
SLAC-PUB-2400 
September 1979 
(T/E) 

A QCD ANALYSIS OF eN DEEP-INELASTIC SCATTERING DATA* 

L. F. Abbott 
Physics Department, Brandeis University 

Waltham, Massachusetts 02154 

W. B. Atwood and R. Michael Barnett 
Stanford Linear Accelerator Center 

Stanford University, Stanford, California 94305 

ABSTRACT 

In the context of QCD, an analysis is presented of a compilation 

of eN deep-inelastic scattering data taken at SLAC. Included are 

data for FFP, Fgd, F;P-Fy and R. The interaction between the loga- 

rithmic scaling violation from c1 
S 

and the power-law scaling violation 

from higher-twist terms is discussed. This interaction can affect the 

determination of the parameter A and can alter the predictions for the 

ratios of anomalous dimensions. Furthermore, we show that, in the 

context of QCD, higher-twist terms may be able to account for the 

observed value of R = oL/oT which appears to be anomalously large. 

Different experiments have made different assumptions for the value of 

R used in extracting F2 from their data. We show that these. differences 

can account for the discrepancies in the relative normalizations of F2 

from these experiments and also can have a significant effect on the 

value of A obtained. 
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1. INTRODUCTION 

It is widely believed that quantum chromodynamicsl (QCD) is the 

correct theory of the strong interactions. This belief seems to be 

supported 2,3 by the good agreement between the scaling violations 

observed in deep-inelastic scattering and the logarithmic scaling 

violations predicted by QCD. However, QCD also predicts power-law 

violations coming from higher-twist operators 
4 in the operator-product 

expansion. The resulting combination of power-law and logarithmic Q2 

dependences can introduce uncertainties into the determination of the 

strong-coupling scale parameter A, and can alter the leading-twist 

predictions for the ratios of anomalous dimensions. 2 It is essential, 

therefore, to determine how much of the scaling violation seen in pre- 

sent experiments is due to the logarithmic variation of the coupling 

constant and how much is due to higher-twist effects before conclu- 

sions about the validity of QCD can be reached. 

Since at present our ability to calculate or estimate higher- 

twist terms in QCD is quite limited, it is important to use experimen- 

tal information to try to evaluate the contribution of higher-twist 

terms. This requires precise data over a very large range of Q2 values, 

and at each Q2, a large range of x values is needed. Such data do not 

currently exist and even in the near future it may be necessary to com- 

bine data from different experiments. Since the SLAC (Stanford Linear 

Accelerator Center) eN data5 are very precise, they can have an important 

impact on the analysis of QCD. In this paper we consider SLAC deep- 

inelastic scattering data for F ;" (f rom the process eN + e + anything) 
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with Q2 > 4 GeV2 (f or moments) or Q2 > 5 GeV2 (for F2 evolution), 

taken by the SLAC and Massachusetts Institute of Technology (MIT) col- 

laborations. These data were derived from a compilation of electro- 

ed production data taken at STAC, and include data for F;p, F2 and F;'-Fy.. 

ed 
F2 - 

en is purely flavor singlet, F;P-F2 is non-singlet- and Fz" is a mix- 

ture. We limit ourselves to high Q2 and high W (W > 2 GeV) in order to 

minimize the impact of higher-twist terms 2 and of higher-order-in-o - 
S 

corrections 6 (which can be substantial7 for Q 
2 

< 5 GeV2). 

When we consider the moments of F2 we apply only the Q2 cut, and 

we use the Nachtmann form 8 of the moments. By using the Nachtmann 

moments or equivalently the 5 variable of Georgi and Politzer8 and by 

including the low W (resonance region) data and elastics we are invok- 

ing the "local duality" hypothesis.' 

With the present data, it is certainly advantageous to use the 

Altarelli-Parisi evolution equations 10 so that one can exclude the low W 

region, avoid unnecessary extrapolations and make full use of low and 

high x data. Even with the Q2 
2 

?5GeV cut, the results are quite 

sensitive to l/Q 
2 or l/Q 4 higher-twist terms. Higher-twist terms 

reflect coherent phenomena such as transverse momentum effects, diquark 

scattering, elastic scattering, resonance production, etc. Such terms 

must, of course, be present in any theory of the strong interactions. 

