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ABSTRACT -- 
The 168/E is a SLAC deveioped micro rocessor which 

enui;rtrs the 1BM 360/370 corn uters wit Ii an execution' 
speed of about one haif of a !BM 370/168. 
cessors are used in Paraiiei 

These pro- 
for the track finding and 

;Zcometry pro~rnos of the LASS spectrometer. 
3s co~~trolie i 

The system 
by a PDP-11 minicomputer via a three port 

interface which we caii the Bermuda Triangle. 
handling and downi0adi.n 

The tape 

IBM rompllters f 
is controiied by one of SLAC s 

via a SLC built interface between the 
PDF11 and an IBP! channei. Initiaiiy, there wiii he a 
system of 6 168,'E's which shouid be ahie to give six 
tiaes the production capacity than can he 
running production jobs 

attained by 
on the SLAC Tri iex 

The cost of c annei t! 
system. 

inter- 
face, 

the system, 
is $12O,UOO and 

inciuding the 

5 
et it yieids the equivaient com- 

putcr power of 3 IBl! 3 U/l68's. Hence, 
an extreneiy 

this system is 
cost-effective method for off-iine data 

anaiysis. 

INTK~l!XKXION ______ 
we have seen the construction of 

for each successEui event. 
and output the resuits 

The software program for 
these spectromef;;ze generaiiy takes many - 
drvei OD L onn coolplrcrr system, afiiani~ea~Zt~~ 
chaagd 2s it i's better understood. It is therefore 
not easily ren!oved from the 
was dcveioped. 

iarge computer on which it 

The goal of this project has been to add to the com- 
EI:~~Ic~EZ~e~hel~:~Pen~:~~r~~r~~~r~ett:g:: ;zpe ;;;r;r;E 
as the iarge computer. his ied 
the 168/E microprocessor [1,21. 

lotthE development of 
emulates" those 

IBM 370 instructions that are generated by IBM's FOR- 
TRAN compiier and its speed is about one haif of an IBM 
370!168. We are attaching 6 of them to one of the cen- 
tral-IBM computers. This hardware is sufficientiy pow- 
erful that t ie elapsed time to do aii the event recon- 
struction for an experiment can be shortened by many 
years. 

GENERAL FEATURES OF PROCESSOR - 
The 168/E consists of an integer CPU, 

I~fn~u~~~ce~PE~ar~:m~~~~~~~~~u~~~~~e~~~~~. :6'lf!l? 
which are identicai in their VAS 
-computers. 

Integer CPU 

The integer CPU circuit is based on the 2901, which 
is a LSI hit siice microprocessor chip 
Advanced Micro Devices in the 

introduce$h;; 
summer of 1975. 

board handies 

nai board wiii he an 8 iayer printed circuit board and 
it costs $600 compiete with components and iahor for 
assemhiy. 

Fioating Point ___- -_ 
The fioating point processor consists of two circuit 

boards. It is uses the "new" 
MS1 circuits 

entireiy MST iogic but 
which have he introduced to 

LSI components. 
su port the 

singie recision 
The processor handles aii IBl 360/370 F 

E 
fioatin point instructions wit 

actly t e same resuits, tit for bit 
singie precision forma; of 

7 
ex- 

as the 370 168. 
But since the IBM coutains 
oniy a 24 bit mantissa, some form of extended 
is required to do the LASS production code. F 

recision 
ot exam- 

ple. when caicuiating where two heiieai trajectories 
representing the path of charged particies in the LASS 
magnet intersect, we require a precision better than 
the resoiution of the detectors. 
with the 1BM singie precision 

This is not possibie 
format witen the radii 0E 

curvature are iarge. It has been found experinrentaiiy 
that about 8 more hits are required in the mantissa to 
cl~O;~~Ocaicuiation with sufficient precision. On the 

one deciares the important variabies douhie 
precisi& which adds 32 additionai hits to the man- 
tissa. On the 168/E, we have made a 
true emuiation and circuit cost and 
fioating point processor has 
instructions which add 16 bits 
the processor can do either 32 hit or 48 bit fioating 
point arithmetic. The cycie time 
either 100 or 150 nsec 

of the processor is 
depending on the instruction. 

