E0 term): 

do 871~~~ 
F2 (x,Q2) 

-- = --I_ 
dxdy 

Q4 
@fEo) ------y-- 

+ F2(1,Q2) (l-y)2 
I 

. (26) 
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Neutrino - Nucleon Scattering Cross Section 

For scattering of neutrinos from nucleons, photon exchange is re- 

placed by W+ or W- vector boson exchange and the cross section can be 

written in a form closely resembling that of Eq. 19. The electromagnetic 

coupling a and the virtual photon propagator l/Q2 are replaced with the 

weak coupling constant, G2. The chiral nature of the weak current results 

in the appearance of a third structure function F (x,Q2) which is absent 3 

from the cross sections given in Eq. 19. The neutrino cross section is: 

dav'v G2 -=- 
dxdy n 

2 
(~--Y--~)F~~'(x,Q~) + $-~xF~~"(x,Q~) + y(i-f)x~;y;(~,~2) 

0 I 
(27) 

The sign of F3 in the above expression is positive for neutrino scattering 

and negative for antineutrinos. 

Since the lepton changes its charge in (charged-current) neutrino- 

scattering, so must the target. As such, the constituents must change 

their charge state. Charged current neutrino scattering, at the outset, 

requires a more explicit description of the constituents than does electron 

(muon) scattering. In the quark model, quarks are grouped into left- 

handed doublets: (:)($ a$), The upper member of each doublet has 

charge +2/3 while the lower member has charge -l/3. There is a small 

mixing between these doublets parameterized by the Cabbibo angle, but 

this is a small effect and in order to keep this discussion 

simple, 1 w-i I.!. ncgl cc: i i: (i.e. I 113k e sin5 C&.b = Oj. 
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Exchange of a W+ (neutrino scattering) acts as a raising 

operator (vfd + LI-+u) and exchange of a W- (anti-neutrino scattering) 

acts as lowering operator (3 + u -f u 
+ 

+ d) on the isospin of these quark 

doublets. As a result the scattering of neutrinos off d quarks is equal 

vd 
to the scattering of anti-neutrinos off u quarks (F2 3U =F2 ). Since 

?P protons and neutrons form an isospin doublet we expect F2 = Fy and, 

for scattering from an isoscalar target (equal numbers of neutrons 

VN 
protons), F2 = F vN 

2 * The difference between neutrino and anti-neutrino 

scattering thus arises from the change in the sign of the F 3 structure 

function in the cross section (Eq. 27). 

Callan-Gross Relation in Neutrino Scattering 

Again, consider the case of a simple Dirac target particle, this 

time with a beam of neutrinos incident (e.g. v + e'- + v + e- scattering). 

Fig. 7 shows two cases: one for an electron target and one for a positron 

target. In the electron case both the neutrino and the electron have 

negative helicity resulting in Jz = 0 in the center of mass system (0%). 

This leads to a flat angular distribution in the CMS which, when trans- 

formed into the lab system (electron initially at rest), becomes a flat y 

distribution. For the positron target, Jz, = -1 in the 0% giving a 

(1 + case ) 2 angular distribution which becomes a (1 - y) 
2 distribution 

cm 

in the lab (See Eq. 17). In general neutrino scattering off spin '/2 

Dirac particles results in a flat y distribution and neutrino scattering 

of spin % antiparticles gives a (1 - y) 2 distribution. 
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Figure 7. Helicity considerations in scattering of Dirac particles. 
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Now apply this to quark and anti-quark scattering inside a nucleon. 

Suppose the quarks have an x distribution, q(x), (similarly antiquarks 

have a distribution n(x)); then the neutrino and anti-neutrino cross sections 

from the nucleon would be 

(q(x) + (1 - y)2 ‘q(x)> for v's 

. 

(i(x) + (1 - yj2 q(x)) for J's 

(28) 

If we assume the Callan-Gross relation (Eq. 25), and neglect the M/E0 

term, we can write the cross section (Eq. 27) for an isospin symmetry 

target as 

davyv 
dxdy 

F2 +_xF3 
+ (1 - Y) 

2 F2 i xF3 
2 2 1 

(29) 

where the upper (lower) signs refer to v(V) scattering. Comparing Eq. 28 

to Eq. 29, we identify: 

3. F, (x,Q2) + xF,(x,Q2) 
2 x q(x,Q-) = - 2 - (30.1) 

2 x q(x,Q2) = 
F2 (x,Q2) - xF3h,Q2) 

2 (30.2) 

or 

F2 (x,Q2) = 2 x q(x,Q2) + <(x,Q2) 1 (31.1) 

XF3 (x,Q2) = 2 x qhQ2) - &,Q2) . I 1 (31.2) 
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It is interesting to compare Eq. 29, the cross section for neutrino 

scattering off nuclcons, with Eq. 26, that for electron (muon) scattering 

off nucleons. In lowest order photons don't distinguish between quarks 

and anti-quarks; photons couple to the electric charge. Electron (muon) 

scattering probes the charge structure of the nucleon, and neutrino scat- 

tering probes the particle-antiparticle structure of the nucleon. 

If nucleons are mostly quarks, then vN scattering should have little 

2 y dependence and 3N scattering should behave as (1 - y) . In Fig. 8 the 

y distributions of the data from the CDHS collaboration for v and 3 

scattering from iron is shown. The open points (v scattering) have little 

y dependence as expected while the solid points (J scattering) show the 

expected (1 - Y)~ behavior. The small (1 - y) 2 contribution seen in the 

v scattering data and the small constant contribution to the J scattering 

data are interpreted as the antiquark contributions coming from the q - 4 

pairs inside the nucleon (the so-called "sea" of quarks). 

2.3. Consistency and Comparison of the Data in the Simple Quark Model - 

Before considering detailed tests of QCD, we should check that the 

data from the different experiments are internally consistent. We want 

to assure ourselves that the electron and muon experiments are measuring 

the same structure functions and that these in turn (when adjusted for 

the various quark charges) are the same as the structure functions measured 

in neutrino scattering. Furthermore, we wish to show how well the simple 

quark picture of the nucleon works. 



- 41 - 

1.0 

05 

0 

4 

- 

0 

10-79 

E, = 30 - 200 GeV 
OY 
.iT 

(I-yj2 
(antiquarks ) - 

pp+d+ 

h -m-m- - 

\ 

------ - P 
0 

0 
\ Constant 

(quarks) 

I- 

-( antiquarks ) 
I I I 

0.2 0.4 0.6 

Y 

0.8 1.0 

3705A8 

Figure 8. Neutrino - iron scattering cross section versus y. 
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Electrons Compared with Muons - 

In Fig. 9, the x distribution of the F2 structure function measured 

in muon scattering experiments from hydrogen at Fermilab is compared to 

similar data taken at SLAC with incident electrons. The solid points 

(SLAC data) cover lab scattering angles of 10 - 60 degrees (the range in 

y is about 0.25 - 0.95). The open points (CHIO data) are typically for 

lab angles of 1 - 2 degrees. The agreement between the two data sets is 

good for this Q2 bin. Comparing the two data sets in the entire overlap 

region in x and Q2 reveals the muon scattering experiments to be syste- 

matically lower than the SLAC experiments by about 15%. This is at the 

edge of the claimed systematic errors and the x2 in the overlap region 

is 46/34 degrees of freedom indicating that the hypothesis of consistency 

is only about 5% probable. Clearly more data (particularly muon data) are 

needed to clarify this situation, but in the rest of this discussion we 

assume that the e and u data are measuring the same structure functions. 

Neutrinos Compared with Electrons and Muons 

I will denote the up quark distribution in the proton as u(x), down 

quarks in the proton as d(x), s(x) for the strange quarks, etc. 

The 1:;' structure function can then be written by inserting the 

appropriate squared quark charges: 

F;‘~ = x $ (u + ;) + + (d + 2) + $ (s + s) +...I- (37.1) 
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Figure 9. Proton structure function F2 versus x from electron - proton 

(solid points) and muon - proton (oyen pcints) scattering. 
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To obtain Fzn , we have a similar expression where u(x) is replaced with 

d(x) and visa versa. This is an obvious consequence of the isospin 

symmetry between protons and neutrons: the up quark in the proton has the 

same distribution as the down quark in the neutron. 

