
SLAC-PUB-2418
October 1979

' (1)

EXPERIENCE USING THE 168/E MICROPROCESSOR
FOR OFF-LINE DATA ANALYSIS*

Paui F. Kunz, Richard N. Faii, Michaei F. Gravina,
John H. Haiperin, Lorne J. Levinson, Gerard J. Oxoby.

and Quang II. Trang

Stanford Linear Acceierator Center,
Stanford Universit

Stanford, Caiifornia, 82305

ABSTRACT --
The 168/E is a SLAC deveioped micro rocessor which

enui;rtrs the 1BM 360/370 corn uters wit Ii an execution'
speed of about one haif of a !BM 370/168.
cessors are used in Paraiiei

These pro-
for the track finding and

;Zcometry pro~rnos of the LASS spectrometer.
3s co~~trolie i

The system
by a PDP-11 minicomputer via a three port

interface which we caii the Bermuda Triangle.
handling and downi0adi.n

The tape

IBM rompllters f
is controiied by one of SLAC s

via a SLC built interface between the
PDF11 and an IBP! channei. Initiaiiy, there wiii he a
system of 6 168,'E's which shouid be ahie to give six
tiaes the production capacity than can he
running production jobs

attained by
on the SLAC Tri iex

The cost of c annei t!
system.

inter-
face,

the system,
is $12O,UOO and

inciuding the

5
et it yieids the equivaient com-

putcr power of 3 IBl! 3 U/l68's. Hence,
an extreneiy

this system is
cost-effective method for off-iine data

anaiysis.

INTK~l!XKXION ______
we have seen the construction of

for each successEui event.
and output the resuits

The software program for
these spectromef;;ze generaiiy takes many -
drvei OD L onn coolplrcrr system, afiiani~ea~Zt~~
chaagd 2s it i's better understood. It is therefore
not easily ren!oved from the
was dcveioped.

iarge computer on which it

The goal of this project has been to add to the com-
EI:~~Ic~EZ~e~hel~:~Pen~:~~r~~r~~~r~ett:g:: ;zpe ;;;r;r;E
as the iarge computer. his ied
the 168/E microprocessor [1,21.

lotthE development of
emulates" those

IBM 370 instructions that are generated by IBM's FOR-
TRAN compiier and its speed is about one haif of an IBM
370!168. We are attaching 6 of them to one of the cen-
tral-IBM computers. This hardware is sufficientiy pow-
erful that t ie elapsed time to do aii the event recon-
struction for an experiment can be shortened by many
years.

GENERAL FEATURES OF PROCESSOR -
The 168/E consists of an integer CPU,

I~fn~u~~~ce~PE~ar~:m~~~~~~~~~u~~~~~e~~~~~. :6'lf!l?
which are identicai in their VAS
-computers.

Integer CPU

The integer CPU circuit is based on the 2901, which
is a LSI hit siice microprocessor chip
Advanced Micro Devices in the

introduce$h;;
summer of 1975.

board handies

nai board wiii he an 8 iayer printed circuit board and
it costs $600 compiete with components and iahor for
assemhiy.

Fioating Point ___- -_
The fioating point processor consists of two circuit

boards. It is uses the "new"
MS1 circuits

entireiy MST iogic but
which have he introduced to

LSI components.
su port the

singie recision
The processor handles aii IBl 360/370 F

E
fioatin point instructions wit

actly t e same resuits, tit for bit
singie precision forma; of

7
ex-

as the 370 168.
But since the IBM coutains
oniy a 24 bit mantissa, some form of extended
is required to do the LASS production code. F

recision
ot exam-

ple. when caicuiating where two heiieai trajectories
representing the path of charged particies in the LASS
magnet intersect, we require a precision better than
the resoiution of the detectors.
with the 1BM singie precision

This is not possibie
format witen the radii 0E

curvature are iarge. It has been found experinrentaiiy
that about 8 more hits are required in the mantissa to
cl~O;~~Ocaicuiation with sufficient precision. On the

one deciares the important variabies douhie
precisi& which adds 32 additionai hits to the man-
tissa. On the 168/E, we have made a
true emuiation and circuit cost and
fioating point processor has
instructions which add 16 bits
the processor can do either 32 hit or 48 bit fioating
point arithmetic. The cycie time
either 100 or 150 nsec

of the processor is
depending on the instruction.

