SLAC-PUB-2418
October 1979
1 (I)

EXPERIENCE USING THE 168/E MICROPROCESSOR
FOR OFF-LINE DATA ANALYSIS*

Paui F. Kunz, Richard N, Fail, Michael F. Gravina,
John H. Haiperin, Lorne J. Levinson, Gerard J. Oxoby,
and Quang H. Trang

Stanford Linear Accelerator Center,
Stanford Universitg
Stanford, Caiifornia, 94305

ABSTRACT

The 168/E 1s a SLAC deveioped microprocessor which
emuiates the 1BM 360/370 comguters wit
speed of about one half of a IBM 370/168. These pro-
cessors are used in parailel for the track finding and
gcometry programs of the LASS spectrometer. The system
is coutrolied by a PDP-1l minicomputer via a three port
interface which we call the Bermuda Triangie. The tape
handiling and downloadin§ is controlled by one of SLAC's
IEM computers via a SLAC built interface between the
I'pP-11 and an IBM channel. Initially, there will be a
system of 6 L68/E’s which should be abie to give six
times the production capacity than can be attained by
running production jobs on the SLAC Tripiex system,
The cost of the system, including the channel inter—
face, is $120,000 and ;et it yieids the equivaient com-
puter power of 3 IBM 370/168°s. Hence, this system is
an extremely cost-effective method for off-iine data
analysis.

INTRODUCTION
In recent years, we liave seen the construction of

many large spectrometers at High EnerEy Physics labora-
tories. These spectrometers are capable of taking data

at such a rate that the amount of computing time re-—
quired for the data anaiysis has become a major prob-
lem. At

SLAC, for example, an exgeriment on the arge
Aperture Solenoid Spectrometer (LASS) has collected 50
milliion triggers on tape, with about 40 miilion good
events, An average of 0.5 sec of 370/168 CPU time is
required for each good event to read the raw data, do
the basic event reconstruction, and output the resuits
for each successful event. The software program for
these spectrometers generally takes many man-years to
develop om A lavee compntetr system, and is vften
changed as it 1is better understood. It is therefore
not easily removed from the large computer on which it
was developed.

The goal of this project has been to add to the com—
uter center inexpensive hardware that can execute
gdentically the same pro%ram and get the same results
as the large computer. his led to the development of
the 168/E "microprocessor [l,2]. It "emuiates' those
IBM 370 instructions that are generated by IBM’s FOR-
TRAN compiler and its speed is about one half of an IBM
370/168. We are attaching 6 of them to one of the cen-
tral IBM computers. This hardware is sufficiently pow-
erful that the elapsed time to do all the event recon-
struction for an experiment can be shortened by many

years.
. GENERAL FEATURES OF PROCESSOR

The 168/E consists of an integer CPU, a floating

point processor, memory, and an Interface. They are

all buiit on boards measuring about 12 by 16 inches,

which are identical in their VAX

-computers.

Integer CPU

The integer CPU circuit is based on the 2901, which
is a LSI bit siice microprocessor chip introduced by
Advanced Micro Devices in the summer of 1975, This
board handies the foilowing tyges of IBM 360/370 in—
structions: 16 bit integer, 2 bit integer, 32 bit
logical, all conditional branching, and all memory ad-
dressing. It has a 150 nsec cycle time. The through-
Yut on FORTRAN programs has been measured to be between

.3 to 1.8 times siower than a 370/168. The only no=-
ticeably siow instruction when compared to the 37%/168
is multipiication. A prototype wire-wrapped processor
has been functioning since the summer of 5877. The fi~
nal board wili be an 8 1layer printed circuit board and
it costs $600 complete with components and Iiabor for
assembly.

to those used by DEC

an execution

" point arithmetic.

