
SLAC-PUB-2420 
October 1979 
@f) 

PROGRAMMABLE SYNCHRONOUS COMMUNICATIONS MODULE* 

D. Horelick 
Stanford Linear Accelerator Center 

Stanford University, Stanford, California 94305 

and 

Daresbury Laboratory 
Daresbury, England 

1. INTRODUCTION 

The purpose of this paper is to describe in general the functional 

characteristics of a programmable, synchronous serial communications 

CAMAC module with buffering in "block" format. It is intended that both 

bit and byte oriented protocols can be handled in full duplex depending 

on the program implemented. In particular network protocols such as 

X.25 (HDLC) to 48 KBPS' and Bi-Sync to 9.6 KBPS are expected to be 

supported, but of course other applications are possible, limited only 

by the hardware and operating speed. The general requirements are 

summarized in Appendix A. 

The main elements of the module are a Signetics 2652 Multi-Protocol 

Communications Controller (MPCC), a Zilog Z-80A 8 bit Microprocessor with 

PROM and RAM, and FIFOs for buffering the data. 

This work was done by the author while on leave at Daresbury 

Laboratory, Science Research Council, Daresbury, England, during 1978-79. 

Many individuals at Daresbury who made this work possible are described 

in the acknowledgements. An earlier version of this paper was published 

as a Daresbury internal report. 

* Work supported in part by the Department of Energy under contract No. 
DE-ACO3-76SF00515 and by Science Research Council, Daresbury, England. 

lKBPS: Kilo Bits Per Second. 

(Invited talk presented at the Joint AT-E Division Seminar, Los Alamos, N. Mexico, 
November 14, 1979.) 



-2- 

2. THE MICROPROCESSOR 

The basic role of the microprocessor is to set up and control the 

communications chip (IQCC), and to handle the various data flows in the 

module, as well as providing the necessary processing power to deal with 

various non-standard elements of protocols. For example it must detect 

the end of a received block in Bi-Sync, and signal the end of block in 

both Bi-Sync and X.25 transmissions since these functions are not handled 

by the MPCC chip. 

A Z-8011 microprocessor is used, and the reader is referred to manu- 

facturer's literature for detailed description and instruction set. 

Z-80A architecture is based on the INTEL 8080 and the well-known 8080 

instruction set is a subset of the Z-80A, which includes additional 

instructions such as "block transfers" and individual bit testing and 

manipulation. (See Appendix B.) The CPU has a dual internal register 

set for improved interrupt response and two 16-bit index registers for 

indexed addressing. 

The clock rate is 4.0 MHz. Some typical processor execution times 

are as follows. Add time from memory to accumulator is 1.75 vsec, and 

load time from memory to accumulator is 1.75 usec, assuming the memory 

address is in a 16-bit register pair. Input or output from/to an 8-bit 

I/O port takes 2.5 sec. To set or reset a bit in an internal register 

takes 2 psec; the same operation on a memory bit takes 3.75 Ftsec. 

It is planned to use the micro in a "polling" mode in which it 

monitors various status bits in order to control the module. All data 

transfers within the module are implemented as memory mapped transfers 

for flexibility in programming, and speed. 



I 

-3- 

3. GENERAL PHILOSOPHY OF OPERATION 

The general operational philosophy of this module is that of sending 

and receiving blocks of data in order to optimize the CAMAC data flow. 

That is, in reception of data, data bytes are stored in a buffer memory 

(FIFO) in the module until the complete block is received. The module 

then generates a CAMAC interrupt. The higher level processor (the CAMAC 

computer)-responds, reads the word count and error status, followed by 

a single address CAMAC block transfer until the entire block is trans- 

ferred. This transfer can take place at the maximum CAMAC speed of 1 MHz, 

limited only by the speed of the particular CAMAC system. In the reverse 

direction the module generates an interrupt when buffer space is available 

for a complete block of transmit data. The CAMAC processor responds by 

sending a complete block in single address mode at maximum speed. The 

important point is that there is only a single interrupt for each block 

of data instead of an interrupt for each byte, as is done in non- 

buffered modules. Thus the hardware-software overheads for dealing with 

the CAMAC interrupt environment are virtually eliminated, and the overall 

data transfer rate is greatly increased. To further improve CAMAC trans- 

fer rates, packed data bytes are transferred as 16-bit words, both in the 

transmit and receive directions. (Eight bit transfers are optional.) 

A key system parameter in this environment is CAMAC block transfer 

capability which must be optimized to achieve the full capabilities of 

the system. In many cases best performance will be achieved by trans- 

ferring the CAMAC data in a DMA mode - that is, moving data into/out of 

computer memory without program intervention. Hopefully CAMAC systems 

employing this module will have high performance DMA capabilities. 