F; =x 
I 

$, (d + d) f -f (u + u) + f (s + s) +....I . 

eN For isoscalar targets, F2 ep is the average of F2 and F 
en 
2 

the contribution of s and s and so on, we obtain: 

eN 
F2 

5 s---x 
18 

((u+;)+ (d+d)] 

For neutrino scattering all quarks enter with the same coup1 -ng 

strength independent of electric charge so that: 

VN 
F2 

IX ((U+;)+ (di-$1 

(32.2) 

Neglecting 

(33.1) 

(33.2) 

(again only the u and d contributions have been kept). Therefore, in the 

simple quark modei, the ratio Of neUtrin0 SCattertng to eleCrrCJn /TlLiOn) 

scattering should be 18/'5 if electrons (muons) and neutrinos are probing 

the same quark distributions. 

To increase the statistical precision of this comparison the practice 

has been to compare the values of F 
2 

integrated over x. The integral of F2 

is called the momentum sum rule and using the SQL-MIT data is found to be 

I FIN dx = 0.15 L 0.01 (10) . The results from the Gargamelle experiments 

at the PS in CEW is ! FiN dx = 0.49 t 0.05 (12) . The ratio is 3.3 + 0.4 

and is consistent with the value of 3.6 expected in the simple quark 

model. 
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These integrals of F2 over x for both electron and neutrino scattering 

are only % of what would be expected if quarks accounted for the entire 

four-momentum of the nucleon. Presumably the missing half resides in 

the particles that bind the quarks together. These unseen particles, 

gluons, are believed to participate in neither electron nor neutrino 

scattering. 

A comparison of the shapes of F2(x) for neutr ,ino (CDHS) and e lectron 

(SLAC) scattering is shown in Fig. 10. The normalization has been chosen 

so that the integrals of the distributions are the same. The shapes of 

the distributions are in good agreement and the accepted conclusion is 

that all leptons are probing the same quark distributions inside nucleons. 

Gross - Lleweilyn-Smith Sum Rule and the Antiquark Component - 

There are two more neutrino results which support the simple quark 

model. First, the number of valence quarks (as distinct from quarks coming 

from the sea) can be measured in neutrino scattering. The difference 

between neutrino and anti-neutrino cross sections measured off an isoscalar 

target is proportional to 

vN 
xF 3 =x [ q(x> - 4(x) ] . 

The factor of 2 from Eq. 31.2 is'cancelled by taking the average of 

protons and neutrons. The integral of q(x) - q(x) should, therefore, 

equal the number of valence uuarks inside the nucleon. This is expected 

to be exactly 3 in s?mpic quark model. This notion is called Gross- 

Llewellyn-Smith sum rule, 
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1 xF3 
I- dx = number of valence quarks. (35) 
0 x 

In Fig. 11; the CDHS evaluation of the GLS sum rule is shown. The 

solid line indicates their extrapolation to x = 0 at which point the 

estimated value is 3.2 t 0.5 (the error includes the uncertainty coming 

from the extrapolation procedure). This value is in good agreement with 

the expected value of 3. 

The second result is an estimateof theantiquark component in thenucleon 

measured in neutrino scattering. As indicated in Fig. 8 the small (1 - y)2 

term in neutrino scattering and the small constant term in anti-neutrino 

scattering can be interpreted as coming from antiquarks. By fitting 

these distributions (after applying QED radiative corrections to the out- 

going muon), the authors quote Ii dx//(q + q) dx = 0.15 + 0.03 (5) for the 

CDHS neutrino data, a value not far from zero, the expected value in the 

simple quark model. 

These experimenters have also used another approach to evaluate the 

antiquark fraction. They observe that 

_- - (1 - y>2 -& 1 (36) 

in the region of high y. They use the neutrino data to subtract out the 

quark contribution in their anti-neutrino data. The resulting anti-quark 

fraction is Ii dx /J(i + q) dx = 0.16 t 0.01 (5) . This result agrees with 

that obtained by the fitting method: the simple quark model of the 

nucleon seems to be quite good. These results indicate that the nucleon 
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Figure 11. Gross - Llewellyn-Smith sum rule in neutrino scattering 

presented as a function of the lower integral bound. 
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is made up of 3 "valence" quarks (-70%) and a smaller "sea" of q - Q 

pairs (-30%). 

To summarize, we see that most of the expectations of the simple quark 

model are consistent with the data but there are two indications of a more 

complicated structure. The first indication is the evidence from the 

neutrino experiments that there are antiquarks in the nucleon at low 

values of x, presumably a sea of q - 4 pairs. The second indication is the 

small value of F 2 integrated over x (momentum sum rule). The integral 

is about half of the value expected if the nucleon contained only quarks 

and antiquarks. These observations sugges t that the quarks may be bound 

by objects which dissociate into q - 4 pairs easily, and carry about 

half of the four-momentum of the nucleon. In Quantum Chromodynamics, 

these particles are the gluons, and we now turn to a discussion of this 

theory and its relation to the data. 

3. QUANTUM CHROXODYNAMICS IN LEPTON - NUCLEON SCATTERING -~ 

In this section, I discuss some QCD phenomena in lepton-nucleon 

interactions . The presence of the running coupling constant is possibly 

the most important single aspect of QCD in these phenomena. Three "tests" 

of QCD are then reviewed: R, the ratio of longitudinal to transverse 

photon cross sections (Sec. 4); GFi, the nucleon elastic form factor (Sec. 5); 

and the Q2 dependence of nucleon structure functions (Sec. 6). The latter 

topic receives a rather large discussion - in proportion to the 

number of tlkeoretical discusSiol:S I.aCeiy. 
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QCD is a theory of quark interactions (13) much analogous to QED: 

the interaction is carried by "gluons" (analogous to photons) which 

couple to the "color" (analogous to charge) of the quarks. The simple 

quark model described in Sec. 2 predicts structure functions which, at 

fixed x, are independent of Q2. But QCD predicts subtle scale breaking 

effects: the coupling constant, c1 , as well as the nucleon structure 

functions should vary in Q2 like ll(Q2/A2) , where A is a scale parameter 

of about 0.5 GeV. ~$9~) is called the "running" coupling constant. 

The main difference between QED and QCD is that gluons carry color 

while photons don't carry charge. This means that when a quark emits a 

gluon it changes its color. It also means that gluons couple to each 

other. In the language of gauge field theories, QCD is non-abelian. 

3.2. The Running Coupling Constant 

Fig. 12 shows the basic QCD couplings. Fig. 12a represents 

gluon bremsstrahlung from a quark. Fig. 12b shows quark pair production 

from a gluon. The coupling strength at the quark-gluon vertex is c1 . 
S 

In addition to this diagram, a three gluon coupling is also possible as 

shown in Fig. 12~ since the gluons carry the "color charge". 

In QED the effective couplin g strength varies with the Q2 of the 

inc:i dent photo~l. This is due to vc:tex corrections oi‘ the e:iartri.-;r,ngnct:i~ 

current. The first order correction to the QED coupling, x, is 
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Figure 12. Basic QCD couplings: a) Bremsstrahlung of gluon from quark, 

b) pair production of quarks from gluon, and c) three- 

gluon coupling. The latter has no analog in QED. 
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a (Q2) (37) 

where u is.an arbitrary normalization point at which the coupling strength, 

a, has been measured. If all terms containing powers of In (Q2/~2) are 

summed, the "leading log approximation" results: 

l- 

a (u2) 
-G- 

(38) 

This expression predicts that the effective QED coupling increases 

in strength with increasing Q2. The physical content of Eq. 38 is that 

as Q2 increases the photons see more of the bare charge and vacuum 

polarization plays an ever decreasing role in screening this charge. 

One may perform the same analysis for QCD. The result is 

as(Q2) = 
as (u2> 

1 + Bas(u2) In 

(39) 

where 

B= 
33 - 2Nf 

12n (40) 

and N f is the number of quark flavors, such as up, down, strange, etc. 

The usual choice of Nf = 4 results in B = 25/12~. Eq. 39 can be 

simplified by the substitution 

(41) 
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Thus we obtain the convenient form: 

as(Q2) = ,,,p . (42) 

If the number of quark flavors is less than 17, B will be positive and as 

will decrease with increasing Q2. Contrast this Q2 variation with that 

of QED in Eq. 38. 

The usual practice is to calculate the lowest order process (in as(Q2)) 

and hope higher orders don't change the results significantly. As such 

it is interesting to see what the current best estimates for the size of 

as(Q2.) is for various values of Q2. 