It operates with an internal Read-Oniy-Memor-y (ROM) to
controi the steps in a fioating point operation. The
performance of the rocessor is about a factor of two
slo;;:iEk;;ithe 370/!68. Again, oniy muitipiication is

?70/168. Tg
siow instruction when compared to the

cuit hoards.
e circuit boards are 8 iayer printed cir-

The cost of the fioatlng
is $1200 conlpiete with components and Fl

oint processor
Ia or.

Memory

the 168/E is in two 011e fat
the

The memory for

f
rogram and the other for the data.

p z r t s ,
Eoth are baoizi!

on tie Intei 2147 memory I.C. The Intei 2147 has be-
come the induotriai standard circuit although only l+~
tei has iacge production experience now. Stivcr;!i otltcr
companies have just announced they are al';? produl:ing
it. This circuit contains 4,096 w:,rds by 1 &it with a
70 nsec access and cycie time. It has a unique Feature
in that when the memory is not hein addressed, ir
ers down to l/5 of its normai operai.ing current. J$;';",
a processor with 8 memory boards draws onij as ~,ztlch
P

ower as one memor
tiince each memory z

board pius 7/5 of one memory bo.~r:i.
oard draws about 25 watts, considcr-

ahie
iess IFi

ower is saved in the system,
eat is generated which is

and considcr<:biy

component failure.
a major fac:ur in I.C.

each in
The current iist nricc is about $25

iar e
iaver nrinte 8

quantities. The mcmbry board is h 4
circuit board with one half coatninine 32

memory'circuits,for data and the other haif contai.zing

croinstructions which is about 8 K bytes of IBM object
code or about 500 iines of FORTRAN. The cost of‘ the
board is $1600, i.e. about $50/K byte for data and

the memory must
within a processor cycie time.

Interface

The 168/E is not capahie! as currentiy designed, of
doing any input or out ut
address its memory. l!

instructions.
interface

It can cniy
T e aiiows a teai cam-,

puter to ioad the memories with program and raw data
and to read the processed resuits. The interface is
very simpie. Either the processor or the interface
controls the memory and never both simultaneousiy. The
interface controi logic can shut off the

R
rocessor so

that it reieases the memory busses. Then t e interface
can take the busses, read or write to the memory, and
start the processor.

--____-
* Work supported by the Department of Energy under contract number DE-AC03-76SF00515.

Presented at the 1979 Nuclear Science Symposium, San Francisco, California October 17-19.

OBJECT CODE TRANSLATOR AND LINKER ~- _-
The 168/E microprocessor does not

360/370 instructions directiy.
execute IBM

Instead,
caiied the "transistor" converts IBM instruc?lo~~o8~?~
168/E microinstructions.

168/E data memory. Most IBM instructions transiate
into 1 to 3 microinstructions. We caii this nroeram a
transiator because it does not make any ~fundamentai
change in the originai code.
used in the IBM instruction,

If a certain register is
then the same re ister is

used in the microinstruction.
dispiacement fieid and the index

In memory fete 8 es, the

the IBM instruction
and base registers of

wiii be identicai in the microin-
struction. Even the 4 bit mask in conditionai branch
instructions is the same in the microinstruction and
the originai IBM instruction. The data set for the
168/E data memory is a copy of the constants and varia-
bies which are part of the originai IBM code.

Another program we caii the "iinker" does two jobs.
First, it does the job of the IBM Linkage-Editor by
reading the reiocatable microinstruction obJect moduies
and iinking them together. Second, it forms an abso-
lute memory
memories.

image which can be ioaded into the 168/E
That IS, it gives an absoiute address to aii

the COMMON biocks and also the iocai memory space. It
resoives externai
moduies where,

references from a iibrary
for exampie,

of object
the FORTRAN Library Func-

tions have been transiated and stored. Uniike its IBM
cousin, the iinker has an optionai input with which the
user can assign the address of the COMMON biocks. This
feature is used to make
are described iater.

the data memory overiays which

CAN A MICROPROCESSOR DO THE BIG JOB? -- ---__
Having buiit at ver

Y
iow

can he programmed in
cost a microprocessor that

F RTRAN and has a speed which is
no worse than twice as siow as a 370/168, . a fine
achievement.
been made,-

But due to the design choices':hat have
it is stiii fair to ask the question: can it

do the real number crunching job that we have with the
LASS production code?

