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1. Introduction 

In quantum mechanics, the distance which a particle travels in a 

fixed period of time depends on the resolution of the detecting apparatus 

which is used to track the particle. Similar correlations between 

distance and resolution are found in curves which are given by everywhere 

continuous but nowhere differentiable functions. Mathematicians have 

developed various concepts and techniques for dealing with such curves1 

and Mandelbrot,2 in particular, has studied their application to natural 

phenomena.3 In this article, we review some of these concepts and apply 

them to quantum-mechanical motion. 

To introduce the mathematical ideas we will be using let us begin 

by considering a well-known example of an everywhere continuous but 

nowhere differentiable curve, the Koch curve. Its construction is shown 

in Figure 1. The Koch curve is the final product of an infinite sequence 

of steps like those in Figure 1. When each step in the construction is 

performed the length of the curve increases by a factor of 4/3, so the 

final curve being the result of an infinite number of steps is infinitely 

long. The similarities between this curve and the path of a quantum- 

mechanical particle4 become apparent when we consider viewing the Koch 

curve with a finite spatial resolution. In this case, the infinitely 

many wiggles in the curve which are smaller than some minimum length 

Ax, cannot be detected and the measured length of the curve will be 

finite. However, this length will depend on Ax and will increase without 

limit as Ax + 0. For example, suppose that we examine the Koch curve 

resolving distances greater than some scale Ax and measure its length 

to be R. Then, if we improve our resolution so that Ax'= (l/3) AX, 
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the next level of wiggles in the curve will become visible and we will 

measure a new length R'= (4/3)R. Since the conventional definition 

of length, when applied to curves like the Koch curve, gives a quantity 

which depends on the resolution with which the curve is examined (even 

for very small Ax), it is not very useful. Hausdorff proposed a 

modified definitionoflength to be used in these cases. The Hausdorff 

length, L, is given by 

L = a(Ax)D-l , (1.1) 

where R is the usual length measured when the resolution is Ax. D is a 

number chosen so that L will be independent of Ax, at least in the limit 

Ax + 0. (Hausdorff gave a precise definition of "resolution" by 

covering the curve with (R/Ax) spheres of diameter Ax). Note that when 

D=l, the Hausdorff definition just reduces to the usual concept of 

length. For the Koch curve, we determine D by requiring that 

L' = &' (&p-l = (+ &>(+ Ax)'-' = L = am-' . (1.2) 

This implies that 

D = Pn4 /an3 . (1.3) 

Clearly the Hausdorff definition of length is more practical than the 

conventional one because it eliminates the resolution or scale 

dependence of the measured value of the length of a curve. In addition, 

the Hausdorff dimension D for a particular curve is a useful parameter 

for describing its properties. The fact that D#l for the Koch curve 

identifies it, in the language of Mandelbrot, as a fractal curve. 

To define the quantum-mechanical path of a particle we imagine 

measuring the position of a free particle with a spatial resolution Ax 
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at times separated by an interval At. The path is then defined as the 

curve determined by drawing straight lines between the points where the 

particle was located at sequential times. To be more precise one should 

draw straight lines between the centers of regions within which the 

particle is known to lie, since we are working with an uncertainty Ax. 

At the classical level, this path will just be a straight line with 

dimension D= 1 (or in the case of a particle at rest, a point of zero 

dimension). However, at the quantum level, the localization of a 

particle within a region of "size"Ax results, according to the Heisenberg 

uncertainty principle, in an uncertainty in the momentum of order %/Ax. 

Thus, as the particle is more and more precisely located in space, its 

path will become increasingly erratic. Of course, in quantum mechanics 

we can only speak of a particle's path in the statistical sense and we 

must work with average values (denoted by < > >. If we measure the 

position of a particle at times to, tl=tO+At, . . . , tN=tO+NAt, with 

T=tN-to = NAt, the length of the particle's path will be 

<a> = N<AP.> (1.4) 

where <AL> is the average distance which the particle travels,in a time 

At. Let us first consider the case where the average momentum of the 

particle is zero (i.e., in the classical limit the particle is at rest). 

Then, as the uncertainty principle would suggest, and as we will show 

in Section II, 

Thus 

<AE> a fiAt/mAx . (1.5) 

<a> a %T/mAx (1.6) 
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and, as in the case of the Koch curve, the length of a particle's path 

in quantum mechanics depends on the detection resolution Ax, and diverges 

in the limit Ax + 0. Following Hausdorff, we can introduce a modified 

definitionof length, 

<L> = <a>(Ax)D-l . (1.7) 

Requiring that <L> be independent of Ax gives, from Equation (1.6), that 

D=2. The path of a particle in quantum mechanics is therefore a fractal 

of dimension two.5 

The Koch curve has another interesting property, which under certain 

circumstances, is shared by the quantum-mechanical particle path. This 

is self-similarity. If we view a Koch curve with a resolution 

Ax'= (l/3) Ax then the curve we see is, up to repetitions and transla- 

tions, just a scaled down version of the curve we saw when the distances 

being resolved were of size Ax. The path of a quantum-mechanical 

particle will be self-similar if 

<A!2> = Ax . (1.8) 

Comparing Equations (1.8) and (1.5), we see that to get a self-similar 

path we must scale the time between position measurements of the particle 

in proportion to the square of Ax. That is, if 

m(Ax> 2 
At = 

Ii 
(1.9) 

then the resulting path is self-similar. In Section II, Equation (1.9) 

will arise naturally in our derivation of Equation (1.5) because it is 

related through the uncertainty principle to the energy-momentum relation 

E=p2/2m. Thus, just as the fractal nature of the quantum-mechanical 
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path reflects the Heisenberg uncertainty principle, the condition for 

self-similarity, Equation (1.9), is a reflection of the underlying dynamics 

E= p2/2m. 