With or without higher-twist terms, QCD is consistent with almost all 

data. There is a notable exception: the leading-twist prediction IL1 of 

QCD for the ratio,R,of longitudinal to transverse cross-sections in 

deep-inelastic scattering is consistently much smaller than the SLAC 
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data.12 Here we will show that there is a possibility that the inclu- 

sion of higher-twist terms will allow QCD to account for the R data. 

II. ANALYSIS OF SLAC DATA 

eN The data used in the analysis of F2 were derived from a compila- 

tion of electropraduction data' taken at SLAC. Details of the various 

experiments contributing to this data set are available elsewhere and 

will not be discussed here. The use of high Q2 data (Q2 > 4 or 

5 GeV2) resulted in the elimination of all data for which the scatter- 

ing angle was less than 10 degrees. In addition, a cut on W, the 

invariant mass of the final hadronic state, was made on data used for 

fitting F2 directly. This cut required W > 2 GeV. However, in the 

moment analysis, all data down to the one pion threshold were used 

(with elastics also included). 

The measured cross-sections are mixtures of the Fl and F2 struc- 

ture functions, and in the one-photon exchange approximation, can be 

written as 

+ = +[tlmy-w) F2(2~2)+y2Fl(x,Q2)] . 
dQ dx 

(2.1) 

M is the nucleon mass, E is the incident electron energy, y is the 

fractional energy loss of the electron (y = (E-E')/E where E' is the 

energy of the scattered electron), Q2 = 4E E' sin2(8/2) where 0 is the 

scattering angle, and x is the Bjorken scaling variable (x = Q2/2 MyE). 

The separation of the Fl and F2 contributions requires data at fixed 
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x and Q2 for various values of y. Such analyses have been performed 12 

but limit the kinematic range of the data. The approach used here was 

to separate out the F 
2 contribution by assuming the ratio of the lon- 

gitudinal to transverse total photoabsorption cross-sections, R, to be 

constant and equal to 0.21 as measured over a somewhat reduced kine- 

matic range. 12 Explicitly (for e, p and v scattering) 

7 = (1 c&),(1+ R) = (l+$$),(l+ R) (2.2) 

The procedure of assuming some value for R in order to extract F2 

is also used by both neutrino 13 and muon14 analyses since they also do 

not have sufficient data of good accuracy to make model independent 

structure function extractions. While R = 0.21 has been used for eN 

data, the neutrino and muon experiments have often assumed the Callan- 

Gross relation 15 2xFl = F2 which implies R = 4M2x2/Q2. Leading- 

twist QCD predicts that R should be small and should decrease as Q2 

increases and as x increases. However, there is no evidence for this 

behavior in the SLAC data (or other data), and (as discussed later) 

higher-twist terms could significantly change the expected magnitude 

and x-dependence of the QCD prediction for R. 

It is important to recognize that the assumption for R can have a 

significant effect on both the overall normalization and the Q2 depen- 

dence of the resulting F2. We have analyzed the SLAC data with 

R = 0.21, R = 0, and R = 4M2x2/Q2, The latter two assumptions (which 

are not consistent with the SLAC data) decrease the overall 
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normalization of F2 by 5 to 10% relative to the first assumption (for 

most x and Q2). At fixed Q2, the differences are greatest at low x. 

At fixed I, the differences are greatest at high Q2 (but at high Q2, 

only high x data exist). The different assumptions for R may account 

for relative normalization differences between different experiments. 

The impact on the Q2 dependence of F2 can be seen by noting that 

A(R = 0) - fl(R = 0.21) * 140 MeV and A(R = 4 M2x2/Q2) - h(R = 0.21) 

= 210 MeV for the SLAC data. 

The F2 structure functions were extracted from the cross-section 

data for both hydrogen and deuterium data. This set of structure 

functions consisted of about 2000 data points: There are small differ- 

ences in normalization of the data at each angle for each experiment. 

To account for these systematic differences, the values of F2 were fit 

to an analytic form (not QCD) that represented the entire data set 

well. For each experiment in the data set and for each angle for 

which data were taken, the weighted ratio of the fitted model to the 

data was formed. The weighted ratios were used to correct the data at 

each angle for each experiment. The normalizations were found to be 

the same for both the hydrogen and the deuterium data, and the largest 

correction made was 4% but usually was l-2%. 