It operates with an internal Read-Oniy-Memor-y (ROM) to 
controi the steps in a fioating point operation. The 
performance of the rocessor is about a factor of two 
slo;;:iEk;;ithe 370/!68. Again, oniy muitipiication is 

?70/168. Tg 
siow instruction when compared to the 

cuit hoards. 
e circuit boards are 8 iayer printed cir- 

The cost of the fioatlng 
is $1200 conlpiete with components and Fl 

oint processor 
Ia or. 

Memory 

the 168/E is in two 011e fat 
the 

The memory for 

f 
rogram and the other for the data. 

p z r t s , 
Eoth are baoizi! 

on tie Intei 2147 memory I.C. The Intei 2147 has be- 
come the induotriai standard circuit although only l+~ 
tei has iacge production experience now. Stivcr;!i otltcr 
companies have just announced they are al';? produl:ing 
it. This circuit contains 4,096 w:,rds by 1 &it with a 
70 nsec access and cycie time. It has a unique Feature 
in that when the memory is not hein addressed, ir 
ers down to l/5 of its normai operai.ing current. J$;';", 
a processor with 8 memory boards draws onij as ~,ztlch 
P 

ower as one memor 
tiince each memory z 

board pius 7/5 of one memory bo.~r:i. 
oard draws about 25 watts, considcr- 

ahie 
iess IFi 

ower is saved in the system, 
eat is generated which is 

and considcr<:biy 

component failure. 
a major fac:ur in I.C. 

each in 
The current iist nricc is about $25 

iar e 
iaver nrinte 8 

quantities. The mcmbry board is h 4 
circuit board with one half coatninine 32 

memory'circuits,for data and the other haif contai.zing 

croinstructions which is about 8 K bytes of IBM object 
code or about 500 iines of FORTRAN. The cost of‘ the 
board is $1600, i.e. about $50/K byte for data and 

the memory must 
within a processor cycie time. 

Interface 

The 168/E is not capahie! as currentiy designed, of 
doing any input or out ut 
address its memory. l! 

instructions. 
interface 

It can cniy 
T e aiiows a teai cam-, 

puter to ioad the memories with program and raw data 
and to read the processed resuits. The interface is 
very simpie. Either the processor or the interface 
controls the memory and never both simultaneousiy. The 
interface controi logic can shut off the 

R 
rocessor so 

that it reieases the memory busses. Then t e interface 
can take the busses, read or write to the memory, and 
start the processor. 

--____- 
* Work supported by the Department of Energy under contract number DE-AC03-76SF00515. 

Presented at the 1979 Nuclear Science Symposium, San Francisco, California October 17-19. 



OBJECT CODE TRANSLATOR AND LINKER ~- _- 
The 168/E microprocessor does not 

360/370 instructions directiy. 
execute IBM 

Instead, 
caiied the "transistor" converts IBM instruc?lo~~o8~?~ 
168/E microinstructions. 

168/E data memory. Most IBM instructions transiate 
into 1 to 3 microinstructions. We caii this nroeram a 
transiator because it does not make any ~fundamentai 
change in the originai code. 
used in the IBM instruction, 

If a certain register is 
then the same re ister is 

used in the microinstruction. 
dispiacement fieid and the index 

In memory fete 8 es, the 

the IBM instruction 
and base registers of 

wiii be identicai in the microin- 
struction. Even the 4 bit mask in conditionai branch 
instructions is the same in the microinstruction and 
the originai IBM instruction. The data set for the 
168/E data memory is a copy of the constants and varia- 
bies which are part of the originai IBM code. 

Another program we caii the "iinker" does two jobs. 
First, it does the job of the IBM Linkage-Editor by 
reading the reiocatable microinstruction obJect moduies 
and iinking them together. Second, it forms an abso- 
lute memory 
memories. 

image which can be ioaded into the 168/E 
That IS, it gives an absoiute address to aii 

the COMMON biocks and also the iocai memory space. It 
resoives externai 
moduies where, 

references from a iibrary 
for exampie, 

of object 
the FORTRAN Library Func- 

tions have been transiated and stored. Uniike its IBM 
cousin, the iinker has an optionai input with which the 
user can assign the address of the COMMON biocks. This 
feature is used to make 
are described iater. 

the data memory overiays which 

CAN A MICROPROCESSOR DO THE BIG JOB? -- ---__ 
Having buiit at ver 

Y 
iow 

can he programmed in 
cost a microprocessor that 

F RTRAN and has a speed which is 
no worse than twice as siow as a 370/168, . a fine 
achievement. 
been made,- 

But due to the design choices':hat have 
it is stiii fair to ask the question: can it 

do the real number crunching job that we have with the 
LASS production code? 