Finally, it is interesting to consider the case when the particle 

has some nonzero average momentum (i.e., in the classical limit the 

particle is moving) since then the transition from the classical result 

D= 1 to the quantum result D= 2 can be seen. This is done in Section III. 

II. Derivation of the Hausdorff Dimension for a Quantum-Mechanical Path 

Recall that we define the path of a quantum-mechanical particle by 

measuring the position of the particle with a resolution Ax at times 

separated by an interval At. The fact that a position measurement only 

localizes the particle within a region of "size" Ax is taken into account 

by assuming that the wave function of a particle, measured to be at the 

origin, is 

$,,Gl = (Ax)~'~ 

ti3 

Defining a dimensionless vector %=;(a~)/%, the normalization condition 

on the wavefunction implies that 

d3k 1 f(li'k1)(2 = 1 . (2.2) 

The actual form chosen for the function f will not be important in our 

discussion, we just assume it is a form sufficient to localize the 

particle to a region of "sizeU Ax. The expression (2.1) follows from 

simple dimensional arguments for a detection procedure which is isotropic 

and can be characterized by a single dimensional parameter Ax. 
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An interesting realization of (2.1) is 

(2.3) 

This corresponds to using a momentum cut off A=h/Ax in all calculations 

(i.e., putting the particle in a momentum box of radius A centered about 

the origin of momentum space) or equivalently to using a spatial lattice 

with spacing Ax. 

The crucial quantity in the discussions of Section I was the average 

distance the particle travels in a time At. When <A&> is large compared 

with Ax it is given by6 

From Equation (2.1) 

(2.4) 

(2.5) 

Using the dimensionless vectors z=;fAx/% and ;=z/Ax, Equations (2.4) 

and (2.5) can be rewritten in the form 

<A!L> = Ax I d3y I$1 /F(;,%At/2m(Ax)2) I2 , 
d 

where 

/ 

i2.F - ilZ12%At 
F(G,%At/2m(Ax)2) = d3k f(lZl) e 2m(Ax>2 

IR3 (2n)3/2 

(2.6) 

. (2.7) 
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From Equation (2.6) it is evident that if the time interval At is 

scaled so that 

*At = 
2~n(Ax)~ 

constant , (2.8) 

then 

(2.9) 

which is precisely the result used in the introduction to derive the 

condition for self-similarity and fractal dimension of the quantum 

path. 

It should be noted that condition (2.8) is only required if we 

wish the path to be self-similar. To determine the Hausdorff dimension 

we can contemplate keeping At fixed while varying Ax. In this case 

as Ax -t 0, hAt/2m(Ax)2 + ~0 and f(ltl) in Equation (2.7) can be 

approximated by a Gaussian (this is essentially a stationary phase 

approximation).7 The net result is then, 

<Aa> = 5&/-q@? (2.10) 

This is more complicated than Equation (2.9) but reduces to Equation 

(1.5) when Ax CC (hAt/2m) \i Thus when At is held fixed we can define 

a Hausdorff dimension in the limit Ax + 0. As in the self-similar case 

the result is D= 2 
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111. The Transition from D- 1 to D= 2 

In order to exhibit the transition from the classical result D= 1 

to the quantum-mechanical result D= 2, we consider the case where the 

particle has some non-zero average momentum ;av. This is done by 

replacing Equation (2.1) by 

In this case Equation (2.6) is replaced by 

<Aa> = (Ax) d3y 
J 
lR3 

(3.1) 

2 
(3.2) 

where F is given by Equation (2.7). For simplicity assume that At is 

scaled so that 

hat =b 
2m(Ax)2 

where b is a constant of order unity. Then 

tA!L> = 
IGavIAt 

m / 
d3Y 

lx3 

I 
-f 
P -XL.+ 6 

1 lsavl 2];av((Ax)b 

(3.3) 

(3.4) . 
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Finally, 

<L > = N <A!?,> (Ax)~-' 

= l'avlT d3 
m 

lR3 y 
I 

+ 
+i;: 

21;av((dx)b 

(3.5) 
I 

b&d 1 2 (WD-? 

8 
Requiring that the Hausdorff length <L > be independent of Ax gives 

D= 1 when the distances being resolved are much larger than the particle's 

wavelength (i.e., Ax >>h/ l$avl) and D= 2 when the distances being 

resolved are much smaller than the particle's wavelength (i.e., 

Ax <<h/ I;avl). These are respectively the classical and quantum- 

mechanical limits. In the region between these limits the Hausdorff 

dimension D is not well defined since it is rapidly varying with Ax. 
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7. When f(lCl) is the Gaussian 

f(pq) = [+I”” e- El2 9 

the integrals in Equations (2.6) and (2.7) can be done exactly. 

In particular Equation (2.7) becomes 

8. To consider the case where the path is not self-similar, and b is 

much greater than unity, we let f be the Gaussian 

where $ = av cavAx/-fi. Then 

Thus, even for b >> 1, D=l when Ax >>h/ G 
I I 

and D =2 when av 

Ax << %i/ Gav . 
I I 



-13- 

Figure Caption 

1. Construction of the Koch curve. 
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