The data were binned into grids of x and Q2 for the F2 and moment 

analyses. Each data point falling inside a particular bin was cor- 

rected to the center of the bin using the aforementioned global fit. 

The data were then combined to give a single value for the structure 

function at the bin's center. 
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Typically 15-20 data points fell into each bin. As such the 

statistical errors tended to become very small (typically < 1%). A 4% 

error was added in quadrature to the statistical error for each grid 

point to account for systematic errors. Imposing this error after 

combining the data we believe more accurately represents the true 

experimental uncertainties. 

Values for the neutron structure function were obtained by-taking 

differences of the deuterium and hydrogen F2's. Fermi motion effects 

were accounted for using the procedure of Atwood and West 16 taking into 

account the corrections due to Frankfurt and Strikman. 17 .The influ- 

ence of Fermi motion on the results was in general found to be small 

as it only significantly affects the data with x > 0.8. The Frankfurt- 

Strikman modifications were small corrections to the Atwood and West 

approach, the largest being 7% at x = 0.88, and consequently they had 

no influence on the results. 

III. THE F2 STRUCTURE FUNCTION 

The F2 structure functions measured in deep-inelastic electro- 

production can be written in terms of singlet and non-singlet quark 

distribution functions as 

ed 
F2 =92 5, S 

(3.1) 

(3.2) 

(3.3) 
en F;' - F2 = + F;' 
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where, if we ignore the small (few percent) effects of strange and 

charmed quarks 

S F2 = x u(x) + u(x) + d(x) + d(x) 1 (3.4) 

and 

FNS = 
2 

x u(x) + i(x) - d(x) - d(x) 1 (3.5) 

Defining a gluon distribution function G analogous to the quark dis- 

tribution functions of Eqs. (3.4) and (3.5), the Q2-evolution of the 

leading-twist contribution to F2 is predicted in lowest order QCD by 

the following differential equations: 

3 + 4 In (1 - x) Fys(x,Q2) 1 
/ 

1 
+ 2 

dw (1 - w) w~)F~~($,Q~) - 2 Ftjs(x,Q2) 
X II 

Q 2 -?- Fs(x,Q2) = 
ys (Q2) 

aQ2 2 3n 3 + 4 In (1 - x) 1 Fz(x,Q2) 

3 
+ 2 Nf (l-w)2 

(3.6) 

(3.7) 
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and 

Q 
2 a 3as(Q2) 

-S(x,Q2) = 71 
11 Nf 

aQ2 i? - 18 - + In (1 - x) 
3 

Gb,Q2) 

wH;,Q2) - c(x,Q2> 
+ l-w + (~(1 - w) + +) G(EjQ2) (3.8) 

2 
+ii 

1+ (l-w)2 
W F; ($Q2) 

II 

where N f is the number of quark flavors and 

as(Q2) = l2lT 
(3.9) 

(33 - 2Nf) In (Q2/I12> 

The QCD predictions are modified' when the effects of the 5 variable8 

are included (as discussed later in this section). Eqs. (3.6)-(3.8) 

must be supplied with boundary conditions by choosing values for the 

various distribution functions at some reference point Q2 = Qt. We 

parametrize the initial distribution functions in the following 

manner: 

c2 = Cl x (1- x) c3 

F; (x,Qi) = c4(1+ c5x) (l- x) '6 

G(x,Q~l = A(1 - x)~ 

where A is fixed by the momentum sum rule 

(3.10) 

(3.11) 

(3.12) 
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kldx(F;+G) = 1 (3.13) 

to be 

A= 6 
c4 

l-1+c - 
c4c5r t1 + ‘6) 1 r(3+cg) (3.14) 

6 

For Q2 #*Qt the forms of Eqs. (3.10)-(3.12) (not just the Ci) are 

modified. 

The expression for the singlet quark distribution, (3.11), with 

C5 as a free parameter was found to give a significantly better fit to 

the data than the simpler form corresponding to C 5 = 0, and so was 

used throughout our analysis. We have chosen Qz = 30.5 GeV2 where Qt 

is the reference value of Q2 where the initial forms Eqs. (3.10)- 

(3.12) apply. Our analysis is not sensitive to the value of Qt chosen, 

and this value was only taken for convenience. 