First of aii, to be useful. it must do a si 
fraction of the time consuming part of the jo E 

nificant 
. With 

the LASS production code, weii over haif of the CPU 
time is spent in the subroutine which finds tracks in 
the soienoid detectors. 
execute ttlis subroutine 

T;,uz the-168/E must be able to 
ali 

caiis to be a usefui processor. 
the subroutines it 

Thi- 
f,ram is siiP,htiy 

a part of the pro- 
over 32 X bytes of executabie code and 

It trans*atcs to il iittie over 16 F microinstructions 
which is 5 :68/E m;mo:{l.sbgards filled on the piogram 
side. In naditron 
about 90 K bytes o 

att of the progrant re ulres 
1-n ClXMM N and 

iocni to 
space .or vari.abies 

which is 
filied on 

the program 
the data side. 

b 168/E 
The 168/E can 

memory boards 
thus handie 

this part of the program from 
amount of space it requires. 

the point of view of the 

The next question is whether the subset of 360/37U 
instructions that the 168/E can emuiate is sufficient. 
In t!lis part of the code, we found the 
FOR'TRAN statements which lead 

two types of 
to IBM instructions that 

can not be emuiated b 
the computed E 

the processor. These statements 
are 0 TO statement [for _ . 
GO 'TO (10,201, Nl and statements usin 
variabies. It turns out, however. i! 

one bytee?$!izi 
t at their eiimina- 

tion is 
ment is 

a good idea anyway. 
iess efficient 

The &;zuFd GO TO state- 
in time series of IF 

statements for a smaii number of possibie branch ad- 
dresses and use of the one byte varlabies is definiteiy 
iess efficient in CPU time 
16 bit integer variabie. . 

than setting fiags in a 

Thus, 
most tilne 

the 168/E processor couid be used to take the 
consuming part of 

from the centrai computer. 
the production code away 

input to this part 
However, 

of the code 
the event by event 

is very iarge; much 
iar8er than the originai rnw input tape data. This is 
because the first part of the code unpacks the raw in- 
teger data such as wire numbers, widths, etc., into 
banks of 
scaied, 

fioating point coordinates 
aiigned, and corrected. 

appropriateiy 

time consumi.ng routines is aiso 
The output z;;; ;II~ 

finai resuit record, 
much iarger 

erates iarge banks of 
because this part of the code gen- 

intermediate data which thev oass 
on to subsequent routines. 
iarge amounts 

In order to avoid sending 
of data from the host comuuter to the 

processor and back . it was aiso decided to run 
the unpacking codes zf"$ 168/E. But with this addi- 
tionai code, 
be very 

the amount of 168/E memory required wouid 
iarge. The soiution to this probiem is the 

same as with aii computers when the code is iarger than 
the computer's memory; one must overiay the program 

into the processor's memory. Once overiays were 
necessary, it was easy to extend this technique 
code which is 

to that 
executed after the time 

inciuding the formatting of the 
consuming part, 

The choice was to do 
resuit tape record. 

S&z; memory 
overiays or increase memory size. 

is the most ex ensive 

ute time 
and overiay time woul be oni 

we chose to do overiays. 
the deci.&on to 

-i $c?~&o~fn:h~fex~~~ 
he net resuit was 

execute aii of the production program 
in the 168/E from raw input data tape to finai resuit 
data tape. 

DEFINING THE OVERLAY STRUCTURE -~ 
To define an 

knowiedge of the 
overiay Ftructure for a program takes 

overiays for 
way: 

the P~~$~"~e,"e"'~~~i',"~d' "rid t~~";~iiowT$ 

1. Each overiay shouid be caiied oniy once per event 
to prevent losing reai time in doing the overiay. 

2. The size of the overiay is determined 
est piece of code which satisfies the 

by the iarg- 
above 

striction after one has tried to break the coder? 
into the smaiiest pieces. In the case of the LAS E 
production code, 
tioned above is 

the soienoid track finding men- 
the iargest overiay. 