-4- 

The possible effects of "blocking" data in the module upon overall 

network delay should be carefully considered in each application, as well 

as the complexities of multiple modules in a single crate. 

4. GENERAL DESCRIPTION OF THE MODULE 

Figure 1 shows the general organization of the module. For flexi- 

bility in-adapting to new components and new requirements the module is 

packaged on three boards, one the CPU and closely associated components 

such as PROM and RAM, another the communication oriented hardware, the 

last contains the FIFOs. The boards communicate via a simplified Z-80A 

bus. One can then more easily accommodate major changes either in the 

communications and buffering hardware, or the processing/control hardware 

as determined by changes in requirements, or the available technology to 

do the job. It is even possible to replace the function of the CPU 

board with a microsequencer or high speed Z-80A emulator should certain 

applications need this capability. 

The Z-80A bus is a conventional micro computer bus with a 16 bit 

address, an 8 bit data bus and 13 control signals. The components relating 

to the microprocessor are 4K bytes of static RAM based on INTEL 2141-5 

and 1K bytes of EPROM based on the INTEL 2708-l. Expansion of both PROM 

and RAM will be provided on the CPU board up to a total of 4K EPROM, 8K 

RAM. A conventional asynchronous port is provided on the board using the 

TMS 6011 or equivalent. This is interfaced to the outside world via a 

standard V.24 (RS-232C) or current loop port operating at selectable 

rates up to 9600 baud; a VDU can be used for direct operator interaction 

with the module to facilitate hardware/software development and debugging. 



-5- 

Further components on the board are eight programmable status LED's to 

indicate module status, eight sense switches, a reset push button, an 

interrupt push button and a dedicated LED for CPU "HALT". Other than 

power, there are no Dataway connections on this board. 

The bus signals are transmitted using a reduced Z-80A bus. That is, 

address space is limited to 64 bytes by comparing the 10 MSB of the 16 

bit address to a selected "page number". A single "enable" line, plus 

the 6 LSB of address are then transmitted to the other boards. This 

simplifies the board interface and the address decoding. Drivers/receivers 

isolate the signals on the boards. 

The data FIFOs to buffer transmitted and received frames of data are 

based on 16 pin, 4 bit x 64 word FIFO chips, Am 2841, and the memory space 

of 640 bytes is somewhat larger than the minimum requested. FIFO techno- 

logy appears to be far behind RAM developments, and the design of a RAM 

based FIFO with 2K bytes of space was considered. Appendix C indicates 

the status of this work, which is a possible alternative. Other possi- 

bilities are the 256 byte FIFO's (Z-FIFO) being developed by Zilog, but 

these are not yet available. Using the 4 x 64 FIFOs, 20 chips for each 

direction are required.2 All transactions between the FIFOs and the 

communications chip (MPCC) are routed via the microprocessor. In order 

to handle 16 bit words the FIFOs appear as two memory locations on the 

bus; bit ordering can be jumper selected and it is also possible to 

operate in single byte mode (non-packed) with the same buffer capacity, 

by reconnecting the FIFOs using jumpers. The transmit FIFO must generate 

a CAMAC interrupt (L) when space is available for another block. This 

is accomplished by a jumper connection on the FIFOs selectable every 

2A prototype module with a reduced FIFO capacity of 384 bytes (12 chips) 
was actually built. 



-6- 

128 bytes. (Every 64 bytes in byte mode.) Of course both transmit and 

receive FIFOs are capable of 1 MHz operation on the CAMAC Dataway. 

Closely related components are the control FIFOs. These contain 

block length and other status information concerning the data contained 

in the larger FIFO data buffers, and are independently loaded and read 

by the micro and the Dataway. They are again based on the 4x 64 word 

FIFO chips, and are two bytes wide at the Dataway, but are only 64 words 

deep. They each appear as two memory locations on the microprocessor 

bus. Note that a CAMAC interrupt (L) is generated when there are any 

control words in the Receive Control FIFO. 

The Signetics 2652 Multi-Protocol Communications Chip is used to 

handle the routine protocol tasks. It handles both bit and byte proto- 

cols and is specified to work to 1 MBPS. It has been selected since its 

performance has been verified by others, and it is readily available. 

All interactions with the micro are on a byte basis, and the MPCC mode 

of operation is programmed by the micro in the initialize routine. 

Its data and control registers will appear as several memory locations 

on the bus. 

This chip accomplishes many protocol functions for X.25. For 

example it does "zero" insertion and deletion, generation and detection 

of FLAGS, CRC-CCITT generation and checking. It therefore produces a 

byte stream of binary data in receive mode, and signals the end of block. 