We have fixed the exponent of (1 - x) in the gluon distribution, 

Eq. (3.12),to be 5 because we have found that it cannot be reliably 

determined from the present data. We have varied this exponent from 

4 to 7 and found that this had very little effect on the results we 

are reporting. This may seem surprising in view of the precise 

results 18 1 
reported previously for 

/ 
dx F; in Eq. (3.13). However, 

0 
that result was obtained by using a very low Q2 cut (Q2 2 1 GeV2). 

Furthermore, perfect scaling'was assumed so that data at all QL were 

combined in a single x-distribution before integrating. Note that the 

range of x for which data exist changes significantly as a function of 

Q2. 
1 

If instead one obtains 
J 

dx Fz in Q2 bins, significant fractions 
0 



-11- 

of the integrals come from extrapolated points (50% error bars were 
1 

assigned to extrapolated points). We obtained results for 
f 

dx F; 

where we averaged the values obtained for Q2 > 4 GeV2 
0 

(a similar pro- 

cedure was followed for Q2 > 6 GeV2). For these Q2 cuts elastic scat- 

tering and the resonance region contribute negligibly-to the momentum 

sum rule integrals. We found: 

/ 1 dx F; 0.61 2 0.09 = 

0 0.65 2 0.15 

so that 

J- 1 dx G 0.64 
0 

+*; -. 

1 
= 

/ dx 0 F; 0.54 5; -.- 

Q2 > 4 

Q2 > 6 
(3.15) 

Q2 > 4 

(3.16) 

Q2 > 6 

For x 20.1, the evolution of the distribution functions is smooth 

and well-behaved. However, for x 5 0.1, the gluon distribution can 
7 

vary extremely rapidly with QL and in fact can become negative. This 

behavior is presumably due to the breakdown of perturbation theory in 

the low x region. In this region, the evolution of the gluon distri- 

bution is highly sensitive to the reference point, Qt, and to the ini- 

tial condition, Eq. (3.12), which are chosen. Because of these prob- 

lems and because of the fact that the gluon distribution is not well 

determined by experiment, QCD predictions for small x are unreliable 

when gluons are involved. Thus, only if x > 0.1 will we indicate QCD 

results in which gluons play a role. 

In most experiments, the range in x for which there are statis- 

tically significant data changes radically as Q2 increases. As a 
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result it is crucial that the x-dependence be fit at all Q2 rather than 

only at some Qt. In other words, the determination of A and Ci should 

be done simultaneously. This procedure makes the best use of all 

available data and insures that the proper values of n and Ci are 

obtained. 

The-parameters Cl - C3 and A in Eq. (3.10) are determined simul- 

taneously by integrating Eq. (3.6) for the non-singlet contribution 

with Eq. (3.10) as a boundary condition. The simultaneous variation 

of c 1 - C3 and A leads to the best fit to Fy - Fy at all Q2 values. 

c4 - C6 are then determined analogously from the data for F;' using 

the same values for Cl - C3 which were obtained from the fit to 

en F;' - F2 . A was again allowed to be a free parameter in the second 

fit, but the fl values obtained from the two fits were in excellent 

agreement. 

We have obtained excellent fits to the data for both Q2 > 2 GeV2 

and Q2 > 5 GeV2. A cut in the final-state hadronic mass, W > 2 GeV, 

was used to eliminate resonances and elastic scattering contributions. 

Since, at this point, we are ignoring higher-twist effects, it is 

desirable to make these Q2 and W cuts as high as possible. Our fits 

for Q2 > 5 GeV2 , W > 2 GeV are shown in Figs. 1 and 2. The values of 

the parameters foundin this fit are (for Qt = 30.5 GeV2) 

5 = 0.591 

c2 = 0.853 

c3 = 2.68 

c4 = 1.85 
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(3.17) 

A = 0.628 GeV . 

ed Very similar results were obtained for F2 with all parameters (C4 - C6 

and A) consistent with parameters (3.17). 