First of aii, to be useful. it must do a si
fraction of the time consuming part of the jo E

nificant
. With

the LASS production code, weii over haif of the CPU
time is spent in the subroutine which finds tracks in
the soienoid detectors.
execute ttlis subroutine

T;,uz the-168/E must be able to
ali

caiis to be a usefui processor.
the subroutines it

Thi-
f,ram is siiP,htiy

a part of the pro-
over 32 X bytes of executabie code and

It trans*atcs to il iittie over 16 F microinstructions
which is 5 :68/E m;mo:{l.sbgards filled on the piogram
side. In naditron
about 90 K bytes o

att of the progrant re ulres
1-n ClXMM N and

iocni to
space .or vari.abies

which is
filied on

the program
the data side.

b 168/E
The 168/E can

memory boards
thus handie

this part of the program from
amount of space it requires.

the point of view of the

The next question is whether the subset of 360/37U
instructions that the 168/E can emuiate is sufficient.
In t!lis part of the code, we found the
FOR'TRAN statements which lead

two types of
to IBM instructions that

can not be emuiated b
the computed E

the processor. These statements
are 0 TO statement [for _ .
GO 'TO (10,201, Nl and statements usin
variabies. It turns out, however. i!

one bytee?$!izi
t at their eiimina-

tion is
ment is

a good idea anyway.
iess efficient

The &;zuFd GO TO state-
in time series of IF

statements for a smaii number of possibie branch ad-
dresses and use of the one byte varlabies is definiteiy
iess efficient in CPU time
16 bit integer variabie. .

than setting fiags in a

Thus,
most tilne

the 168/E processor couid be used to take the
consuming part of

from the centrai computer.
the production code away

input to this part
However,

of the code
the event by event

is very iarge; much
iar8er than the originai rnw input tape data. This is
because the first part of the code unpacks the raw in-
teger data such as wire numbers, widths, etc., into
banks of
scaied,

fioating point coordinates
aiigned, and corrected.

appropriateiy

time consumi.ng routines is aiso
The output z;;; ;II~

finai resuit record,
much iarger

erates iarge banks of
because this part of the code gen-

intermediate data which thev oass
on to subsequent routines.
iarge amounts

In order to avoid sending
of data from the host comuuter to the

processor and back . it was aiso decided to run
the unpacking codes zf"$ 168/E. But with this addi-
tionai code,
be very

the amount of 168/E memory required wouid
iarge. The soiution to this probiem is the

same as with aii computers when the code is iarger than
the computer's memory; one must overiay the program

into the processor's memory. Once overiays were
necessary, it was easy to extend this technique
code which is

to that
executed after the time

inciuding the formatting of the
consuming part,

The choice was to do
resuit tape record.

S&z; memory
overiays or increase memory size.

is the most ex ensive

ute time
and overiay time woul be oni

we chose to do overiays.
the deci.&on to

-i $c?~&o~fn:h~fex~~~
he net resuit was

execute aii of the production program
in the 168/E from raw input data tape to finai resuit
data tape.

DEFINING THE OVERLAY STRUCTURE -~
To define an

knowiedge of the
overiay Ftructure for a program takes

overiays for
way:

the P~~$~"~e,"e"'~~~i',"~d' "rid t~~";~iiowT$

1. Each overiay shouid be caiied oniy once per event
to prevent losing reai time in doing the overiay.

2. The size of the overiay is determined
est piece of code which satisfies the

by the iarg-
above

striction after one has tried to break the coder?
into the smaiiest pieces. In the case of the LAS E
production code,
tioned above is

the soienoid track finding men-
the iargest overiay.