Fioating Point

The fioating point processor consists of two circuit
boards. It is entirely M3I logic but uses the "new'"
MSI circuits which have be introduced to support the
LSI components. The processor handies ail IBE 360/370
single grecision f}oating point instructions with ex-
actly the same results, it for bit, as the 370/168.
But since the single precision format of IBM contains
only a 24 bit mantissa, sume form of extended precision
is required to do the LASS production code. or exam—
ple, when calcuiating where two heiical trajectories
representing the path of charged particles in the LASS
magnet intersect, we require a precision better than
the resolution of the detectors. This is not possiblie
with the 1BM singie precision format when the radii of
curvature are large. It has been found experimentaily
that about 8 more bits are required in the mantissa to

do the calculation with sufficient precision. On the
360/370, one deciares the important variabies double
precision which adds 32 additional bits to thé man-

tissa. On the 168/E, we bave made a compromise between
true emuiation and circuit cost and complexity. The
fioating point processor has pscudo-double precision
instructions which add 16 bits to the mantissa, Thus
the processor can do either 32 bit or 48 bit floating
The cycle time of the processor is
either 100 or 150 nsec depending on the instruction.
It operates with an internal Read-Only-Memory (ROM) to
control the steps in a floating point operation. The
performance of the rocessor is about a factor of two
slower than the 370/168. Again, only multiplication is
a_noticeably siow iInstruction when compared to the
370/168. The circuit boards are 8 layer printed cir-
cuit boards. The cost of the fioating point processor
is $1200 complete with components and lagor.

Memory

The memory for the 168/E is in two parts, one for
the Frogram and the other for the data. Both are bhasad
on the Intel 2147 memory I.C. The Intel 2147 has be-
come the industrial standard circuit although onily la-
tel has large production expevience now. Severzl other
companies have just announced they are ai<n producing
it. This circuit contains 4,096 words by 1 %it with a
70 nsec access and cycle time, It has a unique feature
in that when the memory is not beiny addressed, it pow=
ers down to 1/5 of its normal operaving current. Thus
a processor with 8 memory boards draws only as much

ower as one memorg board pius 7/5 of one memocy board.
Since each memory board draws about 25 watcts, coasider—
able power 1is saved in the system,

less heat is generated which is a major factor in 1.0,
component failure. The current tist price is about $25
each in larﬁe quantities. The memory board is a 4
layer printed circuit board with one haif containing 32
memory circuits for data and the other haif containing
24 memory circuits for)rOEram. That is, one memory
board contains exactly &6 bytes of data and 4096 wi-
croinstructions which' is about 8 K bytes of IBM object
code or about 500 lines of FORTRAN. The cost of the
board is $1600, i.e. about $50/K byte for data and
$75/K byte for program. By comparison, minicomputer
add-in memorg is commerciall{ availabie for about $30/K
byte. The higher cost of the memory for the 168/E is
because the memory must be fast enough to
within a processor cyclie time.

and considerahly

respond

Interface

The 168/E is not capabie, as. currentiy designed, of
doing any input or output instructions. It can ecnly
address its memory. The interface - allows a real com-
puter to 1load the memories with program and raw data
and to read the processed resuits. The interface is
very simple. Either the processor or the interface
controls the memory and never both simultaneousiy. The
interface control logic can shut off the rocessor so
that it releases the memory busses. Then the interface
can take the busses, read or write to the memory, and
start the processor.

* Work supported by the Department of Energy under contract number DE-AC03-76SF00515.

Presented at the 1979 Nuclear Science Symposium, San Francisco, California October 17-19.

OBJECT CODE TRANSLATOR AND LINKER

The 168/E microprocessor does not execute IBM
360/370 instructions directly. Instead, a program
called the "transiator" converts IBM instructions Into
168/E microinstructions. The input to the translator
is either object code from the IBM FORTRAN compiler or
a Link-Edited load module, The outputs are a relocata-
ble microinstruction object code and a data set for the
168/E data memory, Most 1IBM instructions transiate
into |l to 3 microlustructions. We call this program a
transiator because it does not make any fundamental
change in the original code. If a certain register is
used in the IBM instruction, then the same register is
used in the microimnstruction. In memory fetches, the
displacement fieid and the index and base registers of
the IBM instruction will be identical in the microin-
struction. Even the 4 bit mask in conditional branch
instructions is the same in the microinstruction and
the original IBM instruction. The data set for the
168/E data wemory is a copy of the constants and varia-
bies which are part of the original IBM code.