NS It has been suggested that F2 should vanish as&in the small 

x region whereas Eqs. (3.10) and (3.17) suggest Fys 'L xo*853 for small 

X. However, there are no SLAC data at low x and C2 is actually deter- 

mined by data at intermediate x values so no contradiction between 

theory and experiment is implied by this result. Furthermore, if we 

replace Eq. (3.10) with Fz'(x,Qz) c2 = Cl x (l-x) c3 (1+C7x), then we find 

c2 = 0.46. 

Since we are using the lowest-order results of QCD the A given 

above should only be viewed as a parameter of the fit, and no physical 

significance should be attached to its specific value. In particular, 

the A value given in Eq. (3.17) should not be compared with A's obtained 

from other experiments even as a consistency check. In addition, 

higher-twist effects could significantly change the value of A obtained 

from the data (see below). 

There may be additional sources of significant scaling violation, 

even for Q2 > 5 GeV2 and W > 2 GeV. These come from the non-leading twist 

operators in the operator product expansion. It should be pointed out 

that the magnitude of the effects of these higher-twist operators depends 

on the detailed structure of the proton and cannot be determined by per- 

turbative analysis of QCD. In Figs. 1 and 2 we have also shown that the 
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effects of higher-twist terms on analyses of scaling violation could 

be quite drastic by considering the extreme case (A z 0) in which $.IJ 

scaling violation comes from higher-twist effects. On the basis of 

this assumption we have obtained an excellent fit to the F 2 data for 

Q2 > 5 GeV2, W > 2 GeV as is shown by the dashed curves in Figs. 1 

and 2. These fits are given by: 

= 1.2 xl.2 (1 _ x)3 1 _ 0.4 GeV2 + (1.7 Ge12)t 1 (3.18) 
(1 - x)Q2 (1 - x) Q 

F; (x,Q2) = 1.2(1 + 4.7 x) (1 - x)3-5 

+ (1.7 GeV2)2 

(1 - x)~ Q4 I 

(3.19) 

Although there are no unequivocable calculations in QCD of the form of 

higher-twist terms, one can argue using the quark-counting approach, 
19 

that the above x and Q2 dependence of the higher-twist terms is 

reasonable. 

Since either leading-twist terms with QCD or higher-twist effects 

alone can account for the data, it is not surprising that one cannot 

determine how much of the scaling violation is coming from the leading- 

twist terms and how much is coming from other sources. Furthermore, 

higher-twist effects of even a modest size will allow almost any hypo- 

thetical alternative theory to fit the data. 
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Even if higher-twist effects are set to zero one cannot unambigu- 

ously detect the key features of QCD in the data. For example, one 

can change the running coupling constant in Eqs. (3.6)-(3.8) to a con- 

stant independent of Q2 and obtain an excellent fit to the data. 

Thus, the logarithmic variation in Q2 typical of QCD has not been 

clearly detected. Similarly, since our results are insensitive to the 

gluon distribution being used, one cannot claim to see evidence of the 

effects of this distribution on scaling violation in the data. 

We have noted that, at present, deep-inelastic data cannot dis- 

tinguish 

from the 

However, 

forms of 

fied the 

the logarithmic variation of the leading-twist QCD prediction 

power-law scaling violations coming from higher-twist terms. 

the data can determine the relationship between these two 

scaling violation. This is shown 20 in Fig. 3. We have modi- 

leading-twist QCD predictions of Eqs. (3.6)-(3.12) by includ- 

ing higher-twist terms of the following two forms, 19 

F2 = F:'I, (1 + (1 I:,,z,) (i = 1) 

or (3.20) 

F2 =’ F;cD (1 +c1. A&) (i= 2) 

The x-dependence indicated here is suggested by quark counting rules- 

In Fig. 3 we have plotted the parameter u., which indicates the magni- 1 

tude of higher-twist effects versus A, which is a measure of the scal- 

ing violations in QCD. Both of the cases in Eq. (3.20) are displayed. 
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These results were obtained by fixing the value of A and then deter- 

mining the best value of u i 
to fit the data. It is plausible that A may 

be reduced by as much as a factor of 2 or by as little as- a few per- 

cent when the correct higher-twist terms are added. 