3. The number of overiays is determined by fitting the
rest of the code into ieces whose
mined by the criteria a ove. %

size is deter-

Defining the overiays for the LASS production code
was reiativeiy sim
pa?king to resuit

since the code proceeds from un-

caiiy separate parts.
seriaiiy in severai iogi-

uction code are as foiiows:
overiays for LASS prod-

1. Unpacking raw coordinates into
point banks.

corrected'fioating

2. Counting the number of match points (or *
points) in order to kiii the event if there arzpFz,"
many, and finding beam tracks.

3. Finding tracks in the downstream spectrometer and
foiiowlng these tracks through the dipoie to the
region between the dipoie and the soienoid.

4, Foiiowing these downstream tracks through the soie-
noid up to the target.

5. Finding tracks in the soienoid starting -with points
in the piane and cyiindricai chambers.

6.

7,

Fitting aii tracks found to a 5 parame:er nel;x.

8.

Foiiowing the tracks found iu tlls s0lenold d.i\ri-
stream to the Ccrenkov a:~(1 Time-of-r'ilght couoters.

Doing the vertex reconstruction on aii fcund tracks
inciuding the beam track.

9. For-mating the resuit record, and accumuiating sta-
tistics on chamber efficiencies, etc.

With each overia
and saved as-a 168/ HP

the executabie code is transiated
program overiay.

on most reai. computers,
Uniike ovuriays

subroutines which appear in
more than one ovcriay such as SIN, COS, SQRT, etc., are
simpiy dupiicated.
168/E. aii of

When an ?vcriny is executed on rhc

overwritten.
T~~et~~~~~~:X~nsa~$~granl memory wiii bc

creates .a data set
which contains aii the coilstan: ant. var-li;bie data which &I
was internai to the
'Locai Memory'

suCroutin2.s. We caii clfiis the
and it may be tiefin& iis 211 the data

space a program uses which is not in a COWOL bioc I<..
The iocai memory aiso needs to be ioaded into t!.e 168,'s
data-memory when the program memory is ioaded with an
overlay. For the LASS production code, the Jucai !l,em-
ory is typicaiiy 10% of the
overiay.

data memory required by an

handle programs mucl larger t!lan
W;th the overiays-described a~~~e~i,t:~,ol~~~Ei,~~!~

ory at one time.
by further

StfiI iacger programs can be handit.rl

contains the
overiaying the remaining data

this,
program's COMMON biocks.

memory which
In order to do

additional knowiedge of the program is needed.
One wouid iike to know exactiy in w!lich overiays a CIXI-
MON is needed,
the COMMON and

in which overiays data is stored into

the COMMON.
in which overia s data is fetched from

? If io;ny;mpie a COMMON biock is used oniy
in overiays 3, then this
can be used for other iOMMON's whit are E

hysicai data s ace

overiays 6, 7, and 8.
oniy use: in

A method has been deveioped
gram in this ievei of detail

to study the whoie pro-
[3]. When each subroutine

2

is compiied and object code ioaded into a ioad moduie
iibrary, a data set is created which contains a summary
of the COMMON biock usage. We caii this data set an
'Index Fiie' and it contains one iine for each variabie
referenced in each COMMON biock. The iine contains the
name of the subroutine, name of the COMION biock, the
variabie name. its offset from the start of the COMMON
biock, its ien

k
th, and the iength of the COMMON. It

aiso contains t e Store, Fetch,
ated by the FOKTKAN compiier.

and other fiags gener-

viduai data sets into one
Coiiecting these indi-

master index fiie now com-

E
ieteiy detaiis the use of
OMMON biock for the entire

is easiiy updated,
pEzif&~.

variabie in
The mastereTzfz

at the time a subroutine is updated
into the ioad moduie iibrary, sinc;h;:ly the entries of
the master fiie pertaining to subroutine are
than ed.

R
This master index fiie, aiong with a fiie

whit states which subroutines are to be used in each
of the overia s,

K
can then be used as the data base for

programs whit
the program.

anaiyze the COMMON biock structure of

It was quicki
z

reaiized that COMMON biocks couid be
put into one of t ree categories:

1. Constant. These are COMMON biocks in which aii the
variabies never change in the course of processing
an event. They may be initiaiized in the first
phase of the
statements, read f

reduction program by BLOCK DATA
ng disk files, and/or by caicuia-

tion in subroutines caiied once per job.

