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ABSTRACT 

We present a simple technique for performing accurate 

calculations of the eigenvalues of quantum systems whose 

potential energy is a polynomial in the coordinates. The 

method involves the study of recursion relations between matrix 

elements of powers of the coordinate operator between the exact 

eigenstate and a conveniently chosen basis state. The general 

theory is developed and applied to three examples: the quar- 

tic oscillator, the octic oscillator, and two coupled quartic 

oscillators. Numerical results are given. 
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I. INTRODUCTION 

In this paper we present a new technique for making accurate 

calculations of the energy levels of quantum mechanical systems 

whose potential energy is a polynomial in the components of the 

coordinate operator. The basic idea is to study the matrix 

elements of powers of the coordinate operator between the exact 

energy eigenstate and a trial state. We show that these matrix 

elements are readily calculable and that the coupled (difference) 

equations which they satisfy yield a very accurate evaluation of 

the energy eigenvalues. 

Our procedure is a straightforward generalization of earlier 

work 1 in which matrix elements of powers of the coordinate operator 

between exact energy eigenstates were studied. Our new approach 

has the advantage that the trial state can be adjusted to ensure 

rapid convergence. In addition our technique can be readily ap- 

plied to systems with more than one degree of freedom in contrast 

to the method of Ref. 1. We should also add that this technique 

seems to be easier to implement and of greater range of validity 

than either Bore1 resummation2 or perturbation around instanton 

solutions 3 to the classical equations of motion. 

In Section II we present our general technique and apply it 

to three examples: the quartic oscillator, the octic oscillator, 

V(x) N x8, and two coupled quartic oscillators. In Section III 

we present our numerical results and briefly discuss their appli- 

cation to the study of systems with many degrees of freedom. 
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II. MOMENT RECURSION RELATIONS 

We wish to solve for the eigenvalues of the Schroedinger 

equation 

H\JI) = EI’#) 
where 

N 
H=C p;+v 

i=l 

(1) 

(2) 

and v is a polynomial in the components of the coordinate operator, 
-A 
x = (Xl,...,XN). To this end we introduce the moments 

S 
nln2---nN 

(3) 

where I$} is an exact eigenstate of H and 1~) is a trial state 

which is at our disposal. It is convenient to choose \cp) so that 

q(x) = (GIq) = exp[-Tdx" -s'(i?, 1 _ 
0 

Then 

+o (xl = -&x)cp !x) (5) 

and 

02q3(x) = r;;-; - et-g]cp (x) * 

Taking the matrix element of Eq. (1) with the state 

(q Ixfl.. . x2 gives 
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ES nl...s = <CpI/(v*g) - "s."s + V 

N 
"1 nN + C (2gi(x)n.xY1-ni(ni-l)x12)]ixl . ..s I$) . 

i=l 1 l. (6) 

If both v and g are polynomials in the xi, then Eq. (6) is a re- 

cursion relation among the S nl,...nN* To show how this recursion 

relation can be used to calculate the energy eigenvalues it is 

helpful to consider some examples. 

A. The quartic oscillator 

We start with the one dimensional quartic oscillator whose 

Hamiltonian can be written in the form 

H = p2 + h(x2-f2)2 . (7) 

Since 1 and f2 have the dimensions x -6 and x 2 respectively, the 

energy eigenvalues must satisfy the scaling relation 

E(XLf2) = X l/3 c(Y3 2 f) - 

So, we can set X = 1 without any loss of generality. 

A particularly simple choice for the trial state is 

g(x) = bx 

p(x) = exp[- 5 bx2] , 

(8) 

(9) 

where the parameter b is at our disposal, subject to a few minor 

constraints which will be elaborated below. Substituting Eqs. (7) 
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and (9) into Eq. (6) with N = 1 gives the recursion relation 

S n+4- W2+b2) Sn+2+ [(2n+l)b+f4-E]S,-"(n- l)S, 2=o (10) 

with the boundary condition that n(n-1)Sns2 = 0 at n = 0,l. Since 

cp (x) is an even parity state the Sn vanish for odd n if 4(x) has 

even parity and for even n if I/I(X) has odd parity. 