In transmit mode the micro must load the control register in the chip to 

terminate a block, using word count information which comes from the 

transmit control FIFO. In byte oriented protocols such as Bi-Sync, its 

processing is more limited, although it does generate and detect SYNC 



-7- 

(two characters), generate and check CRC-16 or VRC, but not LRC, which is 

the responsibility of the processor. It does not deal with DLE insertion 

and deletion, nor does it detect the end of the block. In general then, 

the responsibility of the micro is considerably greater in the older byte 

formats than the newer X.25 environment. To more completely understand 

the overall capabilities of the chip, and the resulting implications in 

the software, the reader is advised to refer to the Signetics 2652 data 

sheet. 

Standard MODEM control signals are programmed via a register 

accessible as a memory location. Likewise, status of the MODEM will be 

monitored by the program of the micro, accessed again as a memory loca- 

tion. These actions can be taken either in an initialize routine, or in 

the operating program. 

The overall control of the module is determined by a "system status 

word" which indicates to the micro which system component needs service. 

In this way the complexities and delays of interrupt hardware and 

interrupt subroutines can be avoided. This word is read at the end of 

a task to determine the next task. The system status bits are: 

(1) Received data byte available from ME'CC, must be read within one 

byte time. 

(2) Transmitter buffer empty from MPCC, must be filled within one 

byte time. 

(3) Transmit Control FIFO contains control words, indicating data is 

to be transmitted. 

(4) Receiver Status has changed, indicating end of block in HDLC, 

error, abort or receiver overrun. 



-8- 

(5) Byte in CAMAC input register to be read. 

(6) No byte in CAMAC output register, i.e., CAMAC processor has read 

the output byte. 

The latter two conditions are of lower priority since they are in a non- 

time critical environment. 

A patchable OR function of the system status bits is also pro- 

vided for an optional maskable interrupt, to permit rapid response to 

time critical events, although polling of the system status register is 

the preferred mode of operation. 

The CAMAC input register is used for general control of the module 

from the CAMAC processor - such as start operation, stop, program loading 

mode, self-test, initialize, MODEM control and other conditions as 

determined by the program. Likewise the CAMAC output register is used 

to transmit up to 256 conditions (8 bits) of module status to the CAMAC 

processor, to acknowledge commands, etc. again as determined by the 

program. These CAMAC operations are synchronized by LAMS on the Dataway 

side, and by status bits on the microprocessor side. 

The communication board is completed by a CAMAC decoding/control 

subsystem and a CAMAC interrupt structure consisting of a conventional 

LAM status, mask, and request register. These LAMS interrupt the CAMAC 

processor when data blocks are to be written or read, when the CAMAC 

registers require service, or when an illegal operation takes place in 

reading or writing FIFOS.~ Figures 2 and 3 give details on these elements 

of the system. 

A RAM, PROM, FIFO memory map is shown in Figure 4. A preliminary 

prototype front panel is shown in Figure 5. Note that there are 

3The latter feature, FIFO error flags, was omitted from the prototype 
for simplicity. 



-9- 

connectors for transmit data ready and receive data ready that can be 

used as DMA Sync signals. 

5. TYPICAL OPERATION - HDLC OR X.25 

The following description gives an example of the sequence of 

operations in the HDLC environment assuming the program is loaded, the 

MPCC chip-is initialized, the MODEM is set properly and data is flowing. 

The actual sequence is of course software controlled. 

The MPCC chip searches the received data stream for a FLAG byte. 

The micro is in a loop, testing system status. When the MPCC assembles 

the first byte after the FLAG the micro detects this from the status 

byte, reads the MPCC chip (which resets the status bit), starts accumu- 

lation of a byte count and sends the byte into the receive data FIFO. 

This continues, with the micro alternating the FIFO addresses to pack 

the data into 16 bit words. At the end of the block another status bit 

is set by the MPCC; the micro then reads the last data byte and the MPCC 

status byte which indicates error conditions, uncompleted bytes, etc. 

The micro then fills any uncompleted words, sends one or two words of 

data block delimiters (such as all zeroes) and a block sequence count 

into the receive data FIFO, and sends two bytes of status information to 

the receive control FIFO. This status information includes a block 

sequence, eight or nine bits of byte count (or a CAMAC word count if 

that is more appropriate) plus the block status information from the 

MPCC chip, which consists of five bits. The control information reaching 

the CAMAC end of the receive control FIFO generates a CAMAC interrupt. 

The CAMAC processor reads the 16 bit control word (word count and status), 



-lO- 

followed by a sequential (block transfer) readout of the data FIFO. 

Proper blocking is confirmed in the CAMAC processor by checking the 

block delimiters. Of course, data from the next block may be received 

and sent to the data FIFO while the CAMAC readout process is underway. 