2. Variabie. These are COMMON biocks in which aii the

variabies are generated and used on an event by
event basis.

3. Mixed. These are COMMON biocks which contain both
constants and variabies in the sense defined above.

Since constant COMMONS never
they can be

change their contents,
easiiy written into the 168/E data memory

as required for a-particuiar overiay.
they are iogicaiiv simiiar to the iocai

In a sense;

subroutines-which-is rewritten into
memorv of the

data memory as re-

2
uired. We have chosen to do this even for constant
ONMONs which are used in more than one overiay. Ex-

cept for the iarge-banks of constant COMMONS used in
the unpackin
containing t e ma netic fieid map

R

the

ov;rlay and the ia:geth;ons.s;yt zZi9lOiI;

constant COMM Ns is iess than the iocai memory.

The contents of the variabie COMMON biocks is cre-
ated by the 168/E in the course of processing an event.
For practicai reasons once a biock has been created it
remains in the
as it is

168/E data memory for as many overiays
needed,

COMMON biocks,
then it may be overwritten by other

ing overiays.
either constant or variabie, in succeed-

Mixed COMMON biocks couid be handied in another way,
but for simplicity they were eiiminated, i.e. the con-
stants and variables were moved into other or new COM-
~~(Ii;iocks which were either ure constant or pure var-

. For the LASS product on code, less than 10% of E
aii COMMONS were 'mixed' when the code was first stud-
ied in this manner.

IOK

20K

30K

-I PCDYNA

OVERLAY NUMBER

.

PTBAN K

JUNK3 OUTPUT

I WIDTHS
SCTOUT

70K-
I V9’s

5

SUMMRZ
80K -

MSSTAT
‘

SOK 6

Figure i: Data Memory Ovrriay Load Maps

With the master index as a data base, software toois
have been deveioped ioad ma s
for aii the overlays.

to generate data memory
-An exampi; ratflven in figure P.

The ieft hand vertics.sds;;;e
expressed in bytes,

memory location
nine coiumns are the nine

ovkriays. Note that one first ioads the iocai memory
(LMUL through LM09) into the iow addresses of the oro-
cessor, then the constant COMMONS. The boxes that-are
iarge enough have their COMMON biock name written in
them llc'sa. whiie groups of smaiier COM~",,"Fl,;rT designated by

number of
The unpacking overiay,

constant COMMONS and
has a large

have two iargc COMMONS iabeied
the magnrt fieid maps

eriay number 3.
UMESH and DIPART in ov-

criay 1 are stored
Banks of coordinates a;;;;;te$h;; z;;

In COMMONS DYNA and
used by aii the foiiowing overiays. Other COMMONS such
as PTBANR are generated at a iater overiay, then saved
until the end of processing the event.

The net effect of the data memory overiay;&yE ;rsoa
scbstantiai saving in memorv reaulred bv the
cessor. Since memory is the most expensive part'of'the
processor, enough money is saved to add more processors
to the system. If aii the COMMONS were ioaded into the
memory at one time, it wouid require over 250 K bytes
of data.memory; but with the overiaying oniy 90 K bytes
Is rerfu+red. On the program side, if aii the code was
ioauec Into the oroeram memorv at one time it wouid re-
quire over 120 K'microinstruction words whiie with the
overiavs iess than 20 K micro instructions are needed.
One pays the cost, however:
ing the transfer of the data
ory. For the LASS production

BERMUDA TRIANGLE SYSTEM

The Bermuda Triangie system, shown in fi ure 2. is
our method of overiaying the 168/E memor H
Triangie is a three wa~D~":;r:"NE;us"itha~~Oa ~~;~~~~?~
iar e buffer memory, a
168$E processors. Data may be transierred bidirection-
aiiy between any two ports.
LLsed ,

Two Bermuda Triangies are
one for the program memory and one for the data

memory.

