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ABSTRACT 

We discuss a two-dimensional model of interaction between 

electrons and neutrinos. The absence of a neutrino mass allows 

for a local conservation law, similar to gauge invariance in 

quantum electrodynamics. We discuss the peculiar fact that the 

tree approximation gives wrong results for the conservation 

equation of the current associated with gauge transformations. 

Moreover, we show that the anomaly of the axial current is 

responsible for this property. 
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The existence in nature of massless fermions rouses some puzzling 

questions, particularly from the theoretical point of view. The fact 

that at least one neutrino is massless is just the minimal requirement 

to render observed parity violating processes compatible with the Poincar; 

invariance of the physical laws. .t However, to our knowledge, no other 

important symmetry or field theoretical property is associated with the 

fact that the neutrino is massless. 

We would like to associate some local conservation law to the 

absence of the mass of the neutrino, similar to what happens to the 

connection between group invariance and photon. We shall investigate 

this problem in a two-dimensional model of interaction between an 

electron and a neutrino. The peculiarity of the two-dimensional world 

will allow a state of neutrino-antineutrino to play the role of 

gauge-particle. 

In the tree approximation the theory is given by the Feynman 

diagram rules derived from the Lagrangian density 
f 

(1) 

where 

We use the following conventions 

(3) 

goo = 1 E 01 = 1 

d2x = dx'dx' d2)(x> = 6(x0> 6(x1) 
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The regularization and the renormalization procedure will be elected in 

such a way to exert local gauge invariance 

(4) 
$J(x> -f exp i(ACx> - y5X(x) ) $(x) 

4(x) + exp [ -i $ X(x) )- 4 (xl 

where 3,x(x)= s,,v a?(x) and consequently OX(x)= 0. if we define J in 

a gauge-invariant manner, then the neutrino current should transform like 

(51 jpW + jp(x) - + aFr h(x) 

in order to get a gauge-invariant Lagrangian. 

The product of the fields in the definition of J in (2) can be made 

finite and gauge-invariant by using any gauge-invariant subtraction 

procedure, e.g., dimensional regularization (l), On the other side, the 

split-point definition (2) seems to be the better way to enforce 

transformation (5) for j: 

(6) Z3(E;2)[T($(x+E .JY,$ <xl) - <OlT($tC)r,$(O)) IO>] 

7 
where Z (c") is some renormalization factor. 3 Letus suppose in fact that 

for small 5 the most singular part of T($(x+~)ynJ,(x)) is proportional to 

the free propagator, i.e., 

1 TrCYu ey] 
2rL &2 - is 

then 

(7) j;(x)-ju(x)a 
r,S*v 

I 

= 
E2 - is 



I 

= -+ lim = 1 a A(x) 
c-+0 C2 - is IT 1-I 

We shall evaluate later the proportionality constant in (7). 

The j-two-point function can be easily evaluated in the one-loop 

(OL) approximation. By employing the definition in (6), we get 

(8) <O~T(.j~(djv~O)) 10) 
(x+ cj l Y 

(x+ Fj)2- ifz 
I 

Consider light-cone coordinates (i.e., p, v=+, -). By using the 

relations 

yf f y” z!z yl , (yy2 = 0 , 
(9) 

v’v- = 21195) , Y-Y+ = 2(1+y5) 

we arrive at 

<OIT(j+(x)j+(O))IO>l = ' lim 4 X+ (x+ o+ 

OL (2*i)2 E.-t0 x2 -is (x+5)2 - is 
E2#0 

and 

<OlT(j’(x>j-(0)) 10) 

I.e., 

(10) <OIT(j’(x)jV(O>) 10) 

(11) 

=lT -* 3+-a+ f,n (-x2+is) 

= 0 
OL 

1 = -- 
OL ga2 

(OP - 2apav) kn(-x2 + is) 

aU<OIT(j~(x)jV(0))lO> 
I 

= i av s(2)(x) 
OL 2* 

. 
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In the next section we shall prove that the result in (11) is exact 

to all orders of the perturbative series. We need a simple lemma for the 

unrenormalized theory. 

Lemma: The one-loop connected partS(l...n) of <OlT(j 
9 (xl) . . . 

jy"(x$) IO> vanishes identically for n> 2. 

The proof of this result has been given by Y. Frishman (3>. Here we 

provide some improvements. The Fourier transform for non-exceptional mo- 

menta (i.e., none of the internal lines are on-shell) is given by 

a1 . ..n) f j dxl... dxn exp(ixipi) S(l...n) 

(12) 

.n 
= 1 

Tr 

S(2)(pl+ . . . + p,) lim 
F-f0 c 

.I d2k exP(iqiSi+l) 

c2#o 
Perm. 

~1 S;Y pn 9,‘Y 
Y 

qf+ic 
. . . Y 

qi+is I 
, 

where qi= c 
j=l 

pj+k and the permutations are preformed on the indices of 

u and p. Due to the relations in (9), Ghan be different from zero only 

if all the pi=+ or pi=-. In particular we have 

-+...+ Lr (l... n) = (2i)n 6 (2)(pl + . . . + pn) 
c 

dk+ dk- 

Perm. 

(13) 

+ 

exp iqiSi+l r 1 q1 qL 

qf+is 
. . . 

qi+is 
. 

We cannot take the limit inside the integral, otherwise the in~tegration 

is ambiguous. However, if we integrate first in k-, the integral is 
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+ zero for large positive or negative k since the poles are then all loca- 

ted in the same imaginary half plane of k-. Then we obtain (n> 2): 

-+...+ 
s (1 . ..n) = (2i) B n (2)(pl+...+pn) 

c 
dk+ j dk- 

Perm. 