Our program for determining the energy eigenvalues from 

Eq. (10) is as follows. We start by obtaining an asymptotic 

expansion for the Sn valid when n 2 M b> 1. We then determine 

the Sn for n < M by Eq. (10). For the even parity states we 

determine So from Eq. (10) with n = 2. Setting n = 0 in Eq. (10) 

yields 

s4’so - (2f2+b2)S2/So +b+f4 -E=O . (11) 

For the odd parity states Sl is determined from Eq. (10) with 

n = 3. Setting n = 1 in Eq. (10) then yields 

S5'sl - (2f2+b2)S3/Sl + 3b + f4 -E=O . (12) 

Since the Sn are all determined at this point, Eqs. (11) and (12) 

will only be satisfied for certain values of E, namely the eigen- 

values. Therefore, we need only plot the left hand side of 

Eqs. (11) and (12) as a function of E (the Sn are, of course, 

functions of E) and search for their zeros. 
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The asymptotic expansion of the Sn can be read off directly 

from Eq. (10); however, it is instructive to return to the 

original definition. The non-zero Sn can be written in the form 

'n 
= zidx (b(x)$(x)en'n(x) . (13) 

0 

Since q(x) and 4(x) are decreasing functions of x for large x, 

this integral can be evaluated by the saddle point method for 

large n, where only the large x behavior of I/I(X) is needed to 

determine Sn. It can easily be obtained by writing Jr(x) = e -x(x) 

and substituting into the Schroedinqer equation to get an equation 

for x: 

x" - x 
'2 + (x2-f2)2 -E=O . (14) 

For large positive x we find 

x(x) =$x3 - f2x + O(4.n x) . (15) 

Thus for large n the inteqrand of Eq. (13) has saddle points when 

X3 + bx - f2 - n/x M 0 . (16) 

The only saddle point relevant to our integral is the one as 

x=n l/3 _ b/3 which gives4 
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Jj -; 
Sri=== e exp[- i bn 213 + (f2 + $- b2)n1'3 + O(n-1'3) (17) 

Equation (16) of course has three independent solutions. The 

other two have integral representations similar to Eq. (13), but 

with contours of integration running through the saddle points at 

x* 
~ ,+2ni/3 (n1'3-b/3) . These solutions have asymptotic expan- 

sions of the form 

*2ain n n 
s", = e - n7 e-T exp,- ; bn2/3;4';n 3 

2rin 
+ nl/3e+ 3 

*2ain 
(f2 +$b2e 3 

+2nin 
- i b2e 3 

+ O(n-1'3) ] (18) 

as can be verified by direct substitution into Eq. (10). 

The fact that the solution of physical interest has the sub- 

dominant, i.e. smallest, asymptotic behavior is crucial to obtain- 

ing accurate numerical results. In approximating the Sn for n r M 

by the asymptotic expression of Eq. (17) we are of course introducing 

an error. It corresponds to having admixtures of the unwanted 

solutions S f n' but only with weights of the order of exp( - 2 bM 213) 

relative to the desired solutions. Thus, as long as b > 0, we can 

make this error arbitrarily small by taking M sufficiently large. 

In practice one can make very accurate evaluations of the energy 

eiqenvalues even with very crude approximations to the asymptotic 

behavior of the Sn, as is illustrated in Table I. 
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It should be noted that if we had used the diagonal moments, 

(4 lxnlJi), then we would have obtained asymptotic solutions 

analogous to Eqs. (17) and (18) with b = 0. Thus, the solution 

of interest would not have the subdominant asymptotic behavior 

for the interesting case of f2 3 0, and we would therefore require 

a very accurate evaluation of the asymptotic form of the Sn. 

Since Eq. (19) is linear, we only actually need to evaluate 

the ratios- 

Rn = Sn+2/Sn - 

Equation (10) can be rewritten in the form 

R n-2 = n(n-1 

for n 2 2. The eiqenvalue conditions are 

4 2 2 b+f -E-(2f +b )Ro+ROR2 = 0 I 
and 

4 2 b+f -E-(2f +b)Rl+RlR3 = 0 . 

