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ABSTRACT 

Using a method of calculating the radiation characteristics 

for the motion in an arbitrary one-dimensional potential, developed in 

the previous paper,7 we look here for the maximum in the number of 

emitted photons as a function of particle energy for different amplitudes 

of oscillations, divergence angles in a plane parallel to the trapping 

crystal planes and harmonic numbers. 

The problem is treated in the classical approximation. 

A numerical example is given for positron channelling in the (l,l,O) 

direction of a Silicon crystal. The influence of the refraction index 

is discussed briefly. 

(To be presented at the 

1979 Annual Division of Electron and Atomic Physics Meeting, 
Houston, Texas, December 10-12, 1979.) 
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1. Introduction 

Radiation of channelled particles trapped between planes of a 

crystal is a powerful tunable source of polarized radiation in an 

interesting range of frequencies. It can also be used to study the 

properties and characteristics of the crystal itself. For both 

applications of the phenomena, one needs knowledge of the radiation 

spectra and angular distribution of emitted quanta. All the known 

theoretical resultsla5 for these radiation characteristics are 

obtained in the linear approximation, where only the first (quadratic 

in coordinate) term of the power series expansion of the potential 

in which the particle moves is retained and considered. In the 

recent work of Pantell and Swent,6 the experimental radiation 

spectrum is fit with a spectrum calculated quantum mechanically for 

a particularly chosen empirical potential of channelling motion. 

In our own work7 a method was developed which permits one to 

calculate radiation characteristics for the motion in an arbitrary 

one-dimensional potential. By using this method one can calculate 

all the characteristics of the channelling radiation without any 

assumption on the value of anharmonicity. In particular, expressions 

for radiation frequencies, polarization angles, and the number of 

emitted photons as functions of quanta angles, particle energy, 

amplitude of oscillations, and divergence in a plane parallel to the 

trapping crystal planes for any given harmonic number are found. 

In this work we are looking for the dependence of the spectra on 

particle energy. Taking as our example the number of quanta emitted 

in the forward direction, we find that this quantity has a maximum 
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at a certain particle energy for a given crystal and incident particle 

direction. 

In Section II, we present formulae for the number of emitted 

photons per interval of solid angle and for the emission frequency, 

taken from work7 towhich we direct the reader for more detailed 

discussion. Numerical results for positrons can be found in Section III. 

In Section IV, we discuss the influence of the refraction index. 

II. Some Useful Formulae 

Let a relativistic particle with energy E (and Lorentz factor y) 

be trapped between the planes of a crystal. We choose a coordinate 

frame in which the crystal planes are parallel to the yz plane. The 

particle is assumed to have only one relativistic velocity component 

B, (B=v/c) along the z axis, the other two components being small: 

8, / 6, << 1 9 (1) 

By/Bz<<l l (2) 

The length of one "oscillation" of the relativistic channelled 

particle is much longer than any lattice periods. Consequently, the 

force exerted on the channelled particle can be derived from a time 

independent one-dimensional potential V(x) (for the "oscillations" 

occurring in the x-z plane) which is the planar average (over y and z) 

of the true electrostatic potential V(x,y,z) within the lattice. 

We choose further for convenience, V(O)= 0. 
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The first integral of the equation of motion gives 

8, = J 2 c V(x,> - V(x) I/ E , (3) 

where x m is the value of x at the point fix= 0. xm is the maximum 

excursion of the particle from the plane x= 0 and we call this quantity 

the "amplitude" of (nonlinear) oscillations. In (3) and for the rest 

of the paper we use the following abbreviations: 

vu= V(u), Vm=V(xm) . (3) 

The "frequency", of oscillations is R= 2,/9du//m , where 

the sign f means integration over the full period of oscillation. For 

the case of potential symmetric inx(Vmx=Vx) we get: 

m 

dx./J2(- . (5) 

Calling 8 the azimuthal angle of the radiation direction with the z axis 

and cp the polar angle between its projection on the x-y plane and the 

x axis, the wave vector 2 has the following components: 

K = K n = z (sin 6 cos cp, sin 8 sin cp, cos e> (6) 
X,YYZ X,Y,Z 

If the number of oscillations over the length L (the crystal 

thickness) is a large number, the radiation occurs in the form of a 

line spectrum. The center of the kth line is positioned at the 
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frequency: 

TcykB 

"k = 
(7) 

x,T~(~+B~+D~+@~-~OD sin cp) 
, 

where we introduce the following useful variables: 

B=/w, (8) 

D = Byy , (9) 

0 = ey . (10) 

The definition of Tl is shown below; see equation 16. In these variables 

the number of photons emitted on the kth harmonic from the crystal 

length L equals: 

dNk 
kLBFk 

OdOdQ = 137yx,T: (1+B2-!-D2+02-2OD sin (P)~ 
(11) 

In this expression the following notations are used: 

F k = B2Q2 +(Q2+D2 kx 
-20Dsin cp) Oty - 2B@OkxQky cos cp, (12) 

where . 

(13) 

1 

@ky = o Jig& cos I 

(sin(!2) x sin (qi; l=I;+l (14) 

cos 5 , 
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4 = 2BOcoscp 
I 

(1+B2+D2+Q2-2OD sin cp) (15) 

and 
W 

Tw = 
I I/ 

du "-'W,/'rn . 

0 

(16) 

In the forward direction (O= 0) q= 0. Hence, in this case @2px= 0, 

and a particle moving in the x- z plane (D= 0) radiates only odd 

harmonics. 