3. The number of overiays is determined by fitting the 
rest of the code into ieces whose 
mined by the criteria a ove. % 

size is deter- 

Defining the overiays for the LASS production code 
was reiativeiy sim 
pa?king to resuit 

since the code proceeds from un- 

caiiy separate parts. 
seriaiiy in severai iogi- 

uction code are as foiiows: 
overiays for LASS prod- 

1. Unpacking raw coordinates into 
point banks. 

corrected'fioating 

2. Counting the number of match points (or * 
points) in order to kiii the event if there arzpFz," 
many, and finding beam tracks. 

3. Finding tracks in the downstream spectrometer and 
foiiowlng these tracks through the dipoie to the 
region between the dipoie and the soienoid. 

4, Foiiowing these downstream tracks through the soie- 
noid up to the target. 

5. Finding tracks in the soienoid starting -with points 
in the piane and cyiindricai chambers. 

6. 

7, 

Fitting aii tracks found to a 5 parame:er nel;x. 

8. 

Foiiowing the tracks found iu tlls s0lenold d.i\ri- 
stream to the Ccrenkov a:~( 1 Time-of-r'ilght couoters. 

Doing the vertex reconstruction on aii fcund tracks 
inciuding the beam track. 

9. For-mating the resuit record, and accumuiating sta- 
tistics on chamber efficiencies, etc. 

With each overia 
and saved as-a 168/ HP 

the executabie code is transiated 
program overiay. 

on most reai. computers, 
Uniike ovuriays 

subroutines which appear in 
more than one ovcriay such as SIN, COS, SQRT, etc., are 
simpiy dupiicated. 
168/E. aii of 

When an ?vcriny is executed on rhc 

overwritten. 
T~~et~~~~~~:X~nsa~$~granl memory wiii bc 

creates .a data set 
which contains aii the coilstan: ant. var-li;bie data which &I 
was internai to the 
'Locai Memory' 

suCroutin2.s. We caii clfiis the 
and it may be tiefin& iis 211 the data 

space a program uses which is not in a COWOL bioc I<.. 
The iocai memory aiso needs to be ioaded into t!.e 168,'s 
data-memory when the program memory is ioaded with an 
overlay. For the LASS production code, the Jucai !l,em- 
ory is typicaiiy 10% of the 
overiay. 

data memory required by an 

handle programs mucl larger t!lan 
W;th the overiays-described a~~~e~i,t:~,ol~~~Ei,~~!~ 

ory at one time. 
by further 

StfiI iacger programs can be handit.rl 

contains the 
overiaying the remaining data 

this, 
program's COMMON biocks. 

memory which 
In order to do 

additional knowiedge of the program is needed. 
One wouid iike to know exactiy in w!lich overiays a CIXI- 
MON is needed, 
the COMMON and 

in which overiays data is stored into 

the COMMON. 
in which overia s data is fetched from 

? If io;ny;mpie a COMMON biock is used oniy 
in overiays 3, then this 
can be used for other iOMMON's whit are E 

hysicai data s ace 

overiays 6, 7, and 8. 
oniy use: in 

A method has been deveioped 
gram in this ievei of detail 

to study the whoie pro- 
[3]. When each subroutine 

2 



is compiied and object code ioaded into a ioad moduie 
iibrary, a data set is created which contains a summary 
of the COMMON biock usage. We caii this data set an 
'Index Fiie' and it contains one iine for each variabie 
referenced in each COMMON biock. The iine contains the 
name of the subroutine, name of the COMION biock, the 
variabie name. its offset from the start of the COMMON 
biock, its ien 

k 
th, and the iength of the COMMON. It 

aiso contains t e Store, Fetch, 
ated by the FOKTKAN compiier. 

and other fiags gener- 

viduai data sets into one 
Coiiecting these indi- 

master index fiie now com- 

E 
ieteiy detaiis the use of 
OMMON biock for the entire 

is easiiy updated, 
pEzif&~. 

variabie in 
The mastereTzfz 

at the time a subroutine is updated 
into the ioad moduie iibrary, sinc;h;:ly the entries of 
the master fiie pertaining to subroutine are 
than ed. 