At the same time data bytes are being transmitted by the MPCC chip. 

The CAMAC processor receives an interrupt when the transmit data FIFO 

can accept a block of data. The CAMAC processor then sends a block of 

data as a sequence of 16 bit words, followed by a block delimiter word 

(again a word of zeroes is a possibility) and a block sequence count. 

It then sends a control word of 16 bits which includes the byte count, 

8 or 9 bits, and any specific control information. The micro monitors 

the system status word. When a transmit control word is present, and 

it is not presently transmitting a block, the micro reads the two bytes 

of transmit control information, sets up a byte count, sends a Transmit 

Start of Message to the MPCC and waits for a Transmitter Buffer Empty 

status from WCC. It then reads the first byte from the transmit data 

FIFO and sends this to the MPCC chip, which resets Transmit Buffer Empty. 

This process continues until the micro byte count indicates the end of 

the block. After the last byte is sent to the MPCC the micro sets 

Transmit End of Message and the ME'CC chip follows the last byte with the 

Frame Check Sequence followed by the closing FLAG. The micro then checks 

the block delimiter and the transmitter status (to make sure no trans- 

mitter under-run occurred). In the event of error the CAMAC processor 

is alerted via the L signal and the CAMAC output register. Of course 

CAMAC loading of the data FIFO may be taking place while data trans- 

mission is occurring. 



-ll- 

It is interesting to note that the transmit and receive FIFOs tend 

to act in an opposite manner. That is, the receive FIFO tends to run 

partially full, and the transmit FIFO tends to run partially empty. This 

is as it should be in order to keep the cormnunication line efficient and 

buffered from the CAMAC processor. 

It is emphasized that the operations described above must be done 

concurrently. Thus monitoring of the status register must organize the 

tasks in the proper sequence so that they are completed in the required 

time. At 48 KPBS for example, the received data byte must be read within 

160 glsec after the character is assembled, and the transmit byte must be 

sent to the MPCC within 160 vsec after it is demanded. End of block, or 

beginning of block can of course occur at any time. It is interesting 

to note that when the closing FLAG is detected, there is at least a 3 byte 

delay (480 usec) before the first byte of the next frame is detected. 

Some estimates of the Z-80A timing to accomplish the basic byte handling 

tasks are shown in Appendix D. Optionally, one can respond to status 

changes with an interrupt generated by an OR function of the status bits. 

Some questions have been raised concerning the use of the MF'CC to do 

error generation/checking, since there is no longer an end-to-end check 

in the CA&UC processors of the on-line message. Where this is of concern 

it can be handled in two ways: 

(1) Include an error check in the information field which can then be 

generated/checked in the higher level CAMAC processor. 

(2) Disable the error generation/checking of the MPCC chip in the 

initialize routine. In this case the CAMAC processor has the burden 

of this task, but at the same time you achieve better overall error 



-12- 

control. On the other hand, there is now only a one byte delay 

between blocks instead of the 3 bytes mentioned above. 

6. OTHER PROTOCOLS 

Many other protocols can be operated with this module with the MPCC 

in the byte mode. Due to the variability of these protocols it is not 

the purpose of this paper to discuss the operation of these. The pro- 

cessor may have various tasks in byte protocols, but the common element 

is that the micro must determine the end of block in receive mode. The 

module will be able to handle many variations of byte protocols, but the 

maximum operating rate depends upon the processing load of the micro- 

processor. 

In one case of CDC format the block length is 1050 bytes, but the 

mode is half-duplex, and the required rate is up to 4.8 KBPS. In this 

case the block will be divided into three shorter blocks, with an inter- 

rupt and CAMAC block transfer for each of the sub-blocks. A bit in the 

control word will be used to indicate when the block is finally terminated. 

7. PROGRAM LOADING 

It is planned that the module contains the program to handle one 

line protocol at a time. In order to change this program, or to initialize 

the module from a cold start it is suggested to download the module from 

the CAMAC processor via the transmit data FIFO. Starting from the reset 

state, Z.S2 or N.F(25).A(15), the module typically awaits commands from 

the CAMAC input. If a program load is specified, then the micro enters 

a PROM boostrap routine which is initiated by the transmit control FIFO 



I 

-13- 

after the transmit data FIFO is loaded. This routine loads RAM with the 

data bytes from the transmit FIFO in sequence. When this is complete the 

micro signals the CAMAC processor using the CAMAC output byte which raises 

aLAM. This process continues until the entire program is loaded, which 

may take several such cycles, since one can load only 640 bytes at a 

time.$ When the process is complete a similar procedure can take place 

using the-receive data FIFO to re-transmit RAM contents to the CAMAC 

processor for verification. Note that this procedure also verifies 

proper operation of the four FIFOs, the micro, and the CAMAC input-output 

registers. 