The reason that higher-twist terms can have a large effect on QCD 

predictions at "high" Q2 is evident by considering Eqs. (3.20) and 

(5.9). If one assumes that pl~ A Z 0.5 GeV for F2 (or a ,wAc 0.5 GeV 

for moments),one finds that in the range Q2 = 4 - 100 GeV2, typically about 

35 percent of the scaling violation is due to the higher-twist term. 

Even for the range Q2 = lo-100 GeV2 , about 20% is due to the higher- 

twist term. Although the higher-twist term is small at these values 

of Q2, it changes more rapidly with Q2. 
eP 

In Fig. 4, we have extrapolated the predictions for F2 (x,Q2) into 

the low W (high x) region as indicated by the solid curve. The data 

clearly show the resonances which appear in this region. We have 

indicated the elastic scattering contribution (which is actually a 

delta function at x = 1) by including one extra bin from x = 1 to 

x = 1.04. The area under the data point in this bin is equal to the 

area under the elastic peak at x = 1. The x-scaling QCD predictions 

for F2(x,Q2) undershoot the resonances and do not in any way account 

for the elastic scattering contribution in the data. The dashed curve 

in these figures shows the <-scaling predictions, 
9% F2(x,Q2), obtained 

from the QCD predictions by writing 
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2 3 
i?,(x,Q2) = 2 v F,tC,Q2) + $ x 3v4fc1dx1 

F2 (x’ ,Q2) 

XI2 

, ‘;4”4 x 4v54i dx’ f l dx” “‘:::;“’ 

X’ . 

where 

and 

5 
2x = j c3 . e 

1+ - 
I 

1 + 4M2? 

Q2 

i > 

-1 

v E 1 + 4M2x2 ? 

Q2 

(3.21) 

(3.22) 

(3.2.3) 

In generating 5, we have used the same parameters C l-C6 and A as in 

our x-scaling fits of QCD to the data. The c-scaling prediction is 

based on incorporating the target mass condition p2 = M2 into the 

basic QCD predictions. From Figs. 4, one can see that the S-scaling 

curve, on the average, agrees well with the resonance contributions 

and that the excess area under the E-scaling curve near x = 1 is about 

equal to the area under the elastic peak as noted by De Rbjula, Georgi 

and Politzer. 9 Note that the c-scaling curve violates the kinematic 

bound F2 = 0 for x 2 1. Remember that the correspondence between the 

c-scaling curve and the data from the resonance region is assumed when 

Nachtmann moments are used at low Q2. 

IV. THE RATIO OF LONGITUDINAL TO TRANSVERSE CROSS SECTIONS 

In addition to F2, QCD also makes a prediction for the longitu- 

dinal structure function in electroproduction. In the leading-twist 

approximation, and to lowest non-trivial order in c1 S’ 
this is 
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as (Q2) 
FL(x,Q2) = 2T + Nf (1 - ~Y.XW,Q~) 

I 
(4.1) 

For neutrino scattering the number (10/g) in Eq. (4.1) is replaced 

with 4. From this the ratio 

* 
FL 

R = 2xFl = (4.2) 

can be predicted. Eqs. (4.1) and (4.2) ignore target-mass corrections 

of order M2x2/Q2* , however, these can be taken into account by using 

the 5 variable, 
9 Using our fits from F2 data, we have generated the 

solid curves in Fig. 5 which are shown for various Q2 values along with 

the SLAC-MIT data points. 12 
Both systematic and statistical errors 

are shown. Most of the experimental error is due to what is consid- 

ered a conservative estimate of systematic errors. As can be seen, 

the data disagree with the QCD predictions for x 2 0.3 although the 

effect of missing several data points is not cumulative since most of 

the experimental error is systematic. Thus, the QCD value is in dis- 

agreement at about a 1%2 standard deviation level. The QCD curves in 

this figure correspond to Q2 = 3,6,9,12,18 GeV2 going from the top 

curve to the botton curve. 

In Ref. 21, the effect of a significant dynamical diquark substruc- 

ture of the proton on deep-inelastic experiments was considered. This 

corresponds to the inclusion of higher-twist terms of order l/Q2 and 1/Q4. 