(14) - 

+ 

X 
q1 4:: . . . 

2 ql+is qi+i.s 

By using (14) one can easily show that 

(15) 

From (15) and from 

. 

(1 . ..n) = 0 

one obtains (3) that for all momenta 

(17) L?(l . ..n) = 0 

From the lemma just proved, it follows that the j-two-point Green 

function is given only by the chain-graphs, where the one-loop j-two- 

point function (10) connects the one-particle-irreducible (including the 

propagator in (10)) blobs of <o\T(J,,J~)~~>. Since J is built in a gauge- 

invariant way, the electron does not contribute to the divergence of the 

j-two point function. Thus (11) is valid for any number of loops. 
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A further result can be derived from the lemma. First notice that 

a simple use of the Ward identity shows that the renormalization constant 

Z3 in (6) is also the wave function renormalization constant for the 

neutrino. By power counting arguments, it should have a logarithmic- 

type dependence on the cut-off. We are now in position to show that the 

proportionality constant in (7) is just one. In fact-for any product B 

of fields, the most singular part of the limit <= 0 of 

is the disconnected part 

(18) . 

From the lemma it follows that any loop-insertion to the closing neutrino 

line vanishes in the limit, i.e., 

(19) Z3<01TC$(S) y,$(O)llO> = & 
Tr[y,, 5 *VI 

c2 -is 

Hence the transformation property in (5) is implemented by our renormali- 

zation procedure. 

These facts suggest that the Lagrangian in (1) will be renormalized 

like in QED in four dimensions, i.e., with Zl=Z2: 

(20) g = ZICT(izI+ g yU ju) 41 - m Zm T 4 + Z3 G(izI) JI 

A more general argument will follow from the analysis of the invariance 

of the perturbative series. Notice that, due to (lo), the S-matrix in 

the electron sector is the same as in the massive Thirring model. 
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The currents associated with the symmetry transformation (4) have 

unusual and interesting properties. In particular the current obtained 

from the Noether theorem for the transformation in (4) is not conserved. 

This is due to our renormalization prescription. Moreover the axial 

currents present anomalies. These anomalies allow us to find a new local 

current which is conserved and generates the transformation (4). This is 

a quite new situation in field theory: the invariance properties of the 

theory appear only after the quantum corrections to the tree approxima- 

tion have been performed. 

The Noether current associated with transformation (4) 

g'(x) = -$ X(x)Ju(x) + fA(x)gPv + ~(x)~u~)jv(~) ' 

where j'-'(x) = ZIT y,4(x), is not conserved. In order to find the right 

current, we shall analyze closer the currents J and j. The Feynman graphs, 

contributing to an amplitude involving j and any number of external 

neutrinos (dotted lines) and electrons (dashed lines) can be divided into 

two classes as indicated in figure 1. The contribution of the first class 

of graphs to the divergence of j is easily given by using (11) 

(21) au<OlT(ju(x)B) 10) 
1 
st =- &a'l<dlT(J,,(x)B)10> 

where B stands for the product of electron- and neutrino-fields. The 

second class of graphs gives the contribution 

ap<OlT(j$45(xl) l . .ibn>~(yl) .= 4(yn)~(wl). . .i&7m)4(zl). . .+(z,>) lo> 2nd 

= 5 [~(2)(x-xl)-d2’ (x-yi)l<OIT(~(xl). . .~(x,)$(y,) l . .$(Y,)&J1) - l &w,) 

i=l 

(22) x o(z,). . l 4(z,)) lo> 
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By construction J generates locally a U(1) transformation on the fields 

4 and $. Therefore, from (21) and (22) we can define the charge 

operators 

(23) 

q = I dx' j,(x) 

Q = 1 dx' Jo(x) 

Both are Conserved and have commutation relations 

WJI = - J, 

[q,41 = -$ [Q,4] = $ 4 
04) 

[Q,J11 = 0 

[Q,41 = - 4 

and their hermitian conjugates. q generates a more complicated transfor- 

mation as one would expect from Lagrangian (1). 

We consider now the axial currents. An analysis similar as that 

for the vector currents gives 

aV'o~'~vT(jv(x)B~~o)/ st = iaus 
1 

TV I d2y <OIT(jv(x)jp(y))lo) 

g<OITIJp(y)B) IO> = 5 a"suv<OIT(Jv(x)B)lO> , 

I.e., 

(25) a’Epv (j"(x) - & J’(x)) = 0 
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The new current 

06) i5,,(x) E Bllv(jv(x) - & J'(x)) 

generates the usual chiral transformations on the field $ and $. Since 

the current is conserved, the theory is global chiral invariant. 

The anomaly (25) suggests a new conserved current associated with 

the transformations (4):. 

(27) ” = (hgFIv + xEpv)(jv _ 5 Jv) 

. 

An analysis similar to that in figure 1 shows that indeed the new current 

generates the required transformation. 

Finally the consistency of our renormalization scheme given by the 

current in (6) and the Lagrangian (20) is shown by (21), (22) and the 

analogous relation involving the divergence of J. In fact, like in QED, 

these relations can be used to show the equality between vertex and wave 

function renormalization constants. 

Conclusions 

The model we have briefly discussed shows that the absence of mass 

for the neutrino allows for a local conservation law (14) and (27). The 

new interesting feature of this invariance is that it is absent in the 

tree approximation. In fact renormalization and anomaly (25) are essen- 

tial in proving that the current (27) is conserved and generates the 

transformations (4). 
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