TABLE 2 

Running coupling constant as vs Q2 (as in Eq. 42) for A = 0.5 GeV and Nf = 4 

Q2 (GeV?) 

1 

5 

30 

60 

35000 

a 
S 

1.09 

0.50 

0.31 

0.28 

0.13 

1 

-1 
Since as(Q2) is large in the low Q2 range, lowest order calculations may 

be quite inaccurate. Also most of the change in as(Q2) occurs for 

Q2 c 30 GeV2. Scaling violation should be most pronounced in this lower 

Q2 region and become fainter at higher values of Q2. 
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3.3. Pattern of Scale - Breaking 

QCD predicts a systematic deviation from scaling as Q2 increases. 

As the virtual photon's Q2 increases, the distances at which the target 

is being probed decreases. What appears at low Q2 to be a quark may, at 

a higher Q2, be resolved into a quark and a gluon. The emission of this 

gluon reduces the 4-momentum of the quark and hence reduces the fraction, 

x, of nucleon's 4-momentum carried by the quark. QCD predicts that the 

x distribution of quarks will be systematically shifted to lower values 

of x as Q2 increases. At high x the structure functions should decrease 

with increasing Q2 while at low x they should increase with increasing Q2. 

This pattern of scaling violation has been observed in the electron 

and muon deep inelastic scattering experiments and the neutrino scattering 

experiments. In Fig. 13 the F2 distributions from the CHIO data (pp data) 

combined with the SLAC data (ep) are shown in x bins versus Q2. At high 

.x the data falls as Q2 increases. At low x, F2 increases as Q2 increases. 

The same pattern of scaling violation has been observed by the CDHS col- 

laboration in neutrino scattering. Fig. 14 is the analogous plot to Fig. 13 

for the neutrino F2 distributions. This universally observed behavior 

of the structure functions with increasing Q2 is counted as a major 

success of the QCD theory. 

4. RATIO OF LONGITUDINAL TO TRANSVERSE PHOTOABSORPTION CROSS SECTIONS 

In this section, I discuss our theoretical hierarchy in relation to R, 
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Figure 13. Proton structure function F2 from ep (solid points) and 

~.rp (open points) scattering showing scale breaking. 
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Figure 14. Nucleon structure function F2 from vN (solid 

points) and ed (open points) scattering. 
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the ratio of longitudinal to transverse photoabsorption cross sections. 

First I discuss the electron (muon) data in terms of the Callan-Gross 

relation and QCD. Then the neutrino data is treated for which an 

analogous R can be defined. 
V 

4.1. Definition of R - 

Deep inelastic scattering experiments directly measure cross sections 

which are in turn combinations of structure functions multiplied by known 

kinematic factors. As shown earlier the structure functions can be re- 

lated to each other in the case of structureless spin $S target particles 

by the Callan-Gross relation in Eq. 25. The measured cross sections can 

also be expressed in terms of total (virtual) photo-absorption cross 

sections: o T for transversely polarized photons and aL for longitudinally 

(14) polarized photons . These photo-absorption cross sections can be 

expressed in terms of the structure functions as 

'2 

oT = e Fl(x,Q2) 

and 

2 
4lr a 

oL = --E- ; (1 + + > F2(x,Q2) - Fl(x,Q2) 
c . 1 

where 

K= 
$ - pf2 

2bf 

. 

(43.1) 

(43.2) 

(44.1) 

is the energy of a real photon needed to produce mass 1.1 in the final 

state and 
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r 5 
91 _ 4M2x2 . 

C v2 Q2 

These expressions can be inverted to give 

F1 hQ2) =2!Lcr 

4Tr2cr T 

r 
F2(x,Q2) = -+ Cl +Cr > (aT + oL) . 

47r c1 C 

The cross section expression becomes (using oL and oT): 

where 

and 

do ~ = r (UT + “CQ 
dQ2dx 

wNKy2 1 
l- =n;4-i 

2 
l-y-2T 

4Eo 
E = 2 2 ' 

1-,+y,+ 
4E 

0 

An alternative expression for E is 

1 & = --- 
2 

1 -!- 2 tan20/2 ( 1 + %j ) Q 

(44.2) 

(45.1) 

(45.2) 

(46) 

(47) 

. 

(48) 

(49) 
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In the limit Q2 << 4E 
0 

2 (which is always true when E >>M) we have the 
0 

approximation: 

E L 2(1 - Y> . (50) 
2 (1 - Y) +Y2 

The E parameter is the ratio of the longitudinally polarized virtual 

photon flux to the transversely polarized virtual photon flux. E is not 

the photon polarization: E: = 0 means pure transverse polarization and 

E = 1 means a 50/50 mixture of longitudinal and transverse photons. 

The ratio of the longitudinal to transverse total photo-absorption 

cross sections maybeexpressed as 

oL R--me=- 
F2 (x,Q2) 

OT 2xF1 (x,Q2) 
(l+rc)-1 . (51) 

R in Elastic Scattering and Finite Mass Effects 

If the Callan-Gross relation (Eq. 25) were precisely true, then we 

would have 

(52) 

R for elastic scattering is perhaps easiest to understand. The Fi's 

for elastic scattering off protons are 

F2 (x,Q2) 

2PIG 2(Q2) + yE G 2(Q2) 
= --o!?-- I-_- -.-o.E- ..I._ 

2PI + yE 6(x - 1) 
0 

c ,2(Q2) 
Fl(x,Q') = -+- 6(x - I-) 

(53.1) 

(53.2) 
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where G and G are 
E M 

From these formulas 

Re,-(Q2) = 

Using the so-called form factor scaling relation 

the electric and magnetic form factors respectively. 

one obtains 

2M GE2 (4') GE2 (Q2) 
=r -.-~^.- 

YE0 GM2 (Q2) ' Gpf2(Q2) ' 

GM(Q2) = lip G,(92) 

(54) 

(55) 

where vp ( = 2.79) is the magnetic moment of the proton, we obtain the 

simple expression for R : 
el 

r 
R C = -- 

el 11:, 
(56) 

Thus for elastic scattering R is the ratio of the electric to magnetjc 

form factors squared. For spin k Dirac particles at rest (no anomalous 

magnetic moment) 

R=d =r . 
Q2 c x=1 

(57) 

This serves to remind us that the finite mass of the target particle 

produces a non-zero value for R for finite values of QL. The reason for 

discussing Rel in detail is that the model for understanding deep in- 

elastic scattering has at its core quasi-elastic quark scattering. Finite 

mass quarks will lead to non-zero R values at finite values of Q 2 . If 

the Callan--Gross relation were true for deep inelastic scattering, this 

would imply (in the simple quark model.) t11at quarks were spin % particles, 

appscx-Lm7tcly at rest with an effective squared mass (<p ) 2 Fi x2M2 . 
i_r 
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Effect of Transverse Momentum of Target Constituents 

Other effects also contribute to R. If the target particle has a 

transverse momentum distribution with respect to the photon direction a 

finite R value will result even if the target particle has zero mass. (15) 

The argument for this effect is most clearly demonstrated in the Breit 

frame with spin %, massless particles. In Fig. 15, both the cases of 

zero Pt and finite P is sketched. t Since these particles can only have 

one helicity, spin flip must occur for zero P 
t' Hence, only photons that 

have IJ,I = 1 will be absorbed and aL will be zero. Similarly, if the 

target particle has spin zero, only JZ = 0 photons can interact and aT 

will be zero. 

Now consider what happens when the target particle has some trans- 

verse momentum with respect to the photon's momentum. Spin projection 

results in an amplitude proportional to sin(0/2) cos(f3/2) where 0- Pt/PZ. 

In this way one finds R QC t P 2/Q2 . The transverse momentum distribution 

for quarks inside nucleons can arise simply from the fact that quarks 

are bound. This is sometimes referred to as "primordial" transverse 

momentum. 

Effects of QCD on R 

In QCD, quarks may also have transverse momentum due to gluon 

emission. Also at low x quark-antiquark pairs from gluons have transverse 

momentum. 
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10 - 79 
3705Al5 

t 

Figure 15. Effect of transverse momentum (P,) of target particle. 