After this procedure is successfully completed, operation of the 

proper program is initiated by sending a program starting address via the 

CAMAC input register. Of course, once the a protocol handling program 

has been debugged, it is desirable to eliminate the start-up procedure, 

and avoid the possibility of losing the program through error. In this 

case, EPROM can be used for the program. However, it is required to 

retain some RAM for the stack and working registers where these are 

being used. 

8. TESTING FEATURES 

A complex module of this type demands self-test capability, 

necessary to verify proper operation in a larger network, and to assist 

diagnosis in debugging and repair. The very operation of loading and 

verifying described above already suggests a partial self-test. Further 

tests are to be provided, most likely in PROM for immediate access. 

4This figure is reduced to 348 bytes for the prototype. 



-14- 

In development, it is possible to test the CPU board as an entity. 

A first test verifies operation with a VDU echo check. This checks the 

VDU, the connections, the UART, and certain elements of the processor. 

A second and very important test verifies the RAM by writing and reading 

every location using a checkerboard or similar pattern which exercises 

every bit. The VDU is used to control and display results of the test. 

A further memory test is "static hold" in which a pattern is written into 

memory and read back for verification at a later time, perhaps several 

seconds to minutes. Semiconductor memories sometimes exhibit the dis- 

turbing failure of losing data after a short time. 

Self-tests to be performed on the complete module under software 

control include: 

(1) Write known pattern into receive data FIFO, read out via CAMAC and 

verify. 

(-2) Same on receive control FIFO. 

(3) Load known pattern into transmit data FIFO and use micro to confirm 

it. 

(4) Same on transmit control FIFO. 

(5) Exercise MODEM controls, read back MODEM status using a test plug 

on the V.24 connector. 

(6) Verify CAMAC input and output registers by writing from CAMAC into 

the CAMAC input register and echoing this on the output register 

(to exit this routine a special code will have to be used, such 

as all "ones"). 

(7) Finally, a complete test in which the serial output and input of 

the MPCC chip are tied together, and a complete block is sent from 



-15- 

the CAMAC processor, sent and received by the MPCC, read out and 

verified by the CAMAC processor against the original message. 

This list is not meant to be complete, but simply indicates the type of 

tests that can be performed to debug, verify operation, and diagnose 

faults. 

9. - SOFTWARE DEVELOPMENT 

One of the keys to success of this project is the ability to develop 

and debug software. Thus it is important to accomplish as much software 

development on the local computing center as possible. Assembly of Z-80A 

code using the computing facility is an obvious requirement. This 

assembly should go as far as possible in providing feedback to the pro- 

grammer. It is also quite important to have a software simulator 

available which can then run the machine code and thereby provide even 

more feedback to develop proper software. Of course, how far one can 

go with a simulator of this sort is debatable, since it obviously cannot 

run with real machine timing or I/O. However, the closer the simulation 

approaches the ideal, the faster and easier checkout will be when it runs 

in the actual module. 

It is a further requirement that code developed on the local computer 

should be downloaded into the module via CAMAC. 

Interactive routines are necessary which will permit an operator 

using the VDU, when connected, to display locations and areas of memory, 

and to modify particular locations, as well as initiate the program at 

desired memory locations. During the course of hardware development it 

is necessary to produce various EPROMS to exercise portions of the system. 



-16- 

These programs should be produced on the local computer and directly 

downloaded into EPROM. Facilities for reading and verifying EPROMS 

should also exist. 

In the event that proper facilities on the local computer cannot 

be provided or depended upon, then a development system should be strongly 

considered. The ZDS-l/40 and Futuredata are standalone disk-based 

systems with software support and real time emulation for checkout of 

the user system. 

10. ACKNOWLEDGEMENTS 

The development of this module has been a collaborative effort of 

many people at Daresbury. These include J. Alexander, D. Hines, 

P. Kummer, H. Kirkman, E. C. G. Owen, A. C. Peatfield, M. Powell, and 

I. Smith. In particular, the basic concepts of using the FIFOs, and 

the nature of the LAM structure were suggested by A. C. Peatfield. 

I. Smith and D. Hines provided the preliminary timing analysis - 

Appendix D. D. Hines developed the Z-80 assembler, and M. Powell wrote 

the initial testing programs and the first operating program. P. Kummer 

provided Requirements - Appendix A. 

The author wishes to acknowledge the efforts of co-designer 

J. Davis, who was especially helpful throughout this project. 

Construction of the prototype was handled efficiently by the 

Daresbury Electronics Shop under K. Evans. 