Another program we call the "linker" does two jobs.,
First, it does the job of the IBM Linkage-Editor by
reading the relocatable microinstruction object moduies
and linking them together. Second, it forms an abso-
jute memory image which can be loaded into the 168/E
memories. ~That is, it gives an_absoiute address to ali
the COMMON biocks and also the local memory space. It
resolves external references from a iibrary of object
modules where, for exampie, the FORTRAN Library Func-
tions have been translated and stored. Unlike 1ts IBM
cousin, the linker has an optional input with which the
user can assign the address of the COMMON biocks. This
feature is used to make the data memory overiays which
are described later,

CAN A MICROPROCESSOR DO THE BIG JOB?

cost a microprocessor that
can be programmed in FORTRAN and has a speed which is
no worse than twice as siow as a 370/168, is a fine
achievement. But due to the design choices that have
been made, it is still fair to ask the question: can it
do the real number crunching job that we have with the
LASS production code?

Having built at very low

First of all, to be useful it must do a significant
fraction of the time consuming part of the job. With
the LASS production code, well over half of the CPU
time is spent in the subroutine which finds tracks in
the solenoid detectors. Thus the 168/E must be abie to
execute this subroutine and all the subroutines it
calls to be a useful processor. This part of the pro-
gram 1is slipghtly over 32 K bytes of executable code and
it translates to a littie over 16 K microinstructions
which i1s_ 5 163/E memory boards filled on the program
side, In addition téis sart of the program requires
about 90 K bytes of space Yor varjables 1In COMMON and
ilocal to the prograwm which is 6 163/E memory boards
filied on the data side. The 168/E can thus handie
this part of the program from the point of view of the
amount of space it requires.

The next question 1is whether the subset of 360/370
instructions that the 168/E can emulate is sufficient,
In this part of the code, we found the two types of
FORTRAN statements which lead to IBM instructions that
can not be emulated b% the processor. These statements
are the computed 0 TO = statement [for example:
GO TO (10,20), N] and statements using one byte logical
variables. It turns out, however, that their eiimina-
tion is a good idea anyway. The computed GO TO state-
ment is iess efficient 1in time than a series of IF
statements for a small number of possible branch ad-
dresses and use of the one byte variables is definitely
iess efficient in CPU time than setting flags in a
16 bit integer wvariable. :

Thus, the 168/E processor couid be used to take the
most time consuming part of the production code away
from the central computer. However, the event by event
input to this part of the code 1is very 1large; much
ilarger than the original raw input tape data. This is
because the first part of the code unpacks the raw in-

teger data such as wire numbers, widths, etc., into
bdanks of fioating point coordinates appropriately
scaled, aligned, and corrected. The output from the

time_consuming routines is also much larger than the
final resuit record, because this part of the code gen-
erates large banks of intermediate data which they pass
on to subsequent routines. In order to avoid sending
large amounts of data from the host computer to the
processor and back again, it was aliso decided to runm
the unpacking eodes on the 168/E. But with this addi-
tional code, the amount of 168/E memory required wouid
be very large, The solution to this probiem is the
same as with all computers when the code is larger than
the computer’s memory; one must overiay the program

into the processor’s memory. Once overlays were
necessary, it was easy to extend this technique” to that
code which is executed after the time cousuming part,
inciuding the formatting of the resuit tape record.
The choice was to do overiays or increase memory size.
Since memory is_ the most expensive component of the
168/E, and overiay time would be oniy 10% of the exec—
ute time, we chose to do overlays. %he net result was
the decision to execute all of the production program
in the 168/E from raw input data tape to final result
data tape,

DEFINING THE OVERLAY STRUCTURE

To define an overlay structure for a program takes
knowledge of the program®s structure and flow. The
overiays for the 168/E were defined in the following
way:

1. Each overlay should be called only once per event

to prevent losing real time in doing the overiay.
2. The size of the overlay is determined by the larg-
est piece of code which satisfies the “above re-
striction after oné has tried to break the code u
into the smallest pieces. In the case of the LAS
production code, the solenoid track finding wen-
tioned above is the largest overiay.

3. The number of overlays is determined by fitting the
rest of the code into pieces whose size is deter-
mined by the criteria above.

Defining the overiays for the LASS production code
was relatively simple, Since the code proceeds from un-
packing to result formattin serially in several logi-
cally separate parts, The overlays for LASS prod-
uction code are as follows: ‘

N
1. VUnpacking raw coordinates into corrected floating
point banks.