The first port of
buffer memories.

the Bermuda Triangie is to the

;;r;Tiby 24 bits,
The program buffer memory, with 128 K
is iar

%
e enough to hoid a singie copy

memory,
large enough to hoid aii t e local memory and copies of

'%%r8krl?mw,t",ds "i;ex~~u~~~;,r;:~~e~u~~~~s~~~~~~

the constant COMMON biocks.
aiso buffers events on input and resuits on output.
T!le memory used is siower but much iess expensive than
the 168/E memory. The memories are imniemented with
gcnerai purpose memory cards purchased from Mostek Mem-
ory Systems. Their MK8000 memory card offers
12d K words of 24 bits.
singie card,

The program memory is t%s'z
whiie the data memory is two cards depo

iated to 64 K words of 16 bits. The c tie time is
K

g
u-
00

nscc with an access time of 375 nsec. e have used the
bnt:k iane and chassis
PUP-P1/70 add-on memory.

that Mostek provides
traces on :ic

backpiane were cut
The signai

across the middle so that both the
6~~&~~"anea~~dd~~~ss~~~ories couid piug into the same

The second port of the Triangie is the bus to the
processors. It is a 50 iine fiat cabie with TTL Tri-
State drivers and receivers.
tocoi which is

The transfer uses a pro-
essentiaiiy identicai to the

deveio ed by the FASTBUS committee 141
dress Pieid and 32 bit data fieid are-used? 2'zl!dge%
time muitipiexed on a set of 32 bus iines. The 4 most
significant bits of the address fieid are decoded to
screct one processor with the remaining bits seiec;;;:
the internal addresses of the processor s memory.
the bus aiiows direct access to any iocat+on within any
processor. The ra;;u;ftizacsfer on this bus 1s one
word in 700 nsec. transfer rate on the data
side is neariy 6 M bytes per second and on the pro

%
ram

side it is equivaient to neariy 3 M bytes per secon of
IBM object code.

The third port
A PDP-Ii/04

of the Triangie is a PDP-11 UNIBUS.
with 40 K bytes of memory is used as the

controi computer for the system.
troi registers to aiiow the PDP-11

This port has 6 con-
to controi the data

fiow between the three ports. Care has been taken that
different software tasks in the computer have different
registers that they controi,
tacks easier to write.

thus-making the software

IBM z
' Channel - Disks

4
IBM

3701168 ’
IBM c

’ Channel ++ b Tapes

4

IBM
t 2860

Channel
A

4 UNIBUS 4

t $

Figure 2: The Bermuda Triangie System

The buffer memories are ioaded from the UNIBUS.
8 K byte portion of the buffer memory appears as an 8.2
byte portlon of UNIBUS address. Both these "windows"
have the same UNIBUS address,
at a time b

but oniy one is cnabied
a bit in their page register.

%ie.has a lf bit pake
Each Trinn-

register which is shifted ieft 8
Its and added to t e offset from the start of the UNI-

BUS window to determine the buffer memory address.
Thus, from the UNIBUS one can access u
memory
aiigned on any muitipi?g?256

in 8 K byte where
bytes.

The processors are normaiiy ioaded from the buffer
From the UNIBUS

?~~~~Y;egister for the buf !i
ort the PDP-11
er Aemory

ioads an ad-

ter for the processor bus,
an address regls-

and a w;rd count re
When the word count register is ioaded the %

i.ster.
Bermu a Tri-

angie transfers the data untii the word count is ex-
hausted. It then causes an interrupt on the UNIBUS
~XJXJ;~~ inTket;Esuits from the processor are normaii2;

I buffer memory in the same fashron.
bit in the Triangie's control status register controis
the direction of transfer.

access to the controi re isters of
a 1 word window of t e Bermuda %

ort to the rocessor bus. In
us address 1, taken from the

same address register mentioned above. The doubie USC
of this address register is not a probiem because one
never attempts to gain access to the controi registers
of the processor whiie transferring data to or fzom it.
One can aiso gain access to the nrocessor controi rw-
isters via eiEher the program or data Bermllda Triangiz.

CHANNEL INTERFACE --
With the 168/E's and the Bermuda Triangie, the

PDP-11 oniy needs a source for the raw data and a sink
for the resuits.
terface between

For this purpose,
the UNIBUS and

we designed an in-
an I/O Channei of the

IBM 360/370 computer. Data is transferred between the
3601370 and the PDP-11 UNIBUS at fuii
(1.2 MB/set)

channei speeds
with the minimum software overhead on the

IBM s stem.
360/q{ to b

We have measured the CPU overhead on the
e oniy 3.8 msec per event. IBM caiis such a

device a "Control Unit", and it iooks iike a tape drive

4

or a disk to the IBM computer. This means that
ordinary batch jobs can transfer data to and from the
Bermuda Triangie system.
access to the system by

The -FORTRAN rogr?mm$r gets
a simple FORTRA callable sub-

routine.