Scattering is depicted in the Breit frame. 
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The QCD effects can be parameterized as 

RQCD = as(Q2) r(x,Q*), (58) 

where the function r(x,Q2) is predicted to be large at small x and small 

at large x. r(x,Q*) to lowest order in QCD is proportional to integrals 

over both F 2 and the gluon distribution. (16) An example of an approximate 

form for RQCD used by the CR10 collaboration is 

RQCD = Ro(l - (59) 

It differs from the previous expressions for R in that it falls as 

1/ln(Q2/A2) rather than l/Q2. This formula predicts a large R QCD at 

small x, but is unreliable in this region due to uncertainties in the 

gluon distribution and unaccounted for higher order corrections. There 

seems to be no theory that has combined the three effects discussed 

above into one formula which may be compared with the data. As such we 

should not be surprised if each by itself does not work well. 

4.2. Measurement of R in Charged Lepton - Nucleon Scattering 

For the data taken at SLAC the following procedure has been used to 

extract R in a model independent manner. First the data is binned in 

W2 and Q2 (typically the bin size is a few GeV2). Data taken at different 

Eo's and 0's will have different values of E. With the cross section 

given by Eq. 46, data at fixed W* and Q' should exhibit a linear behavior 

on an E plot. Such a plot is shown in Fig. 16. The intercept of a 
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Figure 16. E plot. ep scattering cross section versus E for one bin in 

Q2 and W2. Q2 1 9 GeV' and W* = 7 GeV2, 
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straight line fit at E = 0 is oT and the intercept at E = 1 is o + o 
T L' 

The slope of the line on the E plot is proportional to R. 

The accuracy of the values of R so obtained depend on the range of 

the data in E for the W* , Q2 bin being fitted and the errors associated 

with this data. For the SLAC data, each of the three spectrometers 

used in the experiments covers different ranges on the E plot: large 

angles or low scattered energy corresponds to small c, and vice versa. 

Thus to get the maximum range in E, one combines the data from all three 

spectrometers. The inter-calibration cf the spectrometers' acceptances 

is a major source of systematic error when this is done. 

The radiative corrections applied to the SLAC data are another 

source of systematic error. If one were to malce c-plots for the uncor- 

rected data in some W* and Q* bins, they would appear to decrease with 

increasing c, e.g. the dashed line in Fig. 16. The resulting R value 

would be negative! The radiative corrections for most SLAC data are not 

large (typically 5 20X) but R is very sensitive to the values of the 

. 

cross sections. This j.s because the measured cross sections are mostly 

OT 
with a small o I, 

contributicn. 

The data from SLAC is shown in a grid of W* and 02 bins in Fig.. 17. 

The vertical scales on each plot have been adjusted SO that R = 0.5 

would be a 45 degree line. The error shown on the data points includes 

systematic errors. R is seen to have a sma11 but fin<te value in the 

SLAC kinematic region. 5ii,t.ipg R +.o 2 sillglt: 11<:~7‘r~c:‘r; ij-1dicatc.d by the 
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Figure 17. c plots for the Q2, W2 range of STAC. R = 0.5 would 
be a line of slope 45 degrees. 
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solid lines in Fig. 17, gives R = 0.21 + 0.1. The error is mostly system- 

atic - the statistical error is negligible. No significant trend has 

been estabiished with either Q2 (17) or x. Only near the boundry of the 

SLAC region does the value of R seem to increase (high W2 and high Q2), 

but these points, with their larger radiative corrections, are more sus- 

pect. For comparison, the Callan-Gross prediction for R is indicated in 

Fig. 17 by the dashed lines. 

R has also been measured using the muon data of the CHIO collaboration. 

This data is not of sufficient statistical strength to pursue an E plot 

analysis. Instead the experimenters used a global fit to all their data 

assuming a functional form for F2(x,Q2) and various forms for R. For 

a constant R, their best fit gives R = 0.52 (+ 0.17, - 0.15) (+ 0.35) 

where the first errors are statistical and the second error is the syste- 

matic error. This muon data is weighted heavily at low x and small Q* 

(<x> - 0.05 and <Q2> - 2GeV2). One might think that this is the effect * 

of QCD - higher R at lower x, but the systematic error is too large to 

definitely establish this trend. 

4.3. R in Neutrino - Nucleon Scattering 

For neutrino scattering we need to develop some more phenomenology. 

The usual structure functions can be rewritten in terms of left handed, 

right handed and scalar structure functions: 
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and 

FV 
L 

= 2xF1 + xF3 (q uark scattering), 

V 
FR = 2xF1 - xF3 (antiquark scattering), 

(60.1) 

(60.2) 

F: = F2 - 2xF1 (scalar particle scattering). (60.3) 

The cross section, in terms of these structure functions, is 

-=-.-... ,,,(x,92) + ( l-y>2 F ,,,(X,Q2) +2(1-y)Fs (x,Q2) . 
I 

(6 1) 

This expression corresponds to Eq. 46 in the case of electron (muon) 

scattering. Thus y plots for neutrinos are like E plots for electrons, 

but the data on a y plot have a quadratic instead of linear behavior. 

We may define, in analogy to Eq. 51, the quantity: 

2xFL R-r 

Rv- l--= F2 R+lC * (62) 
I 

Rv measures the deviation from the Callan-Gross relation and when compared 

with R used in electro-production and muon-production experiments must be 

modified using 

Rv + r 
R=l-Rc . 

V 
(63) 

The CDHS collaborators have performed an R analysis using their 

charged current neutrino data by measuring the term proportional to (1 - y) 

in the data. In their first analysis, fi.ts vere made to terms proportion;:1 
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2 
to a constant, (1 - y) and (1 - y) , over the full x and Q2 range of the 

data. The result was Rv = - 0.03 _+ 0.04. 

In a second analysis they binned the data in EmD (i.e. v). 

This results in bins that cover their full x range and a portion of the 

Q2 range depending on EHAD (recall Q2 = 2Mvx and 0 < x < 0.7 for the 

CDHS data). By fitting each bin, a value for Rv was found. These values 

are shown in Fig. 18. At low EHN), Rv is small but increases with in- 

creasing EHAD. All of these values, when taken with their systematic 

errors, are consistent with the small value of R predicted by QCD for 

this high Q2 region. 

The BEBC collaboration have pursued an analysis more similar to the 

E plot techniques used in analyzing the SLAC data. (18) The averages of 

neutrino and anti-neutrino cross sections are binned in x and Q2 and 

then fit to a form 

Q(s + 5) Q (1 - y - y)F2(x,Q2) + <2xF,(x,Q2) (64) 

which is suggested by Eq. 27. By fixing both x and Q*, this analysis 

becomes model independent like the SLAC analysis. Unfortunately the bins 

are large due to the limited statistics. They find R = 0.15 + 0.10 + 0.04 

where the first error is statistical and the second is systematic. 
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Figure 18. Rvy the deviation fro= the Callan-Gross relation, versus 

v = Eo-E' for neutrino - iron scattering. 
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4.4. Summary and Conclusions on R 

To conclude this section, I have plotted the R values from the SLAC, 

CHIO, and BEBC analyses versus x in Fig. 19. The CDHS measurement was 

not plotted as it is at much higher Q2. The BEBC point and the CHIO point 

were plotted at representative values of x for their respective data sets. 

Thefamily of solid curvesrepresents R (32) 
QCD 

calculated for 3 GeV2 < Q2 < 18 GeV2 

which is the Q2 range covered by the SLAC data. The dashed line shows the 

value of rc for the average Q2 of each SLAC data point. The consistently 

large value of R found in the SLAC data at high x should not be interpreted 

as posing a"serious problem for QCD. The error bars shown are highly cor- 

related point-to-point and the ensemble can only be counted as about 2 

standard deviations off from the pure QCD prediction. The l/Q2 terms 

mentioned earlier would also improve the agreement between experiment and 

theory. 

My present conclusions concerning R are: 

1. The Callan-Gross relation works well enough: to assume 2xF = F 12 

in extracting F2 from cross section measurements probably doesn't result 

in a large error. 

2. The first order QCD calculation for R is in mild disagreement 

with the data at high x. At present the data are not good enough to see 

the predicted rise at small x or the overall 1/1n(Q2/A2) dependence. 
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Figure 19. R = aL/uT versus x for BEBC, CHIC, and SLAC. The solid 

curves are R QCD 
; dashed curve is R = r for <Q2> of each 
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SLAC data points. 
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3. The SLAC, CHIO and BEBC data are mutually consistent. The 

CDHS data is typically at much higher Q* and, therefore, not 

directly comparable. However QCD and the Callan-Gross relation prediction 

that R should decrease with increasing Q2are not inconsistent with the 

lower value of R extracted from the CDHS data. 