2, Counting the number of match points (or space
points) in order to kiil the event if there are too
many, and finding beam tracks.

3. Finding tracks in the downstream spectrometer and
following these tracks through the dipoie to the
region between the dipoie and the solenoid.

4, Following these downstream tracks through the sole-
noid up to the target.

5. Finding tracks in the solenoid starting with points
in the plane and cylindrical chambers.

6. Fitting all tracks found to a 5 parsmecer nsiix.

£l

7. Foliowing the tracks found in the solenold dows=
stream to the Cerenkov and Time-of-Fiight counters.

8. Doing the vertex reconstruction on all fcound tracks
inciuding the beam track.

9. Formating the resuit record, and accumulating sta=
tistics on chamber efficiencies, ete,

With each overiay, the executabie code is transiated
and saved as_a 168/E program overiay. Uniike overlays
on most real computers, subroutines which appear in
more than one overlay such as SIN, COS, SQRT, etc., are
simply duplicated. When an ogveriay is ecxecuted on the
168/E, ail of the processor’s program memory wiil be
overwritten. The transiation also creates a data set
which contains all the coastant and vavlzbie data which
was internal to the subroutines. We cali this the

Local Memory and it may be defined as 2li the data
space a program uses which is not in a COMMON block.
The local memory also necds to be ioaded into the 168/%
data memory when the program memory is loaded witi an
overlay. For the LASS production code, the iccal mem-
ory is typically 10% of the data memory required by an
overliay.

With the overiays described above, the 168/E can
handie programs much larger than can fit into its wem
ory at one time. Still larger programs can be handied
by further overlaying the remaining data wmemory which
contains the program’s COMMON biocks. In order to do
this, additional knowledge of the program is needed.
One would iike to know exactly in which overiays a COM-
MON is needed, in which overlays data is stored into
the COMMON and in which overiays data is fetched from
the COMMON., If for example a COMMON block is used only
in overiays 3, 4 and 5; then this physical data space
can be used for other COMMON's whicR are oaly used in
overlays 6, 7, and 8.

A method has been developed to study the whoie pro-
gram in this ievel of detaii [3}. When cach subroutine

is compiled and object code loaded into a load module
library, a data set is created which contains a summary
of the COMMON block usage. We call this data set an
“Index File” and it contains one line for each variable
referenced in each COMMON bilock, The iine contains the
name of the subroutine, name of the COMMON block, the
variabie name, its offset from the start of the COMMON
biock, its iength, and the length of the COMMON. It
aiso cuntains the Store, Fetch, and other flags gener-
ated by the FORTRAN compiler.
vidual data sets into one master index file now com-
ietely details the use of every variable in every
OMMON block for the entire program. The master fiie
is easily updated, at the time a subroutine is updated
into the load module library, since only the entries of
the master file pertaining to that "~ subroutine are
changed. This master index file, along with a file
which states which subroutines are to be wused in each
of the overlazs, can then be used as the data base for
programs whic analyze the COMMON biock structure of
the program.

It was quickiy reaiized that COMMON biocks couid be

put into one of three categories:

Coilecting these indi- °

variables are
event basis.

3. Mixed. These are COMMON blocks which contain both
constants and variables in the sense defined above.

generated and used on an event by

Since constant_ COMMONs never
they can be easily written into the 168/E data memory
as required for a particular overlay. In a sense,
they are logically similar to the local memory of the
subroutines which is rewritten into data memory as re-

change their contents,

uired. We have chosen to do this even for constant
OMMONs which are used in more than one overiay. Ex-
cept for the iarge banks of constant COMMONs "used in
the unpackinE overlay and the large constant COMMONs
containing the magnetic field map, the total size of
the constant COMMONs is less than the local memory.
The contents of the variabie COMMON bilocks 1is cre-

ated by the 168/E in the course of processing an event,
For practical reasons once a block has been created it
remains in the 168/E data memory for as many overiays
as it is needed, then it may be overwritten by other
COMMON biocks, either constant or variable, in succeed-

ing overlays.

1. Constant, These are COMMON biocks in which ail the

variabies never change in the course of processing

an event. They may be initialized in the first

phase of the groduction program by BLOCK DATA

statements, reading disk files, and/or by calcula-
tion in subroutines called once per job.