I 

-17- 

APPENDIX A 

MODEM DRIVER MODULE FUNCTIONAL REQUIREMENTS 

Required: JJDLC (X.25, level 2) 

Checksum calculation/checking 

Elimination of synchronism 

_ Framing (flag detection) 

Error status reporting 

Cheap, simple module 

Useful: Byte oriented protocols (requires intelligence in module) 

Note: The HDLC chip does all of "required" except elimination 

of synchronism. 

Recommendations 

1. Byte protocols should only be included if the buffering required 

to eliminate synchronism needs a micro to organize it sensibly. 

2. The module should be capable of handling I-frame lengths of 278 

bytes. 

3. The number of buffers required is: 

2 input data buffers (278 bytes each) 

3 input control data buffers (4 bytes each) 

2 output data buffers (278 bytes each) 

Note: This is a minimum requirement - more would be nice but not 

essential. 



-18- 

Speed 

48 KBPS HDLC (full-duplex) 

9.6 KBPS Byte (full-duplex) 

Byte Protocols 

HASP upto 430 bytes/block half-duplex, i.e., only 1 buffer required. 

@SC) upto 9.6 KBPS 

CDC upto 1050 bytes/block half-duplex 

upto 4.8 KBPS 

Prototype 

Using FIFO buffers then a prototype module with at least 320 bytes in 

each direction will be of use for: 

- our present communications protocol (Daresbury) 

- testing of X.25 level 2. 



-19- 

APPENDIX B 

SOME GENERAL COMMENTS ABOUT THE DIFFERENCES BETWEEN 

THE 8080A, 80858 and Z-80A MICROPROCESSOR CHIPS 

(1) The Zilog Z-80A is 100% upwards software compatible with the INTEL 

8080 family; all 8080 code will run on the Z-80A. 

(2) Z-80A clock rate (4 MHz) is twice as fast as "conventional" 8080A, 

although not as fast as the newest 8085A-2 (5 MHz). Instruction 

execution times range from 1 usec to 5.5 usec. 

(3) Z-80A bus has 8 bit bidirectional data, 16 bit address, and data 

bus control signals directly from the chip. The 8080A requires 

another chip (8228) to generate some control signals; the 8085 

has a partially multiplexed address/data bus. Thus the Z-80A 

appears to have the simplest, most easily used bus. 

(4) Z-80A requires single phase TTL clock; 8080A requires two phase 

clock, generally supplied with another chip (8224); 8085 is fully 

integrated and requires only a crystal. 

(5) Z-80A requires only +5v d.c. supply while 8080A requires +5v and 

-5v and +12v d.c.; 8085 requires only +5v d.c. 

(6) The 8085 has a serial I/O port. Neither the 8080A or Z-80A has this 

capability integrated into the chip. 

(7) The Z-80A has built in dynamic RAM refresh circuitry. The other 

two do not. 

(8) The 8085 instruction set is the same as the 8080A except for two 

additional instructions associated with an expanded interrupt system. 



-2o- 

(9) The Z-80A has two sets of internal registers, for the A, B, C, D, 

E, H, L and F registers. These can be interchanged with two 

instructions in 2 nsec. This operation is quite useful in interrupt 

handling. 

(10) The Z-80A has two 16 bit index registers not present in the 8080A 

or 8085. These permit indexed addressing from a base address. 

Relative addressing (relative to the program counter) is also 

provided in the Z-80A for jump instructions, but not in the 8080A 

or 8085. 

(11) The Z-80A has instructions for independent setting, resetting and 

testing of bits in any of the registers, or in memory. These 

instructions are not available in the 80808/8085. They could be 

quite useful in the communications application, or in any general 

control environment. 

(12) The Z-80A has some interesting "block move" and "block search" 

instructions not available in the 8080A/8085. In "block move" 

bytes are transferred from/to sequential bus addresses (blocks). 

They can be executed singly or automatically repeated.until BC= 0 

(BC = word count). In "block search" sequential bus addresses 

(blocks) are compared to the byte in the accumulator. Again this 

can be executed singly or continuously until BC= 0. The Z flag = 1 

if comparison is achieved. 

(13) Similar "block modes" for input and output are available in the 

Z-80A. The 80808/8085 input/output is based upon single 8 bit 

transfers to/from the accumulator with an 8 bit address code on 

Ao-A7 (multiplexed in the case of the 8085). The Z-80A has this 



-21- 

mode, of course, and in addition can move data to/from sequential 

memory addresses either singly or repeated until B=O, with an 

8 bit address code on Ao-A7. 

(14) Interrupt systems of all three chips are somewhat different, with 

the Z-80A probably being the most flexible. 