Thus the IBM 360/370 reads the raw data from ta e
sends it to the PUP-II to be processet,,;y the 168/i 2
Bermuda Triangie system, receives resuits and
writes the output tape. The IBM system with its 24
hour staff handles ail the .ob schedulin
ine, etc. Production be su&it',",$' ??:ke
system as is done now, an

Jogswiii
each job wiii first initiai-

ize the PDP-11 and buffer memories.

To synchronize the PDP-11 and 370 software, the 370
aiways attempts a read from the PDP-11 before a write.
When the IBM computer reads resuits from the PDP-11, it
obviousiv frees a buffer in the PDP-11 system, thus a
write cati then aiways be done. For normal event trans-
fers, the controi unit transfers directiy to or from
the data buffer memory through the 8 K byte UNIBUS win-
dow of the Bermuda Triangie, with the PDP-11 setting up
the appropriate address and page registers. If
computer attempts a read when no data is

tte, Ill:
read

168/E system, the controi unit sends back a 'B 4; SY' re-
sponge. 'When this si nai

2
is received, the IBM channei

simply queues the rea command without causing an in-
terru t to the CPU.

!i
When the data becomes ready for

trnns er, the PDP-11 ioads the
the controi unit,

word count register in
and it sends a re uest for service to

the IBM channei. This request s?gnai wakes up the
chanuei and the transfer is started. This is standard
operatin
nei. R

procedure for devices on a IBM 360/370 chan-
T e whoie data transfer

the IBM channei
procedure is handied by

The IBM CPU is free to work on other
,jobs from the time it issues the Start I/O instruction
until it receives an interrupt that the transfer is
compiete.

PDP-11 SOFTWARE

The PDP-1i/04 computer has the 'ob
O$

of controiiin
the 168/E overiays, the transfer event data to ar. 2
from the 168/E, and the transfer of data to and from
the controi unit.
software tasks,

The job is divided into a number of
corresponding to the non-shareabie

hardware resources. There is a task for each proces-
sot, a task for the channei interface, and a task for
each of the processor busses. As was mentioned ear-
i.ier, the Bermuda Triangie was
hardware

designed so that the
resources could easiiy be asslgned to specific

software tasks. We have
executive caiied SPEX 151

chosen a smali muiti-tasking
which aiiows aii the tasks to

ho residrnt in memory and hence
the PDP-1:. It has been

no disk is required on
used as the data acquisition

system in severai experiments at FermiLab, Brookhaven,
ahd CERN .

Each of these tasks is "driven" by a queue of work
to do. The channei interface tasks receives raw event
data and queues it to the processor work queue. When a
processor becomes avaiiable, its task wiii take an
event, from the work queue. suoervise its transfer to
Fhe processor, its execution through the various over-

and the transfer of
itSAr memory.

the resuits back into the

resuit buffer to
The processor task wiii then queue the

the channei interface work queue and
start working on another event from the processor work
queue. Meanwhiie, the channei interface task initiates
the transfer of resuits from the buffer memory to the
IBM channei. It then initiates a transfer of a new
event from the IBM channei to the buffer
queues it to the

memory and
rocessor

cycie is started g
work queue. The recessing

y a task which supervises t R e initial
transfer of the overiays and constant COMMON biocks
into the buffer memory. It aiso fiiis the remainder of
the data buffer memory with as many events as jt can.
The individuai processor tasks wiii asynchronousiy want
to send events and overiays
two processor busses.

to the processors over the
Since the busses can oniy per-

form one operation at a time!
their requests

the processor tasks queue
to the indivlduai tasks which are as-

signed to the busses. The executive, SPEX, handies aii
queuing and synchronization of the tasks.