The Rn have the asymptotic expansion 

Rn = n 2'3[1 - $ bn -l/3 + $-(2f2+b2)n -2/3 + O(n-l)] . (21) 

(19) 

(20) 

The Rn 's are more convenient for numerical calculations because 

they grow much more slowly with n than the Sn. We have used Eqs. 

(20) and (21) to calculate the ground state and first excited 

state energies as a function of f2. The results are recorded in 
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Table II and Fig. 1, and are discussed in Section III. 

In the proceeding discussion we have used a Gaussian trial 

function for simplicity. We have tried a variety of other forms 

for the trial function which lead to equally good results. A 

natural choice is to build the large x behavior of J+(X) into 

cp (x) - This can be done in the present example by taking 

9(X) = XIX\ + bx 
(22) 

q(x) = eXp[- + (Xl3 - + bx2] . 

We define the moments for even parity eiqenstates to be 

'n = 04 I lxl”lJl) = 2;dx +x)$(x)x" 
b 

(23) 

and for odd parity states to be 

'n = (qlIxl"c(x) \$)-2ydx co(x)i(x)xn I (24) 
0 

where E(X) = * 1 for x 2 0. In either case the Sn satisfy the 

recursion relation 

2bSn+3 + (2f2+b2)sn+2 - 2 (n+l)Sn+l 

(25) 

+ [E-f4-(2n+l)b]Sn + n(n-1)Snm2 = 0 

for n r 2. For even parity states Eq. (25) is also valid for 

n = 0 and for odd parity states it is valid for n = 1. These 

two equations provide the eiqenvalue conditions. The Sn have 
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the asymptotic expansion 

n n 2 1 1 - 
'n exp[- 5 b(F)3 + (f2-b2/12)(;)3 + o(($ 3 1 - (26) 

We have used Eqs. (25) and (26) to calculate the energies of the 

ground state and first excited state of the quartic oscillator, 

and they yield results in complete agreement with those obtained 

using the Gaussian trial function. The rate of convergence of 

the energy using q(x) given by (9) and by (22) are comparable. 

B. The octic oscillator 

We next consider the one-dimensional octic oscillator with 

the Hamiltonian 

H = p2 
4 

+ X(x2-f2) . (27) 

This potential is of some interest because, unlike the quartic 

oscillator, the energy gap between the ground state and the first 

excited state cannot be calculated simply from instanton effects 

even for large positive fL which yields a potential with deep 

double minima. 

As for the quartic oscillator, the energy eiqenvalues satisfy 

a scaling law, 

E(X,f2) = x1'5c(x1'5f2) 

so we can again set X = 1 without loss of information. 
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For large x Jr(x) has the asymptotic expansion 

4(x) = exp[- $I5 + $ f21x13 + O(lxl) I . (29) 

so, in analogy with Eq. (22) we define q(x) by writing 

q(x) = x]x](x2+2f2b) 

(30) 

q(x) = exp[- $ IX15 - $ f2blx13] - 

Defining the moments by Eqs. (23) and (24) we obtain the recursion 

relation 

+ 4f6S n+2-4f2b(n+l)S n+l+(E-f8)Sn+n(n-1)Sn-2 = 0 
(31) \ 

which is valid for either parity eiqenstates when n 5 2, for the 

even parity states when n = 0, and for the odd parity states when 

n = 1. The Sn have the asymptotic expansion 

n n 3 2 

'n exp[- $- f2(b-1) (;)5 + 0((z)') ] . (32) 

We have used Eqs. (31) and (32) to calculate the energies of the 

ground state and first excited state of the octic oscillator. The 

results are given in Fig. 2 and Table III. 

C. Coupled quartic oscillators 

As our final example we consider the problem of two coupled 

quartic oscillators with the Hamiltonian 
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H = p2 x + P2 
2 2 

y + X(x 2-f2) + X(Y2-f2) + A(x-Y)~ . (33) 

This problem is interesting in its own right, and it is a first 

step in generalizing our technique to systems with many degrees 

of freedom. 

As usual we can set X = 1 since the energy eiqenvalues 

satisfy the scaling relation 

E(X,f2,A) = X1'3c(X1'3f2,X-2'3A) . 