(15) All three devices have bus signals to "hold" the processor for 

slower I/O or memory. All three also have bus request signals 

to "tri-state" address, data and control, in order to permit DMA 

and other devices to gain access to the bus. Differences between 

the devices in this area seem to be relatively minor, although 

'terminology is quite different. 

(16) This comparison is not intended to be complete, objective or 

unbiased. 



-22- 

APPENDIX C 

RAM BASED FIFO 

Due to the low capacity of available FIFOs compared with RAMS some 

work was done on the design of a FIFO based on fast 1Kx 4 RAMS. Using 

four such chips one can design an equivalent FIFO function with a 

capacity of 2K bytes. This is possible since the maximum dataway speed 

of 1 MHz permits interleaved read-write cycles in a fast RAM (200 nsec). 

The general approach is shown in Fig. C-l for the receive data FIFO. 

Although the design of the transmit data FIFO is similar it is recognized 

that a complication is added by the functional requirement of generating 

a LAM when the transmit FIFO is ready to receive another block or frame. 



-23- 

APPENDIX D 

PRELIMINARY TIMING ESTIMATES FOR X.25 

The flow chart (Fig. D-l) shows a preliminary estimate of Z-80A 

timing to handle both a transmitted byte and a received byte in X.25 

mode. This work assumes: 

(1) IQCC-chip status is read in a system status byte. 

(2) All applicable registers are memory mapped. 

(3) FIFO p or t s are each separate memory addresses (each FIFO byte 

has a separate memory address). 

(4) 16 bit CAMAC words. 

(5) 4 MKz Z-80A operation. 

Timing of other operations such as end of block, beginning of block, 

are not included in this preliminary estimates. 

The flow chart indicates that it takes 106.5 nsec to handle both 

bytes. At the required synchronous speed of 48 KBPS each byte must be 

serviced in 167 nsec in order to avoid receive over-run or transmitter 

under-run errors. It appears likely from this estimate that the module 

will handle X.25 at 48K BPS. 



-24- 

-I- 

i 

Fig. 1. Block Diagram. 



-25- 

COMMAND DESCRIPTION BITS X Q 

g.F(O).A(O) Read Rec. Data FIFO1 16 or 8 1 Data Avail. 

g.F(lG).A(O).Sl Write Trans. Data FIFO1 16 or 8 1 Space Avail. 

Y.F(l).A(O) Read Rec. Control FIFO1 16 1 Data Avail. 

g.F(17).A(O).Sl Write Trans. Control FIFO1 16 1 Space Avail. 

N.F(.l).A(I) Read CAMAC Output Reg.2 8 1 Data Ready 

N.F(17).A(l).Sl Write CAMAC Input Reg.2 8 1 Reg. Ready 

N.F(25).A(15).Sl Initialize Module, Clear All 1 -- 
FIFOs, Reset Z-80A,3 Clear 
Interrupts where applicable, 
Set LAM Masks to "0". 

z.s2 Same as N.F(25).A(O) 1 -- 

N.F(l).A(14) Read LAM Req. Reg. 5 1 0 

N.F(1).A(13) Read LAM Mask Reg. 5 1 0 
"1" = Enable 

N.F(17).A(13).Sl Write LAM Mask Reg. 5 1 0 
"1" = Enable LAM 

N.F(l).A(12) Read LAM Status Reg.2 
"1" = Error 

12 1 0 

N.F(8).A(15) Test L 1 L State 

Notes: 

(1) These operations are CAMAC single address block transfers. FIFO 
clocks on Sl (Write), S2 (Read). 

(2) This operation clears the respective LAM Status on 52. In the case 
of N.F(l).A(12) it clears only the error bits (Bits 5-12). 

(3) Micro executes from memory location 0 after a reset. 

(4) Prototype module commands slightly different. 

Fig. 2. CAMAC Commands. 



-26- 

FIFO ERRORS 
(SEE BELOW) 

&--* ---- 5\---------I 

LAM STATUS N.F(I)A(IZ)READ 
---m-e---- 

DISABLE-ZmS2 LAM MASK (F-F) N~F(IT)~A(l3)WRITE 

OR N*F(25)*A(l5)*S, 3 N=F(I)*A(I3)READ 
-m---m---_ 

LAM REQUEST -NeF(I)*A(I4)READ 
-w-----w-- 

FIFO ERRORS 
5 OVF-REC. DATA 
6 OVF-TRANS.DATA 
7 OVF-REC. CONTROL 
8 OVF-TRANS.CONTROL 
9 UNF-REC.DATA L 

IOUNF-TRANS.DATA 
II UNF-REC.CONTROL 
I2 UNF-TRANS. CONTROL 
0VF:ATTEMPTED WRITE TO FULL FIFO 
UNF:ATTEMPTED READ TO EMPTY FIFO 

LAM REQUEST BITS 

I REC.CONTROL FIFO HAS WORD (2 BYTES) 
2 TRANS. DATA FIFO HAS SPACE 
3 CAMAC INPUT BYTE READ BY MICRO 
4 CAMAC OUTPUT BYTE LOADED BY MICRO 
5 ERROR IN FIFOS ("OR" OF STATUS BITS 5-12) 10-79 

3716A2 

Fig. 3. CAMAC Interrupt-(L) System. 