R 
This master index fiie, aiong with a fiie 

whit states which subroutines are to be used in each 
of the overia s, 

K 
can then be used as the data base for 

programs whit 
the program. 

anaiyze the COMMON biock structure of 

It was quicki 
z 

reaiized that COMMON biocks couid be 
put into one of t ree categories: 

1. Constant. These are COMMON biocks in which aii the 
variabies never change in the course of processing 
an event. They may be initiaiized in the first 
phase of the 
statements, read f 

reduction program by BLOCK DATA 
ng disk files, and/or by caicuia- 

tion in subroutines caiied once per job. 

2. Variabie. These are COMMON biocks in which aii the 

variabies are generated and used on an event by 
event basis. 

3. Mixed. These are COMMON biocks which contain both 
constants and variabies in the sense defined above. 

Since constant COMMONS never 
they can be 

change their contents, 
easiiy written into the 168/E data memory 

as required for a-particuiar overiay. 
they are iogicaiiv simiiar to the iocai 

In a sense; 

subroutines-which-is rewritten into 
memorv of the 

data memory as re- 

2 
uired. We have chosen to do this even for constant 
ONMONs which are used in more than one overiay. Ex- 

cept for the iarge-banks of constant COMMONS used in 
the unpackin 
containing t e ma netic fieid map 

R 

the 

ov;rlay and the ia:geth;ons.s;yt zZi9lOiI; 

constant COMM Ns is iess than the iocai memory. 

The contents of the variabie COMMON biocks is cre- 
ated by the 168/E in the course of processing an event. 
For practicai reasons once a biock has been created it 
remains in the 
as it is 

168/E data memory for as many overiays 
needed, 

COMMON biocks, 
then it may be overwritten by other 

ing overiays. 
either constant or variabie, in succeed- 

Mixed COMMON biocks couid be handied in another way, 
but for simplicity they were eiiminated, i.e. the con- 
stants and variables were moved into other or new COM- 
~~(Ii;iocks which were either ure constant or pure var- 

. For the LASS product on code, less than 10% of E 
aii COMMONS were 'mixed' when the code was first stud- 
ied in this manner. 

IOK 

20K 

30K 

-I PCDYNA 

OVERLAY NUMBER 

. 

PTBAN K 

JUNK3 OUTPUT 

I WIDTHS 
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70K- 
I V9’s 

5 

SUMMRZ 
80K - 

MSSTAT 
‘ 

SOK 6 

Figure i: Data Memory Ovrriay Load Maps 



With the master index as a data base, software toois 
have been deveioped ioad ma s 
for aii the overlays. 

to generate data memory 
-An exampi; ratflven in figure P. 

The ieft hand vertics.sds;;;e 
expressed in bytes, 

memory location 
nine coiumns are the nine 

ovkriays. Note that one first ioads the iocai memory 
(LMUL through LM09) into the iow addresses of the oro- 
cessor, then the constant COMMONS. The boxes that-are 
iarge enough have their COMMON biock name written in 
them llc'sa. whiie groups of smaiier COM~",,"Fl,;rT designated by 

number of 
The unpacking overiay, 

constant COMMONS and 
has a large 

have two iargc COMMONS iabeied 
the magnrt fieid maps 

eriay number 3. 
UMESH and DIPART in ov- 

criay 1 are stored 
Banks of coordinates a;;;;;te$h;; z;; 

In COMMONS DYNA and 
used by aii the foiiowing overiays. Other COMMONS such 
as PTBANR are generated at a iater overiay, then saved 
until the end of processing the event. 

The net effect of the data memory overiay;&yE ;rsoa 
scbstantiai saving in memorv reaulred bv the 
cessor. Since memory is the most expensive part'of'the 
processor, enough money is saved to add more processors 
to the system. If aii the COMMONS were ioaded into the 
memory at one time, it wouid require over 250 K bytes 
of data.memory; but with the overiaying oniy 90 K bytes 
Is rerfu+red. On the program side, if aii the code was 
ioauec Into the oroeram memorv at one time it wouid re- 
quire over 120 K'microinstruction words whiie with the 
overiavs iess than 20 K micro instructions are needed. 
One pays the cost, however: 
ing the transfer of the data 
ory. For the LASS production 

BERMUDA TRIANGLE SYSTEM 

The Bermuda Triangie system, shown in fi ure 2. is 
our method of overiaying the 168/E memor H 
Triangie is a three wa~D~":;r:"NE;us"itha~~Oa ~~;~~~~?~ 
iar e buffer memory, a 
168$E processors. Data may be transierred bidirection- 
aiiy between any two ports. 
LLsed , 

Two Bermuda Triangies are 
one for the program memory and one for the data 

memory. 