5. PROTON FORM FACTOR IN ELASTIC ep SCATTERING 

In this section I discuss tests of QCD in the context of ep elastic 

scattering and ep deep inelastic scattering very near the elastic limit. 

In the former case there is a prediction for the elastic form factcr from 

quark counting. (19) The latter case may be related to elastic scattering 

by the Drell-Yan and West relation. (20) 

5.1. Definition of the Form Factor GM 

The cross section for elastic scattering can be expressed in terms 

of an electric and a magnetic form factor (GE and GM): 

This 

da 4.lTct 2 
-- = - 

dQ* Q4 

expression 

l-y- My 
*MGE2(Q2) + yEoGM2CQ2) 2 

2E0 
2M + yEo + 5- GM2(Q2) 1 

rewritten using R 
el C 

can be 2) as 

GM 
2 

do 
2 

- = h!- G,*(Q”) 

o'Q2 Q4 

R +1 2 
-.-----...- ," + 1 + -_. '* 

c 

(65) 

(65) 
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Assuming form factor scaling as in Eq. 55, one can then estimate Rel: 

R 4M2 1 
= - el 

Q* $ 

(67) 

(for protons Rel = 0.45 

Q* (GeV*)) * 
Using this estimate in the elastic cross 

section expression shows that G E contributes little to elastic scattering 

for Q2 > 5 GeV*. In practice the measured cross sections are reduced to 

measurements of GM(Q 2 ) using the form factor scaling assumption. 

5.2. Effect of Simple Gluon Exchange and QCD 

We can develop a phenomenological model for GM(Q2) by noting that the 

struck quark must share the momentum absorbed from the photon with the 

other quarks inside the nucleon. (19) One such possible process is sketched 

in Fig. 20. In a three quark nucleon there must be at least two gluon 

exchanges. Counting propagators and vertices one would expect: 

This behavior should become dominant at high @* but in the region 

where data exists as(Q2) is still large (see Table 2) and higher order 

effects are undoubtedly important. 

The elastic form factor data obtained from the SLAC experiments covers 

the Q2 range of - 0 GeV* to 33.4 GeV*. To reduce the large variation in 

G,(Q*) over the range in Q*, Q4GM(Q2)/pp is plotted in Fig. 2~1. The 

expected l/Q 4 behavior is substantiated by t::e data for 5 GeV 2 < Q 2 < 

33.4 GeV* (i.e. for Q* > 5 GcV*; Q4C,,(Q2) is approximately independent 

of Q 2, ,. 



I 

- 75 - 

10-79 3705A18 

Figure 20. Picture of elastic scatter of a photon from a proton. 

Exchange of two or more gluons is needed to achieve a? 

elastic scatter. 



- 76 - 

0.6 

0.5 

* > 
CT 0.4 

0‘2 

0 
0 

10 - 79 

\ \ I \ \ \ \ \ \ \ 
II ( 0s Q 2 

4 

)I 
2 .L\ 

A=O.5 GeV A--.. 

j 

N 

-. 

. 

5 lo 15 20 25 

Q2 (GeV2) 
30 35 

3705A19 

Figure 21. Elastic form factor for ep scattering versus Q*. Data has 

been multiplied by Q4 to red.uce its dynamic range. Dashed 

curve is the QCD piediction. 
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QCD Effects 

The principle QCD expectation is that Q4G,(Q2) should fall as 

(a (Q2H2 . The dashed line in Fig. 21 shows (cY~(Q~))~ normalized to 
S 

agree with the data at Q2 = 5 GeV'. The large discrepancy between this 

QCD expectation and the data may come from a variety of sources. First, 

a more exact calculation gives a slightly different (and much more compli- 

2 (21) cated) form for GM(Q ). This calculation does not improve the agree- 

ment between experiment and theory. Higher order corrections also will 

contribute as as(Q2) is still quite large in this Q2 region. Also, cor- 

rections of order l/Q 2 to this prediction could improve the comparison 

with the data, but theorists are at present unable to make firm predictions 

as to their relative magnitude or even their analytic form. 

5.3. Summary and Conclusions on GFI 

The conclusions reached about elastic ep scattering are: 

1. The magnetic form factor obeys the power law behavior expected 

from simple gluon exchange: GM(Q2) - l/Q40 A different power law would 

have resulted in enormous effects over the available Q2 range. 

2. However the fall off predicted by QCD due to the running coupling 

constant is not observed. 

An aside: we have now seen three ways to count (valence) quarks in 
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the nucleon and each one has indicated 3 quarks. They are: 1) the 

ep en 
"quasi-elastic" peak in F2 - F2 ; 2) the GLS sum rule: lF3dx = 3; 

and 3) the.power law for elastic ep scattering. 

5.4. Drell - Yan and West Relation in the Threshold Region 

This relationship predicts that the power of l/Q2 in elastic scatter- 

ing should be related to the power of (1 - x) in the inelastic structure 

functions as x nears 1. In this region, the mass of the out going had- 

ronic system is small. As in the case of ep elastic scattering, gluon 

exchanges must occur to share the momentum impact of the virtual photon 

(or W boson) among the nucleon's constituents. As such the relative 

strengths of these two processes should track in Q2. 

Since the expression for the elastic piece of F2 contains a delta 

function, we need to compare integrals of F2 for the elastic and the in- 

elastic. First consider the elastic piece derived from Eq. 53.1: . 

2el(x,Q2)dx = 
2MGE2 (Q2) + yEoGM2 (Q2) 

= GM2(Q2) (69) 

xL 
2M + yEo 

where the lower limit of the integral, I[ 
L' 

is close to 1. Now consider 

the inelastic part of F2. It is parameterized as (1 - x)~ for x near 1. 

So, integrating this function from a fixed mass, W 
L' 

to threshold means 

the lower limit of the integral will behave as 

2 W -M 2 

x =l- 
L m2 <I-- 

L Q2 - Q2 
(70) 
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Then, 

) F2(x,Q2) dx oc j (l-~)~ dx a (71) 

xL "L 
L 

The results of the last section showed that the elastic form factor 

behaved as (1/Q2)n-1 where n is the number of quarks in the nucleon. 

Equating the two integrals gives the desired relation: 

G&Q3 a ($,2,.-l) a (f$+’ 
(72) 

and thus k = 2n-3. This is the Drell-Yan and West relation (20) and 
n-l 

states that if the elastic form factor behaves as (1/Q2) , then F2(x) 

should behave as (1 - x) 2n-3 for x near 1. Specifically if GM(Q2)=-$ 

3 Q 
then F2(x) 0: (1 - x) . 

Note that, although the DYW relation can be motivated by gluon con- 

siderations, it is actually predicted on arguments that do not require 

gluons. (20) As such, it should not be interpreted as a test of QCD. 

Comparison with the Data 

3 
In Fig. 22a I have plotted the quantity F2cp(x,Q2)/(1 - x) in 

analogy to the Q4Gy plot of Fig. 21. The data have been binned for i 

various values of Q2 Each Q 2 
and are plotted against x. bin stops where 

W dips below 1.8 GeV. The expected flat lines are not observed! 
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In Sec. 2 when the scaling variables were introduced it was emphasized 

that there existed some ambiguity which could result in large effects 

at low Q2. The Nachtmann variable 5 (Eq. 15) was introduced as a possible 

alternative to the variable x. In Fig. 22b, the effect of the x variable 

Plotted is (1 - ~)~/(l - x) 3 versus the 5 variable is shown. for the 

same values of Q2 presented in Fig. 22a. This suggests plotting 

F2ep(s,Q2)/(1 - <)3 (see Fig. 22~). The 5 variable produces flatter Q2 

contours, but still a systematic trend is seen. For low Q2, the best 

power is less than 3 while at higher Q2 the power is greater than 3. It 

may be pointless at this time to seek a "correct" scaling variable: 

the data seem to indicate a definite violation of scaling. 

An alternative explanation of the behavior seen in Fig. 22c comes 

from QCD. An approximate form for the structure function predicted 

using QCD results in the power of (1 - x) increasing with increasing 

Q2 (22) . The systematic shifting of the x distributions from high x to 

low x with increasing Q2 (see Sec. 3.2) produces an exponent of (1 - x) 

that increases as the ln(ln(Q2/A2)). 