These are COMMON biocks in which ail the

Mixed COMMON biocks could be handied in another way,
but for simplicity they were eliminated, i.e. the comn-
stants and variables were moved into other or new COM-
MON bilocks which were either gure constant or pure var-
iable. For the LASS production code, less than 10% of
all COMMONs were “mixed” when the code was first stud-

2. Variabie. ied in this manner.

OVERLAY NUMBER

I 2 3 4 5 6 7 8 9
- LMO7 '
LMot | LMOZ | Mo3 | moa LMO6 Lmos | Lmo9
LMOS5
K c! . 2 :
10 s C's C's C's
cotcom oy i L
QMESH A COORDS —
20K ARSNIC bz
JUNK9 >
C's 2
JUNK2
30K JUNK4
/ VERALL }-
JUNKi DIPART Aéé;/
@ 40K ~ I T VEVERT
17 3
4 ARSNIX &
8 CDDYNA s PTBANK <
. e o
> 50K — PCDYNA @
& JUNK3 OUTPUT o
7 TRKBNK =
2 = weur D 000 3
= TN, T, @
60K — DYNA
WIDTHS
SCTOUT —
70K
IV9's
5
SUMMR2
80K —
MSSTAT [~
AVRG
90“/%/ //W / 6
10-79 169582

Figure 1: Data Memory Overiay Load Maps

With the master index as a data base, software tools
have been developed to generate data memory Iload maps
for all the overiays. An example is given in figure 1.
The ieft hand vertical scale is data memory location
expressed in bytes, and the nine columns are the nine
overlays. Note that one first 1loads the local memory
(LMOl through LM09) into the iow addresses of the pro-
cessor, then the constant COMMONs. The boxes that are
iarge enough have their COMMON block name written in
them, while groups of smaller COMMONs are designated by
"c s", The unpacking overiay, number 1, has a large
number of constant COMMONs and the magnet field maps
have two large COMMONs iabeled QMESH and DIPART in ov=-
eriay number 3. Banks of coordinates gererated in ov-
eriay 1 are stored in COMMONs DYNA aand WIDTHS; they are
usad by all the following overlays. Other COMMONs such
as FTBANK are generated at a later overlay, then saved
until the end of processing the event,

The net effect of the data memory overlayin is a
substantial saving in mcmory required by the 168/E pro-
cessor. Since memory is the most expensive part of the
processor, enough money is saved to add more processors
to the system. If all the COMMONs were loaded into the
mewory at one time, it would require over 250 K bytes
of data memory; but with the overlaying only 90 K bytes
is re?uired. On the program side, if all the code” was
ioaded into the program memory at one time it would re-
quire over 120 K microinstruction words, whiie with the
overiays less than 20 K micro instructions are needed.
One pays the cost, however: the processor is idie dur-
ing the transfer of the data and program into its mem—
ory, For the LASS production code, we have measured

that the total time spent overlaying is 90 msec per
event. This is less than 10% of the average event ex—
ecution time on the processor which is over 1 second
per event. Thus, we feel the overiaying technique is a

roduction code and in the fol=-

good compromise for our
escribe

lowing sections we will

W the scheme for imple-
menting the overliays.

BERMUDA TRIANGLE SYSTiM

The Bermuda Triangle system, shown in figure 2, 1is
our method of overlaying the 168/E memor{. he Bermuda
Triangle is a three wa§ interface with 1/0 orts to a
iarge buffer memory, a PDP-11 UNIBUS, and a bus to the
168§E processors. Data may be transferred bidirection-
ally between any two ports, Two Bermuda Triangles are

used, one for the program memory and one for the data
wemory.
The first port of the Bermuda Triangie is to the

buffer memories. The program buffer memory, with 128 K
words by 24 bits, is large enough to hold a singie copy
of all " the gro ram to e executed. The data buffer
memory, with 64 K words bz 32 bits (256 K bytes), is
large enough to hold ail the local memory and copies of
the constant COMMON biocks. The data buffer memory
aiso buffers events on ingut and results on output,
The memory used is slower ut much less expensive than
the 168/E" memory. The memories are implemented with
general purpose memory cards purchased from Mostek Mem—
ory Systems. Their MK8000 memory card offers up to
128 K words of 24 bits. The program memory is thus a
singie card, while the data memory is two cards depogu-
lated to 64 K words of 16 bits, The cycle time is 500
nsec with an access time of 375 nsec. e have used the
backplane and chassis that Mostek provides for
FDP-11/70 add-on memory. The signal traces on the
backplane were cut across the middie so that both the

roﬁram and data memories could plug into the same
Eac plane and chassis.