It is convenient to introduce the variables 

p1,2 = 2 -1'2(Px*Py) 

x1,2 = 2 -1'2 (x f y) 

(34) 

(35) 

and rewrite the Hamiltonian in the form 

2 1 2 
H = p 1 2 + P22 + $x12-2f2) + $x22-2(f2-A)) 

+ 3x,2x72 - 2(f2-A)2 . (36) 
I 

Clearly the energy 

under the separate 

former corresponds 

to the interchange 

trial function by 

eiqenstates $(x 1,x2) will be either even or odd 

symmetry operations x1 -+ -x 1 and x2 -+ -x 2' The 

to the ordinary parity operation and the latter 

of the two oscillators. If we now define the 
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or 

9 = (qlrq2) = (blxl,b2x2) 

(p(xlrx2) = exp[- + blx12 - $ b2x22] , 

then the moments 

S 
nln2 

= (q7[x;1x;21$) 

(37) 

(38) 

will be non-zero only for n 1 even or odd, but not both, and 

similarly for n2. Substituting Eqs. (36) and (37) into Eq. (6) 

gives the recursion relation 

+('n +4 n + 6sn +2 n +2 + ' 1 
1 '2 1 '2 nl,n2+4 

-(2f2+b12) sn 
1 

+2 n 
g 2 

- (2f2-2A+b22)S nl,n2+2 

(39) 

-nl (nl-l) ‘nl-2, n2-n2 (n2-1) ‘nl n2-2 = Esnl, n2 
, 

which is valid for all (n,,n,). 

Our strategy for obtaining the energy eiqenvalues from Eq. 

(39) is as follows. We first obtain an asymptotic approximation 

for S valid for n 
"?2 

+ n 12 2 M >> 0, which we denote by s" nl,n2' 
We then demand that Eq. (39) be satisfied inside the triangle 

bounded by the lines n1 = 0, n2 = 0, nl + n2 = M. For n 1 + n2 < M-4, 
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Eq. (39) can be used directly. For the diagonal n1 + n2 = M-2 we 

must make use of our asymptotic approximation to write 

[$ Ril+2,n 
2 + 5 'El+2,n 2 -2f2-b121Snl+2,n 2 

where 

+$ R2 31 + 2 Rnl,n2+2-2f 2 
2 nl,n2+2 +2&-b2 21s nl,n2+2 

+fbl(2nl+l) + b2(2n2+1)+2f4 IS 
"P2 

- nl(nle1)Snl-2,n2 - n2(n2-1)Snl,n2-2 = ESn1,n2 ' 

R1 
Vn2 

= 'n +2 n / ;nl,n2 
1 '2 

R2 "In2 = 'nl,n2+2 ' 'n P2 

(40) 

(41) 

Similarly for n1 + n2 = M we have 

[bl(2nl+l)+b2(2n2+l)+2f4-(2f2+b12)R1 
nl'n2 

-(2f2-A+b22)R2 11 1 12 2 
nl'n2 + 7 Rnl,n2Rnl+2,n2 + Z Rnl,n2RnlPn2+2 

(42) 
+21sn n 12 

Equation (39) for n1 + n2 5 M-4 together with Eqs. (40) and (42) 
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form a set of (M + 2)(M + 4) /8 homogeneous, linear equations for 

the S 
"1"2- 

If we regard the S 
"P2 

as elements of an (M + 2) (M + 4)/8 

dimensional column vector, S, then these equations can be written in 

the matrix form 

&=ES , (43) 

where the elements of the matrix H can be read off from Eqs. (39)- 

(42) - Thus by our knowledge of the asymptotic behavior of the 

S nl,n2 ' we have reduced an infinite dimensional eiqenvalue problem 

to a finite dimensional one. The latter can of course be solved by 

using canned computer subroutines provided M is not too large. 

We could of course have used the same procedure to solve the 

one dimensional problems discussed earlier. In those cases the 

structure of H was so simple that det[~-E] could be computed 

iteratively. 