The conclusions concerning the threshold region and the Drell-Yan 

and West relation are: 

1. The comparison of elastic scattering with deep-inelastic scat- 

tering through the DYW relation is indecisive and depends on the scaling 

variable. 
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2. Using the 5 variable results in a behavior of F2 consistent with 

the QCD expectation of high x shifting to low x as Q2 increases. 

6. DEPENDENCE OF STRUCTURE FUNCTIONS ON Q 2 

QCD predicts that the nucleon structure functions should show scale 

breaking effects due to the running coupling constant. This section con- 

tains a discussion of these effects in the context of lepton-nucleon 

scattering experiments. 

6.1. The Evolution Equation for the Structure Functions 

The unpaired quarks inside the nucleon, the valence quarks, are 

the simplest to study. The probability distributions for these "flavor 

non-singlets" should show QCD distortions coming only from gluon brems- 

strahling as in Fig. 12a. The q - t quark pairs ("flavor singlets") 

have additional contributions coming from pair production off gluons as 

in Fig. 12b and are thus more complicated (i.e. both the quark distri- 

bution and the gluon distribution enter the equations). 

The non-singlet quark distribution has a Q2 dependence arising from 

the following mechanism. At low Q2 a distribution of non-singlet quarks 

is observed cxF3(x,Q2) for example). The distance scale on which this 

.quark distribution is being probed is large. The continual emission and 

re-absorption of virtual gluons is hidden. But at larger Q2 the distance 

scale shrinks. These quarks are now sometimes "resolved" into a quark 
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and a gluon. The gluons thus bremsstrahled take with them a portion of 

the quark's momentum and the quark is more likely to be at lower x. In 

pictures this process is shown in Fig. 23a. 

The equation describing this situation is: 

2 
2 d 

Q- 
as(Q ) l dw NS 

dQ2 
qNS(x,Q2) = 2n 1 w 

X 

q b',Q2) Pqq (:I . (73) 

In other words, the fractional change in the quark distribution 

2 q(x,Q ) is equal to the integral over all quark states that can contribute 

(i.e. x < y < 1) times the splitting function (P or the quark to 

emit a gluon which carries off a fraction z (= x/w) of the quark's momentum. 

In particular, the form of P qq(z> (23) for spin 1 particles is: 

Pqq(z) = 4 
! 

1 + z2 
(1-z) 

+ 
+ + s (z - 1) 1 

where (1 - z)+ is defined by: 

j dz s 
0 

: ) dz f’“;l--f;:’ . 
+ 0 

(74.1) 

(74.2) 

Notice that I called Pqq(z) a splitting function and not a probability 

distribution. It can be related to the probability of a quark to radiate 

a gluon minus the probability of anti-quark to radiate a gluon. In 

particular, it has properties that no self-respecting probability dis- 

tribution would have: 

0 
dz Pqq(z) = 0 (75.1) 
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and 

,' n-i dz z 
0 

Pqq(z) < 0 for n > 1 . (75.2) 

The flavor singlet case is more complicated and I discuss this only 

for the sake of completeness. Both the quark and the gluon distributions 

contribute and two coupled integrodifferential. equations result (see 

Fig. 23b and 23~). The corresponding equations are 

2 d 
Q- 

dQ2 
qP,Q2) Pqq($ + g(w,Q2) Pgs($ 

I 
(76.1) 

and 

2 d 
Q- 

dQ2 
q(w,Q2) Pqg($ + &dw,Q2) Pgg($ 

1 
(76.2) 

There are four splitting functions in these equations relating quarks 

to gluons and two distributions, one for quarks and the other for gluons. 

The gluon distribution cannot be measured directly in deep inelastic 

scattering and must be inferred by solving the above coupled equations. 

QCD makes specific predictions for all four of these splitting 

functions. The resulting equations are analogous to the old Weizacker- 

Williams bremsstrahlung and e+e- pair creation formulas. The evolution 

of the quark and gluon x distributions with increasing Q2 is thus well 

specified in QCD. The x distributions themselves are not predicted. 

In the rest of this talk I will concentrate on the results of the 

flavor non-singlet case(Eq. 73). I will give three examples of how it 
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has been used to compare QCD with the data. The first example will 

be the now (in)famous QCD moments. The second approach (formulated by 

Buras and'Gaemers)(22) is to make a guess for the x,Q2 distribution that 

satisfy the evolution equation and then fit this form to the data. The 

third method (developed by Abbott and Barnett) (24) uses numerical tech- 

niques to solve the differential equation and fit the evolved x distri- 

bution to the data. 

Note that the common 

process of bremsstrahlung 

are perhaps not as much a 

thing being tested here is the inevitable 

as shown in Fig. 12. As such Eq. 73 and Eq. 76 

result of QCD in particular as they are a 
(3C;\ 

result of any quark theory with gluons.'*aJ 

6.2. Moments of Structure Functions and their Q 2 Dependence 

The Moment Method 

The integrodifferential equation for the non-singlet quark distri- 

bution is given by Eq. 73. To separate out the effects of the splitting 

function Pqq(z), f or which QCD makes an explicit prediction, multiply both 

n-l sides by x and integrate over x from 0 to 1: 

2 d 
Q- ; Xn-l qNS(x,Q2) dx = "':yz' ; xn-1 dx ; $ qNS(w,Q2) pqq(c). (77) 

dQ2 0 0 X 

Interchanging the order of integration on the R.H.S. and defining 

MNs(Q2,n) z 3 xn-' qNS(x,Q2) dx 
0 
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gives 

Q qNS(w,Q2); dx x"-l 
W 

With the substitution z = x/w and the definition 

A(n) = 3 
0 

dz zn-' Pqq(z) 

this equation becomes 

2 d 
Q- dQ2 Q (Q2,n) = 

as (Q21 
2r ss(Q2,n) Ah). 

(79) 

(80) 

(81) 

Success! We have a linear differential equation for the moments 

ss(Q2,de The calculable A(n) appears as a coefficient in this dif- 
t 

ferential equation. Using Eq. 42 for ccs(Q2) leads to the solution 

ss (Q2,d = 

where C is a constant and 

dn 
-A(n) = 

2nB 

(82) 

(83) 

with B as in Eq. 40. The dn are called the "anomalous dimensions" of 

the non-singlet quark distributions. Hence the QCD prediction is that 

the moments of the non-singlet structure functions should vary as calculable, 

inverse powers of ln(Q2/A2). 

Integrating Eq. 80 for P 
qq 

as in Eq. 74 yields: 

n 

2 
n(n+l) +4x+ . 

j=2 I 
(84) 
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And with the choice of Nf = 4 in Eq. 40, d becomes: 
n 

n 

d, 4 =25 
l- 2 

n(n+l) +4x+. 
j=2 I 

The power law predictions are often compared to the data by noting 

d(1nss(Q2,n)) A(n) dn 

d(ln ss(Q2,m)) = A(m) = d, ' 

(85) 

(86) 

This equation indicates that on a log-log plot of the n th 
moment ver- 

sus the m th 
moment., a~straight line will result with a-slope given by 

the ratio of the n th to m th anomalous dimension. It is worthwhile 

emphasizing that the straight line and its slope are a consequence 

merely of the bremsstrahlung of vector gluons by quarks. But what 

would constitute a more telling test of QCD (and Eq. 79) is to plot 
-l/d 

$,(Q2d n versus ln(Q2)(26) , since 

-l/d 
Q(Q2.n) (87) 

There are two possible sources of data with which to perform a non- 

singlet moment analysis: 1) f13h,Q2) [ = x q(x,Q2) - <(x,Q2) 1 
from the 

difference of neutrino and anti-neutrino scattering and 2) Fyp(x,Q2) - 

Fy(x,Q2) from electron (muon) scattering off hydrogen and deuterium. 