The second port of the Triangie 1is the bus to the
processors. It is a 50 line flat cabie with TTL Tri-
State drivers and receivers. The transfer uses a pro-
tocol which is essentiaily identical to the one being
develoged by the FASTBUS committee [4]. A 24 bit ad-

dress field and 32 bit data field are used. They are
time multipiexed on a set of 32 bus iines. The 4 most
significant bits of the address field are decoded to

select one processor with the remaining bits selecting
the internal addresses of the processor s memory. Thus
the bus allows direct access to any location within any
precessor. The rate of transfer on this bus is one
vord in 700 nsec. thus the transfer rate on the data
side is nearly 6 M bytes per second and on the program
side it is equivalent to nearly 3 M bytes per second of
IBM object code.

The third port of the Triangle is a PDP-11 UNIBUS.
A POP-11/04 with 40 K bytes of memory is used as the
control computer for the system. This port has 6 con-
trol registers to ailow the PDP-11 to control the data
fiow between the three ports. Care has been taken that
different software tasks in the computer have different
registers that they contrei, thus making the software
tacks easier to write.

1BM Hll .
"l Channe! HD'SKS
18M X IBM >
> l¢—» Tapes
370/168 Channel [g—3 9P
IBM
» 2860
Channel
[y
______________________ BM_
SLAC
DEC 1
P 11/
DZnhO4 oLAc
J
40KB RAM : opteol
I UNIBUS 1
y 3
Y y
Mostek SLAC SLAC SLAC Mostek
Memory Bermuda Completion Bermuda Memory
64K x 32 interrupt 128K x24

LTI

w
R T
2 tnterface s
“43 Data | Prog <
s 1687E &
< o
Q T
w a
& w
gl | —ly
Interface ©

Data | Prog

- * 188/ | ¥ -

Figure 2: The Bermuda Triangie System
The buffer memories are loaded from the UNIBUS, An
8 K byte portion of the buffer memory appears as an 8 K
byte portion of UNIBUS address. Both. these "windows"
have the same UNIBUS address, but oniy one is enabled
at a time bg a bit in their page register. Each Trian-
le has a 15 bit page register which is shifted ieft §
its and added to the offset from the start of the UNI-
BUS window to determine the buffer memory address.
Thus, from the UNIBUS one can access up to 8 M bytes of
memory in 8 K byte pages where the pages can be
aligned on any multiple of 356 bytes.,

The processors are normally loaded from the buffer
memory. From the UNIBUS port, the PDP-1l loads an ad-
dress register for the buffer memory, an address regis-
ter for the processor bus, and a word count register.
When the word count register is loaded the Bermuda Tri-

angle transfers the data until the word count is ex-
hausted. It then causes an interrupt on the UNIBUS
ort. The resuits from the processor are normally

loaded into the buffer memory in the same fashion. A
bit in the Triangle’s control status register controls
the direction of transfer.

The PDP-11 gets
the 168/E processor

access to the control registers of

by a 1 word window of the Bermuda
Triangie from the UNIBHS ort to the processor bus. In
this case the processor bus address is taken from the
same address register mentioned above. The double use
of this address register is not a problem because one
never attempts to gain access to the controli registers
of the processor wnile transferring data to or from it,
One can also gain access to the processor control reg—
isters via either the program or gata Bermnda Triangle.

CHANNEL INTERFACE

With the 168/E°s and the Bermuda Triangie, the
PDP-11 only needs a source for the raw data and a sink
for the resulits. For this purpose, we designed an in-
terface between the UNIBUS and an I/0 Channel of the
IBM 360/370 computer. Data is transferred between the
360/370 and the PDP-11 UNIBUS at fuil channel speeds
(1.2 MB/sec) with the minimum software overhead on the
IBM system. We have measured the CPU overhead on the
360/91 to be oniy 3.8 msec per event., IBM cails such a
device a "Control Unit", and it looks iike a tape drive

or a disk to the IBM computer. This means that
ordinary batch_jobs can transfer data to and from the
Bermuda Triangle system. The FORTRAN programmer gets
access to the system by a simple FORTRAK cailable sub-
routine.