The first port of 
buffer memories. 

the Bermuda Triangie is to the 

;;r;Tiby 24 bits, 
The program buffer memory, with 128 K 
is iar 

% 
e enough to hoid a singie copy 

memory, 
large enough to hoid aii t e local memory and copies of 

'%%r8krl?mw,t",ds "i;ex~~u~~~;,r;:~~e~u~~~~s~~~~~~ 

the constant COMMON biocks. 
aiso buffers events on input and resuits on output. 
T!le memory used is siower but much iess expensive than 
the 168/E memory. The memories are imniemented with 
gcnerai purpose memory cards purchased from Mostek Mem- 
ory Systems. Their MK8000 memory card offers 
12d K words of 24 bits. 
singie card, 

The program memory is t%s'z 
whiie the data memory is two cards depo 

iated to 64 K words of 16 bits. The c tie time is 
K 

g 
u- 
00 

nscc with an access time of 375 nsec. e have used the 
bnt:k iane and chassis 
PUP-P1/70 add-on memory. 

that Mostek provides 
traces on :ic 

backpiane were cut 
The signai 

across the middle so that both the 
6~~&~~"anea~~dd~~~ss~~~ories couid piug into the same 

The second port of the Triangie is the bus to the 
processors. It is a 50 iine fiat cabie with TTL Tri- 
State drivers and receivers. 
tocoi which is 

The transfer uses a pro- 
essentiaiiy identicai to the 

deveio ed by the FASTBUS committee 141 
dress Pieid and 32 bit data fieid are-used? 2'zl!dge% 
time muitipiexed on a set of 32 bus iines. The 4 most 
significant bits of the address fieid are decoded to 
screct one processor with the remaining bits seiec;;;: 
the internal addresses of the processor s memory. 
the bus aiiows direct access to any iocat+on within any 
processor. The ra;;u;ftizacsfer on this bus 1s one 
word in 700 nsec. transfer rate on the data 
side is neariy 6 M bytes per second and on the pro 

% 
ram 

side it is equivaient to neariy 3 M bytes per secon of 
IBM object code. 

The third port 
A PDP-Ii/04 

of the Triangie is a PDP-11 UNIBUS. 
with 40 K bytes of memory is used as the 

controi computer for the system. 
troi registers to aiiow the PDP-11 

This port has 6 con- 
to controi the data 

fiow between the three ports. Care has been taken that 
different software tasks in the computer have different 
registers that they controi, 
tacks easier to write. 

thus-making the software 

IBM z 
' Channel - Disks 

4 
IBM 

3701168 ’ 
IBM c 

’ Channel ++ b Tapes 

4 

IBM 
t 2860 

Channel 
A 

4 UNIBUS 4 

t $ 

Figure 2: The Bermuda Triangie System 

The buffer memories are ioaded from the UNIBUS. 
8 K byte portion of the buffer memory appears as an 8.2 
byte portlon of UNIBUS address. Both these "windows" 
have the same UNIBUS address, 
at a time b 

but oniy one is cnabied 
a bit in their page register. 

%ie.has a lf bit pake 
Each Trinn- 

register which is shifted ieft 8 
Its and added to t e offset from the start of the UNI- 

BUS window to determine the buffer memory address. 
Thus, from the UNIBUS one can access u 
memory 
aiigned on any muitipi?g?256 

in 8 K byte where 
bytes. 

The processors are normaiiy ioaded from the buffer 
From the UNIBUS 

?~~~~Y;egister for the buf !i 
ort the PDP-11 
er Aemory 

ioads an ad- 

ter for the processor bus, 
an address regls- 

and a w;rd count re 
When the word count register is ioaded the % 

i.ster. 
Bermu a Tri- 

angie transfers the data untii the word count is ex- 
hausted. It then causes an interrupt on the UNIBUS 
~XJXJ;~~ inTket;Esuits from the processor are normaii2; 

I buffer memory in the same fashron. 
bit in the Triangie's control status register controis 
the direction of transfer. 

access to the controi re isters of 
a 1 word window of t e Bermuda % 

ort to the rocessor bus. In 
us address 1, taken from the 

same address register mentioned above. The doubie USC 
of this address register is not a probiem because one 
never attempts to gain access to the controi registers 
of the processor whiie transferring data to or fzom it. 
One can aiso gain access to the nrocessor controi rw- 
isters via eiEher the program or data Bermllda Triangiz. 