III. Dependence on Particle Energy 

We are interested now in the dependence of the radiation on the 

incident particle energy. This information can be very useful for an 

optimal choice of experimental arrangement for given conditions. As an 

example, we choose channelling of positrons in the (l,l,O) direction of 

a Silicon (Si) crystal. 

Summing up the contributions of adjacent crystal planes, we get 

the following expressions for the continuum Lindhard* potential at 

the distance x from the crystal plane: 

v(u) = voJ pz&iF +]l+u)2+b2 - 2pm-4 

P-m, (17) 

where u= 2x/d, Vo= aZe2n d2, b= 26 a/d, n is the number of atoms with 

atomic number Z per unit volume, d is the distance between crystal planes 

and a is the screening length of the electron-atom interaction for the 

Thomas-Fermi atom model. Expression (17) is valid in the region O< u< 1. 
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For other values of u, one can use the relations V(-u>=V(u) and 

v(u+2p)=v(u), p= 0, +1, +2, . . . . For the (l,l,O) direction in Si 

these constants have the following values: Vo= 117 eV (Z=14, d= 1.920 8, 

a= 0.194 8, n= 4.994x 1022cm‘-3, b= 0.350). Practically speaking, only 

the first few terms of the sum in expression (17) contribute for any 

given value of u. 

In order to present results in a form independent of a particular 

crystal's characteristics, let us rewrite (7) and (11) in the following 

way: 

Wk = Cm" 
g ' (18) 

where 

2acy k cw = ---j- , (19) 

B 
R = 

g uT1(1+B2+D2+02- 2@D sin cp) 

and 

dN 
6d8dq = 'N Ng , 

(20) 

(21) 

where 

--a 
'N = 137d ' (22) 

k B Fk 
N = 

l 
g nT;(1+B2+D2+@2-20D sin (P)~ 

(23) 

The characteristics of a given crystal enter into the functions s2 and g 

Ng only through parameters B and T1. The dependence on particle energy 

(or Lorentz factor y) can be tracked through parameters Cw, CN, B, D 

and 0. 
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Figures l- 3 give the dependence of the first three odd harmonics 

(k= 1,3,5) of the radiation spectrum in the forward direction (O= 0) on 

particle energy for D = By y =O (9) and different amplitudes u. Plotted 

is the quantity Ng as a function of parameter B (8). 

Figures 4- 6 give the same dependence but for D=l.O. 

Figures 7 and 8 give the radiation frequency (the quantity ag) of 

the first-harmonic for D=O.O and D=l.O, respectively. 

Figures 9- 11 give the angular dependence of several first harmonics 

of radiation spectra for different values of divergence angle D= Byy (9) 

of the positron and polar angle cp of the radiation. 

IV. Comment on the Influence of the Refraction Index 

The formulae for the number of emitted quanta and their frequencies 

were obtained with the assumption that the refraction index E of the 

crystal is equal to one. Indeed, at the frequencies of interest for an 

ultrarelativistic particle, E is very close to 1. In the limit of 

w >> w i Cwi are the proper frequencies of equivalent oscillators for 

the atomic electrons) 

E(W) = 1-4rZne2/mw2 2 l-$/w2; wo << w . (24) 

For this case it is easy to show that all the results stay the same if 

in the brackets of expressions (7), (11) and (15) one adds the term 

h+@ 2 l For example 

KcykB 

Wk = xmT1(1+B2+D2+02- 2@D sincp +v'$/u~) ' 
(25) 

Let us denote by w the value of uk at the limit wg= 0. 
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Then for E- 1 # 0 the kth line splits into two with frequencies 

(16 

if ywo < w/2 (the case ywo > w/2 is, from a practical point of view, 

very unusual and needs a special investigation). Usually not only 

wO < W, hut even ywo < W/2. If Yy) << w then 

w = (ywo)2/; . (28) 

In some cases the influence of the refraction index can explain 

the unequal distances between the spectral lines. We shall not discuss 

this effect any further here. 

Conclusion 

The.method' of calculating the frequency and angular spectra of 

channelling radiation gives us the possibility of finding the optimal 

particle energy for any single particle and quanta parameters. These 

results can further be used to obtain spectra averaged over the particle 

distribution in transverse phase space of a beam for any given geometry 

of experiment. 
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Figure Captions 

1. The dependence of the number of radiated quanta per solid angle for 

the first harmonic in the forward direction on parameter B (8) for 

D= 0 (9) and different particle amplitudes: 

(1) u= 0.9, 

(2) u= 0.7, 

(3) u= 0.5, 

(4) u= 0.3, 

(5) u= 0.1. 

Plotted is the quantity Ng= ( c3ddgNdrp)/ (*) bee (23))* 

2. The same as on Fig. 1, but for the third harmonic. 

3. The same as on Fig. 1, but for the fifth harmonic. 

4. The same as on Fig. 1, but for D= 1.0. 

5. The same as on Fig. 2, but for D=l.O. 

6. The same as on Fig. 3, but for D=l.O. 

7. The dependence of the radiation frequency of the first harmonic 

on parameter B (8) for D= 0 (9) and different particle amplitudes: 

(1) U'O.9, 

(2) u= 0.7, 

(3) u= 0.5, 

(4) u= 0.3, 

(5) u= 0.1. 

Plotted is the quantity Sl =U 
g 1 

(see (20)). 
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8. The same as on Fig. 7, but for D= 1.0. 

9. Angular (O= ey) dependence of several first harmonics of the 

radiation of a positron, u= 0.9, cp= 0, D=O: 

(1) k=l, 

(2) k=2, 

(3) k=3, 

(4) k=4, 

(5) k=5. 

10. The same as on Fig. 9, but for cp= r/2. 

11. The same as on Fig. 9, but for D=l.O. 
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