64K 
BYTES 

"%sES 

-27- 

MEM.MAP PORTS FFFF 
64 ADDRESS MAX FFCO 

4K RAM 'ZFFF 

EXPANSION f 

4KRAM :FoFoFo 
4 

10‘00 
3K EPROM OFFF 
EXPANSION 4 

IK EPROM % 
t 

. 0000 
MEMORY ADDRESS SPACE 

IO-79 (NOT TO SCALE) 

OUT: LATCHES FOR LEDS FF 
ASYNC DATA 

IN: t44;;; %-&ATUS 

ASYNC DATA 
00 

I/O PORTS 
pP BOARD ONLY 3716A7 

Fig. 4a. Memory Map. 



-28- / 

MICRO SIDE 
NOTES 

0 ALL FIFOS 16 BITS WIDE 
(DATA OPTIONALLY 8 BITS) 

a 
el6 BITS- 

TRANSMIT 
CONTROL 

I 

FRAME I' 
DATA 

ZEROES 

- FRAME2' 
DATA 

ZEROES 
I 
I 
I I 

I 
L 

TRANSMIT 
DATA 

I 

i 
1 

ZEROES @ 

FRAME2 
DATA 

ZEROES 

FRAME I 
DATA 

t 

REC. 
DATA 

@ W.C.rWORD COUNT, 
INCLUDES STATUS AND 
SEQ.NUMBER 

@ FRAME DELIMITER 
INCLUDES SE&NUMBER 
(2 OR 3 BITS) 

4-16 BITS- 

REC. 
CONTROL IO-79 

371OA3 

CAMAC SIDE 

Fig. 4b. FIFO Map (Example). 



(3 
HAL 

-29- 

MICRO-PROC. COMM. 

a @I @ 
Q@ ENABLE 
Qdb 
Q@ 60 

I 
Q@ L 

Q@ @ 

Q@ ERROR 
Q @0 69 @ 

e, REC TRANS 
FOLLOW STATUS 
LATCH @ c3 

REK7ANS 

) 60 63 @ @ 
,T RESET INTR 

RcEoc~Tii~ALNs 
FIFO 

0 
CAMAC x 

TERM I MODEM 0 

63) =LED 
@=SWITCH 

- MODULE ADDRESSED BY MICRO 

-OVERALL L 

-FIFO ERROR 

-MPCC STATUS BITS 

-FIFO DATA AVAILABLE 

-CONTROL FIFOS CONTAIN INFO 

-MODULE ADDRESSED(CAMAC) 

MODEM 
CONTROL 
SIGNALS 

1 FOR DATA 

NOTE I: 4 
ACTUAL PROTOTYPE 

10-79 
3716A4 4 WIDTH CAMAC' MODULE 3 DOUBLE WIDTHS 

Fig. 5. Prototype (Wire-Wrap) Module Front Panel. 



) -3o- 

Z-80A BUS 
I I 

- 

IKx4 
RAM 

> 

4 

lKX4 IKX4 
RAM RAM 

'rt EMPTY S2 N*F(ObA(O) 

READ 
N*F(ObA(O) 

READ ON SI;COUNTAND WRITE ON S2 

*REQUEST A WRITE CYCLE WHEN SECOND BUFFER IS 
LOADED BY MICRO. ANOTHER OPTION IS TO HAVE A 
SINGLE PORT AND AUTOMATICALLY REQUEST A 
WRITE EVERY OTHER LOAD CYCLE. 

N*F(ObA(O)S2 

I 
1 READ 1 

AW LF-’ 
ADDR : 

IO 

WRITE REQ, CYCLE 
CONTROL 

WE 

FULL 

EMPTY 
COUNT 1 to-79 

3716A.5 

Fig. C-l. RAM Based FIFO (Receive). 



-31- 

WRITE 52.25~s 
READ 54.25,us 

(3p) 

1 FETCH ADDRESS 1 

FETCH DATA BYTE 

a G'vE T: CHlP P 

t 

MODIFY ADDRESS 
& STORE BACK 

7P 

t 
FETCH COUNT 8, 

DECREMENT 
9.5ops 

- 

J 10-79 
3716A6 

Fig. D-l. Flow Chart - Read and Write Byte. 