CHANNEL INTERFACE -- 
With the 168/E's and the Bermuda Triangie, the 

PDP-11 oniy needs a source for the raw data and a sink 
for the resuits. 
terface between 

For this purpose, 
the UNIBUS and 

we designed an in- 
an I/O Channei of the 

IBM 360/370 computer. Data is transferred between the 
3601370 and the PDP-11 UNIBUS at fuii 
(1.2 MB/set) 

channei speeds 
with the minimum software overhead on the 

IBM s stem. 
360/q{ to b 

We have measured the CPU overhead on the 
e oniy 3.8 msec per event. IBM caiis such a 

device a "Control Unit", and it iooks iike a tape drive 

4 



or a disk to the IBM computer. This means that 
ordinary batch jobs can transfer data to and from the 
Bermuda Triangie system. 
access to the system by 

The -FORTRAN rogr?mm$r gets 
a simple FORTRA callable sub- 

routine. 

Thus the IBM 360/370 reads the raw data from ta e 
sends it to the PUP-II to be processet,,;y the 168/i 2 
Bermuda Triangie system, receives resuits and 
writes the output tape. The IBM system with its 24 
hour staff handles ail the .ob schedulin 
ine, etc. Production be su&it',",$' ??:ke 
system as is done now, an 

Jogswiii 
each job wiii first initiai- 

ize the PDP-11 and buffer memories. 

To synchronize the PDP-11 and 370 software, the 370 
aiways attempts a read from the PDP-11 before a write. 
When the IBM computer reads resuits from the PDP-11, it 
obviousiv frees a buffer in the PDP-11 system, thus a 
write cati then aiways be done. For normal event trans- 
fers, the controi unit transfers directiy to or from 
the data buffer memory through the 8 K byte UNIBUS win- 
dow of the Bermuda Triangie, with the PDP-11 setting up 
the appropriate address and page registers. If 
computer attempts a read when no data is 

tte, Ill: 
read 

168/E system, the controi unit sends back a 'B 4; SY' re- 
sponge. 'When this si nai 

2 
is received, the IBM channei 

simply queues the rea command without causing an in- 
terru t to the CPU. 

!i 
When the data becomes ready for 

trnns er, the PDP-11 ioads the 
the controi unit, 

word count register in 
and it sends a re uest for service to 

the IBM channei. This request s?gnai wakes up the 
chanuei and the transfer is started. This is standard 
operatin 
nei. R 

procedure for devices on a IBM 360/370 chan- 
T e whoie data transfer 

the IBM channei 
procedure is handied by 

The IBM CPU is free to work on other 
,jobs from the time it issues the Start I/O instruction 
until it receives an interrupt that the transfer is 
compiete. 

PDP-11 SOFTWARE 

The PDP-1i/04 computer has the 'ob 
O$ 

of controiiin 
the 168/E overiays, the transfer event data to ar. 2 
from the 168/E, and the transfer of data to and from 
the controi unit. 
software tasks, 

The job is divided into a number of 
corresponding to the non-shareabie 

hardware resources. There is a task for each proces- 
sot, a task for the channei interface, and a task for 
each of the processor busses. As was mentioned ear- 
i.ier, the Bermuda Triangie was 
hardware 

designed so that the 
resources could easiiy be asslgned to specific 

software tasks. We have 
executive caiied SPEX 151 

chosen a smali muiti-tasking 
which aiiows aii the tasks to 

ho residrnt in memory and hence 
the PDP-1:. It has been 

no disk is required on 
used as the data acquisition 

system in severai experiments at FermiLab, Brookhaven, 
ahd CERN . 