Since the dimension of H grows as ML/8, it is essential that 

the $? 
n18n2 

approach the S 
"P2 

rapidly as n 1 + n2 increases. The 

first step in obtaining the s" 
"V2 

is to notice that 

JI (XlY) x exp[- + Y3) + (f2 - + A) (X+y) 

+ * (XY (X-Y) -3 tn (X/Y) 1 
(44) 

for X,y >> 0. By substituting Eq. (44) into Eq. (38) one can 

obtain an asymptotic expansion for S 
nltn2' the relevant saddle 

point being at x1 N 2 -1'6(2nl-n2)1'3, x2 - (4nl-2n2)-1'6ni'2 for 
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nlr n2 and at x 2 -2 -v6(2 n2 -n$ 1'3,x -(4n 1 2-2nl) --l/6 l/2 for 
"1 

n2 2 nl. However, we can do much better by making use of our 

previous calculation of the moments of the one dimensional 

oscillator. 

We rewrite Eq. (33) in the form 

H = Ho - 2Axy 

and Eq. (37) as 

(45) 

9 (5’9 = qo(x,y) exp k +(bl-b2) xy 1 . (46) 

The exact moments for the Hamiltonian Ho and the trial function 

q0 are 

SO 
n2 

nl'n2 
((p I+,> 

= 2m’(n1+n2) "c' 2 Skl+k2Snl+n2-kl-k2 
kl=O k2=o 

(47) 

C-J n2-k2 nl!n2: / [kl!k2!(nl-kl)!(n2-k2)!] , 

where the Sn are the moments for the one-dimensional Hamiltonian 

P2 + (x2-f2 + A/2)2 with the trial function exp[-1/4(bl + b2)x2]. 

We use the saddle point only to calculate the ratio S 
nln2 

/so 
nl"2' 

Our final result is 
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w 
SO edA(n l-n2) (8nl-4n2) 

-l/6 -l/2 
S = 

"P2 "P2 "2 

1 1 -- 
. dn[(nl+(2n n 1 2-ni)2) (y-n2) 2l (48) 

- (bl-b2)(nl-n2)(4nl-2n2) . -l/31 

Equation (48) provides a very useful asymptotic approximation as 

long as -2/3 A/M and (bl-b2)/M 2/3 are less than one. In practice 

we have taken bl = b2. 

We have used Eqs. (39), (40), (42), and (48) to calculate 

the four lowest energy levels of the coupled oscillators. The 

results are shown in Table IV, and Figures 3-5. 

III. DISCUSSION 

Our numerical results are presented in Tables I-II and in 

Figs. l-2. It is clear that for any one dimensional problem with 

a potential of the form 

2N 
V(x) = C anP 

n=O 
(49) 

the energy levels can be easily computed to any desired accuracy 

using the moment method. Our procedure is very simple to apply 

and the calculations require a trivial amount of computer time. 

Since the approach is nonperturbative, it can be applied equally 

well to cases in which the potential has one or several minima. 

From a calculational point of view it seems far superior to the 
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numerical integration of the Schroedinqer equation or to procedures 

based on perturbation theory such as Pad& approximates or Bore1 

resummation. Finally, we should note that although we have only 

presented results for the two lowest energy levels in the one- 

dimensional problems,thereis nodifficultyin calculating the energies 

of higher excited states. In addition by combining our results with 

the techniques of Ref. 1, one can calculate matrix elements such as 

(~lx"~~) and q(O) to very high accuracy. 

Problems involving more than one degree of freedom cannot be 

overpowered to the same extent as the one dimensional problems. 

In the one dimensional case we approximated the moments Sn by the 

first few terms in an asymptotic expansion for n 2 M >) 1, and 

then determined the Sn for n c M iteratively. Since this calcula- 

tion could be done very rapidly and did not require the storage of 

large arrays of numbers, we could ensure high accuracy by simply 

taking M to be reasonably large. 

For problems with more than one degree of freedom the equations 

relating the moments could not be solved quite so simply. One is 

faced with a finite dimensional eiqenvalue problem whose dimen- 

sionality increases rapidly with M; thus there is a practical limit 

on the size of M and the resultant accuracy. 

For the problem of two coupled quartic oscillators we used our 

knowledge of the one-dimensional oscillator to obtain asymptotic 

moments which gave a good approximation to the exact ones even at 

moderate values of M, As can be seen from Table III, our calcula- 

tion converges quite rapidly. We are not aware of any other 

calculation of the energy levels of coupled anharmonic oscillators 

which gives comparable accuracy. If even greater accuracy were 
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wanted, one could either increase M, or improve the approximate 

moments, z 
"In2 

by solving Eq. (39) iteratively for nl + n2 M M 

with the g 
nln2 

as the zero order approximation. 