For 2) the flavor symmetric parts (the "sea") of the proton should be 

subtracted out by an equal contribution in the neutron. The data for 

these structure functions is binned in Q2. Moments are formed by summing 

the data in each bin weighted with powers of x. Here's where the problems 

begin. 
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Problems of the Moment Method 

Choice of Scaling Variable 

First, what scaling variable should be used? The original Cornwall- 

Norton(27) moments defined by 

Mi(Q2,n) = 
j ,"-2 

Fi(x,Q2)dx (i = 1,2, and 3) 
0 

(88) 

use the x variable as in Eq. 78. The Nachtmann moments (28) on the other 

hand use the 5 variable of Eq. 15: 

1 n+l 
M2(Q2,n) = ldx 5 I n2+2n+3+3(n+l)JT+n(n+2)rc 1 

0 x h+2)++3) - F2(x,Q2) (89.1) 

and 

M3(Q2,n) = jdx Ln+l 
l+(n+l)Jq 

1 

0 x3 n+2 x F3(x,Q2). (89.2) 

At large Q2, the Nachtmann and the Cornwall-Norton moments converge 

to the same value, but at low values of Q2 

present the safest bet is to trust neither 

nificantly. 

large differences occur. At 

when the results differ sig- 

In Fig. 24, the fourth moment of Fy - Fz" for the Cornwall-Norton 

and the Nachtmann prescriptions is plotted against Q2, Below Q2 of about 

5 GeV2 the two give very different results. This situation becomes worse 

with increasing moment number since the high x part of the structure 

functions are weighted more and more heavily (recall the 5 and x variables 
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have their largest difference at high x and low Q2). For the 9 th 

moment a Q2 cut even as high as 12 GeV2 would not be considered safe by 

conservatives. I will adopt here a "liberal" posture and propose 5 GeV2 

for the cut in Q2. 

Effect of Fermi Motion 

The next problem is the effect of Fermi motion on the moments. All 

of the data used in non-singlet moment analyses have these so-called 

"smearing" effects (4) : xF 
3 is measured off iron and F, requires both 

hydrogen and deuterium data. Smearing has its most 

for x near 1. Contributions from low x artifically 

by way of the nucleon's motion inside the nucleus. 

L 

pronounced effect 

appear at high x 

The effect is such 

that as x + 1, F2(smeared)/F2 + 0~. To study the consequences of smearing 

on the moments, ep I have compared the moments F2 
en 

+ F2 (unsmeared) with 
ed 

those calculated using F2 . The effect is small but does increase with 

increasing n. This means that most of the integral comes from the x 

region where smearing effects are small (i.e. x < 0.8). The conclusion 

is that smearing effects do not have a large influence on the results. 

Contribution Due to the Resonance Region and Elastic Scattering 

The next problem to consider is where the contributions to the moment 

integrals come from. Moment enthusiasts claim all the data (even the 

resonance region and elastic peak) should be included. As Q2 -increases 

this becomes less questionable since the low W region is squashed up 

against x = 1 and contributes little to the moments. 
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To illustrate what the moment integrands look like at low Q2,(=3GeV2), 

I have plotted the Nachtmann moment integrand for F;' (x,Q 2 ) in Fig. 25. 

Where W = 2 GeV is indicated on the graphs. Fig. 25a is for the N = 2 

moment, Fig. 25b is for the N = 5 and Fig. 25c is for N = 9. The point 

I am stressing is that the resonance region makes a large contribution 

to the moment integrals at low Q2. In this region the cross section has 

large exclusive final state contributions. The basis of this analysis, 

the impulse approximation picture of quasi-elastic quark scattering, is 

inadequate. 

Another contribution included by moment advocates is elastic 

scattering. So far as I can tell the main reason for doing so is that 

the agreement between Eq. 86 and the data, is better when the 

elastic contribution is included for the low Q2 region. Arguments that 

the resonance region and elastic scattering are "averaged" by the 

scaling curve (i.e. the old duality picture) (29) are used as justifi- 

cation. But one can be sure that had the moments worked well without 

including these contributions the arguments against including them would 

have been enthusiastically promoted. In any case, let's see what the 

fractional contribution of these regions are to the moments. 

In Fig. 26a the fractional contribution of elastic scattering is 

shown for F eP 
2 - F;" for moments 2, 5, and 9. Again a cutoff of at 

least Q2 > 5 GeV2 is suggested. Below this the gth moment has > 27% 

elastics and the 5 th moment has > 8% elastics. 
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In Fig. 26b the fractional contribution for W < 2 GeV is shown 

versus Q2 for the same moments. This fraction includes both the elastic 

and the resonance contributions. If one wishes to minimize the uncertainties 

here, a cut of Q2 > 15 GeV 2 would not be too conservative. Unfortunately, 

as we go to a higher Q 2 cut the data become sparse. 

Contribution Due to Models for the Structure Functions 

The final problem with moments is that the experiments never fully 

cover the x range. For those regions containing no data, a model of 

the structure function must be used. Clearly we don't want this model 

contribution to be large and in any case we should assign appropriate 

errors to it. Experimenters have quoted results for which the contri- 

bution to the moment of the model is less than 25%. (26) Unfortunately, 

sometimes the error associated with this contribution is neglected. 

The model should also be independent of QCD. For example a simple poly- 

nomial in (1 - x) times x (orfi) fitted to each Q2 bin could be used. 

Models formulated to reproduce the QCD moments and fitted globally to 

the data should be avoided. This "pulls" the answer closer to the QCD pre- 

dictions as the model contribution to the moments increases. 

Comparison with the Data 

The results of twoxF3 moment analyses are shown in Fig. 27. The 

CDHS analysis (26) didn't include the elastic contribution, but its in- 

clusion would change the answers very little because of the large 
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values of Q2 where they report results. In the lower Q2, high x region 

ed the CDHS experimenters have used the SIX F 
2 

data times 9/5 to fill 

in the gap in their data. They have also used their F2 data (instead of 

xF3)for x > 0.4 because it has better statistical accuracy. They argue 

that for x > 0.4 the "sea" has "evaporated" and only valence quarks con- 

tribute to F 2' The slanted scales on the figure show the respective Q2 

for the CDHS data points on a ln(lnQ2) scale. 

The data from the BEBC collaboration'is also shown in Fig. 27. (30) 

This data has only two points with Q2 > 5 GeV2. For the reasons cited 

above, the data below 5 GeV2 should be regarded with caution. Furthermore, 

the 2 
<Q ' of the highest data point is 60 GeV2, not > 100 GeV2 as might 

be inferred from the Q2 scale. 

The lines on the graphs have slopes as predicted by the ratios of 

the appropriate anomalous dimensions. The agreement here is impressive. 

Recall these slope predictions are independent of as(Q2) (and hence 

the number of quark flavors) and depend only on the (vector) nature of 

the gluons. Scalar gluons would predict slopes closer to unity than 

the vector gluons and are disfavored by these results. 

Using the combined SLAC(1) and CHIO(2) data, the non-singlet moments 

of F ep 
2 - Fe;l have been calculated and are shown in Fig. 28. The 

solid lines represent the QCD slope predictions. The data as presented 

seem to agree with Eq. 86. 
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. 

Another way of plotting the xF3 appears in Fig. 29(26) where 
-l/d 

M&Q2,d n is plotted against ln(Q2), as suggested by Eq. 87. 

The intercept with horizontal scale indicates the value of A2 found 

by the CDHS experiments. 

Summary and Conclusions on Moment Method 

The conclusions drawn from the moment analyses are: 

1. The logarithms of the Nachtmann moments seem to obey quite well 

the prescription of Eq. 86 that their ratios be independent of Q2 and 

equal to the ratio of the respective anomalous dimensions. 

2. The consistency is seen for both neutrino scattering (xF3) 

and electron (muon) scattering (F;P - Fy). 

3. However, when a reasonable Q2 cut is made (e.g. Q2 > 5 GeV2), 

this test of QCD becomes insensitive. Only the CDHS data presently 

extends to high enough Q2 with sufficient data to make meaningful 

comparisons. 

4. It is interesting that the low Q2 moments fall on top of the QCD 

prediction. But shouldn't this be interpreted as a test of the DYW 

relation and duality? 
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6.3. Explicit Functional Form for xF3(x,Q2) 

The problems with the moment analysis have spurred efforts to find 

alternatives. In this section I will discuss the Buras and Gaemers 

approach (22) and in Sec. 6.4 I will discuss the Abbott and Barnett (24) 

approach. 

Buras and Gaemers (BG) set out to find an approximate functional 

form that satisfied the moment equations and would fit the data reasonably 

well. The DYW relation suggests (1 - x) 3 dominates at high x and Regge 

arguments suggest a &dependence at low x. The BG approach was to fit 

a form consistent with these power laws. Explicitly they made the 

ansatz that 

xF3 (x,Q2> = 
3 n1 

B(n,,rl,+U x Cl - x) 
'72 

1. L 

where 

and 

4 
nl=rlol+nll ' s * 25 , 

4 
Q2=no2+Q12 - s * j-j- , 

In Q- 
f ) ,: s = ln --- c ) . 