Thus the IBM 360/370 reads the raw data from tape,
sends it to the PDP-ll to be processed by the [68/E -
Bermuda Triangie system, receives the results and
writes the output tape. The 1IBM system with its 24
hour staff handies aii the job scheduiing, tape mount-
ing, etc. Production ao s will be submitte to the
system as is done now, and each job will first initial-
ize the PDP-11l and buffer memories.

To synchronize the PDP-ll and 370 software, the 370
always attempts a read from the PDP-1l before a write.
When the IBM computer reads results from the PDP-11, it
obviously frees a buffer in the PDP-1l system, thus a
write can then always be done, For normal event trans-

farg the control ynit irectiy o 1
LELS, tne Contros unlt ransiers Girecti Lo Or iIrom

the data buffer memory through the 8 K byte UNIBUS win-
dow of the Bermuda Triangle, with the PDP-11l setting up
the appropriate address and page registers. 1f the IBM
cornputer attempts a read when no data is ready in the
168/F system, the control unit sends back a “BUSY" re-
sponse, When this signal is received, the IBM channel
simply queues the read command without causing an in-
terrupt to the CPU, When the data becomes ready for
transfer, the PDP-1l loads the word count register in
the control unit, and it sends a request for service to
the IBM channel. This request sggnal wakes up the
channel and the transfer is started. This is standard
operating procedure for devices on a IBM 360/370 chan-
nei. The whole data transfer procedure is handled by
the IBM channel. The IBM CPU is free to work on other
jobs from the time it issues the Start I/0 instruction
uatil it receives an interrupt that the transfer is
complete.

PDP-11 SOFIWARE

The PDP~11/04 computer has the job of controiiin
the 168/E overiays, the transfer of event data to an
from the 168/E, and the transfer of data to and from
the control unit. The job is divided into a number of
software tasks, corresponding to the non-shareablie
hardware resources, There is a task for each proces—
sor, a task for the channel interface, and a task for
ecach of the processor busses. As was mentioned ear-
iier, the Bermuda Triangle was designed so that the
hardware resources could easily be assigned to specific
softwace tasks, We have chosen a small multi-tasking
executive called SPEX [5] which aliows ail the tasks to
he resident in memory and hence no disk is required on
the PDP-11. 1t has been wused as the data acquisition
system in several experiments at FermilLab, Brookhaven,
and CERN.

Each of these tasks is "driven' by a queue of work
to do. The channel interface tasks receives raw event
data and queues it to the processor work queue. When a
processor becomes availabie, its task will take an
event, from the work queue, supervise its transfer to
the processor, its execution through the various over=-
iays, and the transfer of the results back into the
butfer memory. The processor task will then queue the
result buffer to the channel interface work queue and
start working on another event from the processor work
queue. Meanwhile, the channel interface task initiates
the transfer of resuits from the buffer memory to the
IBM channel. It then initiates a transfer of a new
event from the IBM channel to the buffer memory and
queues it to the grocessor work queue. The grocessing
cycle is started by a task which supervises the initiai
transfer of the overiays and constant COMMON blocks
into the buffer memory. "It also filis the remainder of
the data buffer memory with as many events as it can.
The individual processor tasks will asynchronously want
to send events and overlays to the processors over the
two processor busses. Since the busses can only per-
form one operation at a time, the processor tasks queue
their requests to the individual tasks which are as-
signed to the busses. The executive, SPEX, handies ail
queuing and synchronization of the tasks.