It is clear that it will not be practical to solve the 

moment recursion relations directly for systems, such as lattice 

field theories, which involve large numbers of coupled anharmonic 

oscillators. One approach to the lattice field theory problem 

is to make-a real space renormalization group calculation in 

which blocks of oscillators are replaced by a single average 

oscillator. 5 The ability to make accurate calculations of the 

one dimensional oscillator is crucial for these calculations. 

It is also possible to treat two coupled oscillators as the 

exactly solvable "base" problem using the methods described here. 

We hope to return to this calculation in the future. 
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TABLE CAPTIONS 

Table I. Ground state energies for the anharmonic oscillator 

calculated using different values of M and different 

forms for the asymptotic ratio ~~ For M = 200, 

our results are accurate to several more significant 

figures than we have bothered to write out. 

Table II. Ground state and first excited state energies of the 

anharmonic oscillator. 

Table III. Ground state and first excited state energies of the 

octic oscillator. 

Table IV. Ground state and first excited state energies of the 

coupled anharmonic oscillators at h=l and f2 = 0 and 

2, versus M, showing the convergence of the recursion 

relations. 
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RM 

RMtW.20) 

RM 
= M2/3 

RM 
= 2M2j3 

RM = 0 

RM 
zz 2M2j3 

RM = 0 

M = 10 

Table I 

Eo(f2=2) 

M = 20 M = 50 M = 200 

2.30 2.283 2.2896497 2.2896495 

2.37 2.280 2.289650 2.2896495 

3.04 2.276 2.289652 2.2896495 

2.54 2.31 2.289650 2.2896495 

3 
EO(fL = 0) 

1.063 1.0603621 

1.064 

1.06037 1.0603621 

1.06038 1.0603621 

1.06035 1.0603621 

1.06030 1.0603621 

1.0603621 

1.059 

1.054 

1.0603621 

1.0603621 
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f2 

5 

4 

3 

2 

1 

0 

-1 

Table II 

*0 *1 

4.36642329 4.3664531 

3.8636669 3.8651857 

3.2518095 3.2932075 

2.2896495 2.7520771 

1.1377858 2.7130279 

1.0603621 3.7996730 

2.6778265 6 -4098280 

f2 

4 

3 

2 

1 

0 

-1 

Table III 

EO 

6.5175 

5.2753 

3.743 

1.1704 

1.225826 

3.8412 

El 

6.5175 

5.2753 

3.800 

3.14 

4.80 

10.1583 
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Table IV 

A = 1.0 

M Eo(f2 = 0) Eltf2 = 0) 

8 2.74 5.3409 

10 2.7260 5.3417 

12 

14 2.72566 5.340079 

16 2.72567 5.340083 

18 2.725630 5.340090 

20 2.7256350 5.3400936 

22 2.7256364 5.3400938 

24 2.7256353 5.3400935 

8 

10 

12 

14 

16 

18 

20 

22 

24 

2.7251 5.3403 

Eo(f2 = 2) El(f2 = 2) 

5.95 5.36 

5.49 5.43 

5.48 5.46 

5.417 5.481 

5.400 5.490 

5.393 5.4936 

5.3906 5.49455 

5.39092 5 -49446 

5.39149 5 -49429 
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FIGURE CAPTIONS 

Fig. 1. Energies of the ground state and first excited state 

of the anharmonic oscillator, V = (x 2-f2)2. 

Fig. 2. 

Fig. 3. 

Fig. 4. 

Fig. 5. 

Energies of the ground state and first excited state 

of the octic oscillator, V = 24 (x2-f ) . 

Energies of the ground state and first few excited 

states of the coupled anharmonic oscillators, with H 

given by Eq. (33) and A = 1, as a function of f2. 

Energies of the ground state and first few excited 

states of the coupled anharmonic oscillators with 

f2 = 0 as a function of A. 

Energies of the ground state and first few excited 

states of the coupled anharmonic oscillators with 

f2 = 2 as a function of A. 
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