In A-11 
e, Ai 

(90) 

(91.1) 

(91.2) 

(91.3) 

where Qo2 is an arbitrary fixed value of Q2. B(x,y) is the Euler beta 

function which insures the GLS sum rule (I F3dx = 3). The Cornwall- 

Norton moments, calculated with xF3 as parameterized in Eq. 90, satisfy 

Eq. 82 to a few percent for the first ten moments (2 < n c 10). 



- 102 - 

The advantage of using a functional form is that the entire x range 

is not required for each Q2 bin. No elastic scattering contribution 

enters; resonance region data do not need to be included. The disadvantage 

is that we are now committed to an x distribution that may not fit at 

all well. Indeed any failure on the part of this method is easily blamed 

on the "arbitrary" x distribution, rather than on QCD. 

Comparison with the Data 

The CDHS collaboration have pursued an analysis using the BG functional 

(30) form for xF3. They required that the data used in the fit have 

Q2 > 3 GeV2 and that M2x2/Q2 < 0.03 (this reduces the scaling variable 

problem (6 versus x) to much less than 10% for most of their data). 

The resulting fit is shown in Fig. 30. The fitted parameters are: 

9 = 0.51 (k 0.02) - (0.83) . s . $ 

n2 = 3.03 (+ 0.09) + (5.0) - s l $ 

(92.1) 

(92.2) 

and 

A = 0.55 + 0.15 (+ 0.10 systematic) GeV . (92.3) 

These values were found for Qo2 = 20 GeV2 and the fit has a x2 = 56 

for 63 degrees of freedom. The exponents of x and (1 - x) are very close 

to the expected values of $ and 3. It is interesting to note that the 

exponent of (1 - x), n2 , increases with increasing Q2. Recall that this 

was the same qualitative behavior observed for 

Fig. 22~. 
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I have tried making similar fits for F;" - FT without success: 

the fits tend to be unstable. This may be because of the large number 

of fitting parameters. 

6.4. Evolution Equation Technique 

Method 

Abbott and Barnett have developed a technique to test the evolution 

equations directly by numerically solving Eq. 73 (24) for the non-singlet 

structure function xF3(x,Q2). After substituting the explicit form for 

P 
qq 

they found 

2 d 
Q- 

as (Q2) 

dQ2 
xF3(x,Q2) = 3r 3 + 4 In (1 - x) 1 xF3(x,Q2) 

1 
+ j dw -&- [(l + 

X 
w2> ($1 F3($ , Q2> - 2xF3(x,Q2) (93) 

where as(Q2) from Eq. 39 and B from Eq. 40 are used. Given xF3(x,Q2) 

at a particular value of Q 2 we can predict its value for any other value 

of Q2. The form of xF3(x,Q2) at the reference Q2, Qo2, is completely 

arbitrary. It can be an analytic function, a "look-up" table, or any- 

thing such that when the computer asks for the value of xF3(x,Q2) 

a number comes back. Abbott and Barnett chose a functional form with 

parameters to be determined by fitting. 
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So, given xF3(x,Qz) the function can be "spread out" along the Q 2 

axis to where the data exists (see Fig. 31). As with the BG approach 

this technique allows for all the data to be used independent of the 

particular x range associated with each Q2 bin. No resonances or elastics 

need to be included. This approach has the advantage over the BG scheme 

in that one is not committed to an explicit form for the x distribution 

of the structure function. Furthermore, no approximations (to within 

the numerical accuracy requested of the differential equation solving 

routine) are made. We are simply testing the form of the integro- 

differential Eq. 73 as prescribed by QCD. 

The form for the x distribution used by Abbott and Barnett is 

*3(x,Qo2) = c xa (1 - x)b (94) 

This results in a 4 parameter fit (C, a, b, and A). Not counting the 

normalization parameter C (which was fixed in the BG approach such that 

I F3 dx = 3) there are 3 free parameters compared with 5 for the BG 

techniques. 

Comparison with the Data 

Both the xF3 data from the CDHS collaboration (31) and the SLAC 

ep 
F2 - F2 

en data (32) have been fit using this scheme. The results for 

the neutrino xF 
3 

are shown in Fig. 32 and the F ep 
2 - FFn fit is shown 

in Fig. 33. In both cases good fits (in terms of x2) were obtained and the 

fit parameters for these non-singlet structure functions are given in 

Table 3. 
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Figure 31. Method of Abbott and Barnett. Given F(x,Q2), the 

QCD differential equations "spreads it out" in~Q2. 
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Figure 32. Method of Abbott and Barnett applied to neutrino-nucleon 

structure function xF 
3' Solid curves are the result of 

the fit. 
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Structure Function c a b 

xF3 3.76 0.566 3.20 

Fe* - 2 Fy 0.59 0.853 2.68 

TABLE 3 

A(GeV) Q,' (GeV2> 

0.594 30.5 

0.628 30.5 

Another question addressed by Abbott and Barnett was whether or not 

other types of "theories" would fit the data as well as QCD. In short does 

QCD give the best fits of all the reasonable (and unreasonable) alternatives. 

They found that terms that broke perfect scaling by powers of l/Q2 ("higher 

twist" effects) by themselves were sufficient to get equally good fits as 

those obtained for QCD. (29,30) Hence QCD is not unique at present. Better 

data at even higher Q2 might help to clarify this situation. 

7. CONCLUSION 

Let's now assemble in one table all the QCD tests we have seen (see 

Table 4). As you can see QCD has done quite well. Where it "doesn't 

work" the theory has many outs (elastic scattering and R). The moment 

analyses support the prejudice that gluons are vector particles. The 

lowest order bremsstrahlung effects of quarks radiating gluons does pro- 

duce a pattern of scale breaking that is observed in both neutrino and 

electron scattering data. The low Q2 region where scaling was first 
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TABLE 4 

Summary of Conclusions. Conclusions from Experiments in Parentheses. 

CONSTITUENT SIMPLE QUARK GLUON & QUARK QCD(THEORY) 

Scaling Good Test 

(Works to - 20%) 

Ratio oV/oe Good Test 
5 

(-- rule) 
5 

18 
(18 Consistent 

with data) 

>LS Sum Rule 

(1 F3dx) 

Good Test 

(Data gives 
3 quarks) 

Callan-Gross 
Relation 

(r C 
= UL/UT) 

Poor Test - Too 
much neglected 
(ruled out by 
data - but not 
far off) 

'QCD 

Poor test for 
Present data - 
neglects M2x2/Q 
effects (not ob 
served in data) 

Elastic Form 
Factor Prop- 
agator 

(GM - (1/Q2Jn-') 

Good Test at 
high Q2 

(Works well for 

Q2 > 5 GeV2) 

Elastic Form 

Factor es2(Q2) 

Fair test at 
high Q2 (not ob 
served in data) 

DYW Relation 

Fair Test 

(scale breaking 
effects cloud 
interpretation) 

Scale Breaking 
Pattern 

Good Qualitative 
test confirmed 
by data) 

Moments 

Fair test for 
vector gluons 
(confirmed by 
data, but lots 
of assumptions) 

Evolution 
Equations 
Fitting 

Good test of 
evolution equa 
tions (Fits 
data well) 
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observed seems to be complicated with many higher order effects entering 

as powers in l/Q2 (e.g. the scaling variable). The future should bring 

forth much more definitive tests of QCD by greatly extending both the 

Q2 and the x region covered by the deep inelastic scattering data. 

I am grateful to Art Ogawa and Dick Taylor for their careful editing 

and reading of these notes, and Leon Rochester and Hobey DeStaebler for 

proofreading the final draft. I greatly benefited from discussions 

with Mike Barnett, Larry Abbott, and Mac Mestayer. 



1) 

E49a 

E49b 

E61 

E87 

E89-1 

E89-2 

These 

6'-10' 

18'-34' 

4O 

15O-34O 

50°-60' 

6'-20.5' 

- 112 - 

SLAC - MIT DATA -- 

Q2(GeV2) 

w 2 

.05-7.9 ., 

1.0-20. 

.06-1.7 

l'.O-20. 

5.6-30.5 

.2-19.1 

X 

2 GeV) 

.008-.68 

.09-.83 

.Ol-.35 

.09-.83 

.32-.89 

.02-.86 
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