Each of these tasks is "driven" by a queue of work 
to do. The channei interface tasks receives raw event 
data and queues it to the processor work queue. When a 
processor becomes avaiiable, its task wiii take an 
event, from the work queue. suoervise its transfer to 
Fhe processor, its execution through the various over- 

and the transfer of 
itSAr memory. 

the resuits back into the 

resuit buffer to 
The processor task wiii then queue the 

the channei interface work queue and 
start working on another event from the processor work 
queue. Meanwhiie, the channei interface task initiates 
the transfer of resuits from the buffer memory to the 
IBM channei. It then initiates a transfer of a new 
event from the IBM channei to the buffer 
queues it to the 

memory and 
rocessor 

cycie is started g 
work queue. The recessing 

y a task which supervises t R e initial 
transfer of the overiays and constant COMMON biocks 
into the buffer memory. It aiso fiiis the remainder of 
the data buffer memory with as many events as jt can. 
The individuai processor tasks wiii asynchronousiy want 
to send events and overiays 
two processor busses. 

to the processors over the 
Since the busses can oniy per- 

form one operation at a time! 
their requests 

the processor tasks queue 
to the indivlduai tasks which are as- 

signed to the busses. The executive, SPEX, handies aii 
queuing and synchronization of the tasks. 

The PUP-11 itseif is ioaded via the channei. The 

is run on the IBM 
computers, 
storage devices 

for any permanent 
on the PDP-11 such as disks, tapes, 

etc. This absence of any 
R 

eripherais, other than a 
terminai , shouid heip make t e system very reiiabie and 
reduce maintenance. The D.E.C. program, ODT-11, is 
ioaded into the PDP-11 with the executive and associ- 
ated tasks to aid in debugging. software 
for 10 processors requires 20 K b DP-11 memory. 
About 700 micro-seconds of PDP-1 is needed 
per overiay. 

SUMMARY 

In October 1979 this system came into o eration with 
one processor. It exscutes aii of the LA S production ! 
program withT;E;en:$alry the.sape results as an.IBM 370 
computer. ldentlcally the same 
found on aii tracks in every event; oniy the !. 

olnts are 
itted he- 

iix parameters showed some differences. Smaii differ- 
ences were expected since the 
ices in the soienoid is done 

fitting of tracks to hei- 
entireiv in IBM doubie 

precision. However, the differences w;? see are in the 
least significant hexadecimai digit in the fitted track 
parameters except for 2% of the tracks which are very 
pooriy defined. 

We feei the importance of emuiation can not be over- 
emphasized. The LASS prOduction code-is neariy 20,000 
iines of FORTRAN. 
to have re-writ&n 
iess microcode. 

It would be ~~t~E~~gi:lrnla~,"~~~l~~ 
this code 

Before one couid have finishe such a 
project the FORTRAN source 
changed. 

wouid have undoubtediy been 

to be 
With emuiation not 0nj.y doesn't the code need 

changed but aiso verification of 
is easiiy accompiished by comparing 

the processor 
its results on a 

set of events with the resuits from the same events run 
on the IBM computer. Even the smaiiest error in the 
system's hardware is detectabie. 
first tried to run the LASS code 

FE; ;;zmpie, when ye 

three errors were made. 
system only 

Oniy one of the errors ied to 
resuits which were obviousiy wrong. The effect of the 
other two errors was oniy that a few extra reasonabie 
iooking points were added to some of the detector's co- 
ordinate banks. The cause of one of the errors was 
forgetting to ioad one of the constant COMMON biocks. 
The cause of the other error 
had an effect when fioating 

was a bad I.C. which oniy 
point register 6 was used. 

Another important advantage is having oniy one copy of 
the source code which is used both for the IBM computer 
and the 168/E processor. the 
transiator is 

In fact, 
the iink-edited 

input, to the 
ioad moduies w?.ich are 

used to run the program on the IBM computer. When the 
production program 1s modified, 
to produce a new microprogram 

We are now preparin 
on the system and on P; 

to run many thousands of events 
t e IBM computer. This wiii check 

for pathoiogicai events to a ievei of one in ten thou- 
sand or better. We are aiso preparing additionai 168/E 
processors and expect to have 6 processors on the sys- 
tem by the end of 1979. We wiii thus be abie to start 
anaiyzing our 50 miiiion events with a 
equivaient 
hours a day. 

to 3 dedicated IBM 370/168's running 
system,nearig 
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