The PDP-11l itself is icaded via the channei. The
IBM computer can send a hardware "Boot'" command to the
PDP-11 so_ that each job
re-initializes the ole system. The PDP software is
written using a cross—assembler which is run on the IBM
computers, thus there is no need for any permanent
storage devices on the PDP-11 such as disks, tapes,
etc. This absence of any geripherals, other than a
terminal, shouid heip make the system very reiiable and
reduce maintenance. The D.E.C. program, ODI-11l, is
iocaded into the PDP-11 with the executive and associ-
ated tasks to aid in debugging. The complete software
for 10 processors requires 20 K bytes of PDP-1l memory,
About 700 micro-seconds of PDP-l1 CPU time 1is needed
per overlay.

on the IBM computer completely’

SUMMARY

In October 1979 this system came into operation with
one processor. It executes all of the LASS production
program with essentially the same results as an IBM 370
computer., That 1is, identicalliy the same oints are
found on all tracks in every event; only the fitted he-
1ix parameters showed some differences. Small differ-
ences were expected since the fitting of tracks to hei-
ices in the solenoid is done entirely in IBM doublie
precision. However, the differences we see are in the
least significant hexadecimal digit in the fitted track
parameters except for 2% of the tracks which are very
poorly defined.

We feel the importance of emulation can not be over-
emphasized. The LASS production code is nearly 20,000
iines of FORTRAN. It would be extremely time consuming
to have re-written this code 1in assembiy Ianguage no
less microcode. Before one could have finishe§ such a

srndact tha FORTRAN courece wonid aven umdoubhtrediv heoen
projedt Tie runinaln sdurce wWOULG ave ufidduviclly oeen

changed. With emulation not only doesn’t the code need
to be changed but aiso verification of the processor
is easily accomplished by comparing its results on a
set of events with the resuits from the same events run
on the IBM computer. Even the smallest error in the
system’s hardware 1s detectabie. For example, when we
first tried to run the LASS code on the system ounly
three errors were made. Only one of the errors led to
results which were obviously wrong. The effect of the
other two errors was only that a few extra reasonabie
iooking points were added to some of the detector’s co-
ordinate banks. The cause of one of the errors was
forgetting to load one of the constant COMMON blocks.
The cause of the other error was a bad 1.C. which oniy
had an effect when fioating point register 6 was used,
Another important advantage is having only one copy of
the source code which is used both for the IBM computer
and the 168/E processor, In fact, the input to the
translator 1s the link-edited ioad modules which are
used to run the program oun the IBM computer. When the
production program is modified, it is reiatively easy
to produce a new microprogram for the grocessor. One
just generates new memory maps for the overiays and
then re-translates the 1BM load modules,

We are now preparinﬁ to run many thousands of events
on the system and on the IBM computer. This will check
for pathological events to a level of one in tem thou-
sand or better. We are also preparing additional 168/E
processors and expect to have 0 processors on the sys-
tem by the end of 1979, We wili thus be able to start
analyzing our 50 million events with a system nearl
equivaient to 3 dedicated IBM 370/168°s running ZZ
hours a day.

ACKNOWLEDGEMENTS

We wouid 1like to thank D.W.G.S. Leith for his sup-
port and encourgagement on_ this project. Special
thanks must go to Hanoch Brafman of the Weizmann Ensti«
tute who designed the 168/E microprocessor during his
visit to SLAC. The first real test of the processor
was done with the efforts of Rafi Yaari, also of the
Weizmann Institute, who bought us the track reconstruc—
tion code from the TASSO spectrometer at DESY to run on
the processor in February 1979, Thanks aiso goes to

George Aiken and AL Kilert of SLAC who designed the
chassis for the processor.
BIBLIOGRAPHY

(1) Paul F. Kunz, The LASS Hardware Processor, Nuc.
Instr. Meth, 97(T976) p. 4357

(2) Paul F, Kunz et. al., The LASS Hardware Processor,
Proc. llth Annual Microprogrammlng Workshop,
SIGMICRO Newsletter‘g (1978) p. 25.

(3) Roger B. Chafee, GOODGNUS, CGTM No. 198 Stanford
Linear Acceleratot Tenter, Stanford, Caiif., 94305

(4) B. Wadsworth, FASTBUS - An Emerging Laboratory
Standard, a paper in this volume,

(5) SPEX: A Spectrometer Executive, General Structure,
Programmeérs Manudl, and Users Manual, J.T.
Massimo, B. Neison, L.J. Levinson, Brown
Universit Hi%h Energy Ph;sics Group Iaternal
Reports 1§3, 24, 1257 (1972)