The PUP-11 itseif is ioaded via the channei. The

is run on the IBM
computers,
storage devices

for any permanent
on the PDP-11 such as disks, tapes,

etc. This absence of any
R

eripherais, other than a
terminai , shouid heip make t e system very reiiabie and
reduce maintenance. The D.E.C. program, ODT-11, is
ioaded into the PDP-11 with the executive and associ-
ated tasks to aid in debugging. software
for 10 processors requires 20 K b DP-11 memory.
About 700 micro-seconds of PDP-1 is needed
per overiay.

SUMMARY

In October 1979 this system came into o eration with
one processor. It exscutes aii of the LA S production !
program withT;E;en:$alry the.sape results as an.IBM 370
computer. ldentlcally the same
found on aii tracks in every event; oniy the !.

olnts are
itted he-

iix parameters showed some differences. Smaii differ-
ences were expected since the
ices in the soienoid is done

fitting of tracks to hei-
entireiv in IBM doubie

precision. However, the differences w;? see are in the
least significant hexadecimai digit in the fitted track
parameters except for 2% of the tracks which are very
pooriy defined.

We feei the importance of emuiation can not be over-
emphasized. The LASS prOduction code-is neariy 20,000
iines of FORTRAN.
to have re-writ&n
iess microcode.

It would be ~~t~E~~gi:lrnla~,"~~~l~~
this code

Before one couid have finishe such a
project the FORTRAN source
changed.

wouid have undoubtediy been

to be
With emuiation not 0nj.y doesn't the code need

changed but aiso verification of
is easiiy accompiished by comparing

the processor
its results on a

set of events with the resuits from the same events run
on the IBM computer. Even the smaiiest error in the
system's hardware is detectabie.
first tried to run the LASS code

FE; ;;zmpie, when ye

three errors were made.
system only

Oniy one of the errors ied to
resuits which were obviousiy wrong. The effect of the
other two errors was oniy that a few extra reasonabie
iooking points were added to some of the detector's co-
ordinate banks. The cause of one of the errors was
forgetting to ioad one of the constant COMMON biocks.
The cause of the other error
had an effect when fioating

was a bad I.C. which oniy
point register 6 was used.

Another important advantage is having oniy one copy of
the source code which is used both for the IBM computer
and the 168/E processor. the
transiator is

In fact,
the iink-edited

input, to the
ioad moduies w?.ich are

used to run the program on the IBM computer. When the
production program 1s modified,
to produce a new microprogram

We are now preparin
on the system and on P;

to run many thousands of events
t e IBM computer. This wiii check

for pathoiogicai events to a ievei of one in ten thou-
sand or better. We are aiso preparing additionai 168/E
processors and expect to have 6 processors on the sys-
tem by the end of 1979. We wiii thus be abie to start
anaiyzing our 50 miiiion events with a
equivaient
hours a day.

to 3 dedicated IBM 370/168's running
system,nearig

ACKNOWLEDGEMEWS

We wouid iike to thank D.W.G.S. Leith for his SUI)-
port and encourgagement on this project.
thanks must go to Hanoch Brafman of the Weizmann

Sp-Wd$~

tute who designed the 168/E microprocessor during his
visit to SLAC. The first reai test of the processor
was done with the efforts of Rafi Yaari, aiso of the
Weizmann Institute. who bought us the track reconstruc-
tion code from the'TASS0 sp&trometer at DESY to run on
the processor in February 1979.
George Aiken

Thanks aiso goes to
and Ai Kiiert of SIAC who desidued the

chassis for the processor.

BIBLIOGRAPHY

5

(1)

(2)

(3)

(4)

(5)

Paui F. Kunz, The LASS Hardware Processor., Nut.
Instr. Meth. -9mpr43>.

Roger B. Chafee, GOODGNUS, CGTM No. 198 Stanford
Linear Acceierator C;enter, Stanford,-CZiif., 94305

B. Wadsworth, FASTBUS - An Emerging Laboratory
Standard, a paper In tliirvolume.

SPEX: A Spectrometer Executive, Generai Structure,
rrograiiimers Manual, and Users Manual, J.l'.
&sslmo,8;e.Lson, L..J.Levlnson, srown

Hi h Ener y Ph sits Group Internai
::;::::':$3, ?24, 125 (19?2)