It was found 21 
that diquark terms alone (without QCD) could account for 

both F2 and R data. We have included such higher-twist terms along with 

the leading-twist QCD predictions and obtained an excellent fit to F 2 
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data. Of course, the value of A determined by this fit was smaller 

(A = 0.195 GeV) than that obtained by fitting QCD with no higher-twist 

effects. Since the diquarks are bosons, they contribute strongly to R 

and, as is shown by the dashed curve in Fig. 5, large values of R can 

occur in this model for low Q2 or at large x. The dashed curve was 

obtained-by computing R in each x bin using the average value of Q2 

for that x bin. In Fig. 6 the data and predictions are broken down 

into Q 2 bins. The resulting predictions in both figures are in rough, 

though not perfect, agreement with the data. This indicates that 

large values of R can occur through higher-twist effects which are 

completely consistent with other deep-inelastic data even within the 

framework of QCD. 

V. MOMENTS OF FtP-Fzn 

The moments of the non-singlet part of the F2 structure functions 

have simple logarithmic dependences which are calculable in QCD. At 

large Q2, leading-order QCD predicts 

ss(i,Q2) = i ldx xiB2(F;' - Fy) 

oc (ln Q2/A2Fdi 

(5.1) 

(5.2) 

Therefore one moment is related to another moment by a power equal to 

the ratio of the anomalous dimensions (di/dj) of the two moments: 
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da/d. 
ss (i,Q2) = constant l [$" (j,Q2)] ' ' (5.3) 

This ratio is independent of the number of quark flavors and of the 

magnitude of A. In practice, moment analyses contain other assump- 

tions which become especially significant at low Q2. The Nachtmann 

moments 8- account for the target-nucleon mass in deep inelastic scat- 

tering. For the non-singlet combination F;' - Fy they are given by 

qs(i,Q2) = (i+2)(i+3) 1 1 Fep 2 -F; 

(5.4) 

where 
-- 

M2 
ep and MFd are defined equivalently. The Nachtmann moments become 

equal to Eq. (5.1) at large Q2. There are other effects (from higher- 

twist terms) which we do not know how to account for. For example, 

nothing in our formalism tells us that there is a minimum hadronic 

mass. One can use the difference between the two moments, Eqs. (5.1) 

and (5.4), as a rough estimate of unknown effects. In this way a 

(5.5) 

value of QL below which uncertainties of this kind may become 
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important can be approximately established. In Fig. 7, the N = 4 mom- 

ents for these two versions are plotted against 42. The ordinary mom- 

ents rapidly become larger than the Nachtmann moments below Q2 = 4 GeV2. 

For higher moments this "safe" Q2 is even larger. We choose to use 

the Nachtmann moments in this analysis but consider the extension of 

moment analyses below Q2 = 4 GeV2 to be unreliable. * 

The moment integrals cover the full x range from 0 to 1. The 

question of whether to include the elastic peak becomes important at 

low Q2 as it can give a large contribution to the moment integral. 

The fractional contribution of elastic scattering to the Nachtmann 

moments of Fy-FFn is shown on Fig. 8 for n = 2, 5, and 9 as a func- 

tion of Q2. Higher moments such as 5 and 9 heavily weight the region 

near x = 1 and thus acquire large elastic contributions. Again the 

data would suggest a Q2 minimum of at least 4 GeV2 be established in 

order to keep the elastic contribution small. 

The next portion of the moment integral to be concerned with is 

that part which lies inside the "resonance region" (W < 2 GeV). For 

these low values of W, distinct final states have been identified, 

and final state interactions in the hadronic system are important. 

As such, one would want these contributions to the moments to be 

small. In Fig. 9 the fraction of the 2nd, 5th, and 9th Nachtmann mom- 

ents coming from both elastic scattering and resonance region produc- 

tion is plotted against Q2. The higher moments are seen to have 

large contributions from W < 2 GeV even for Q2 in excess of 10 GeV2. 
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All moments,except those calculated using hydrogen data,implic- 

itly include Fermi motion effects. These effects which are uncertain 

in size are large in the high x region. They are also largely inde- 

pendent of Q2. As such, high moments could have this additional 

uncertainty. We investigated the ratio of the moments-of (F;P + Fy) 

where Fermi motion effects have been accounted for 16.,17 to moments of 

ed 
F2 * This ratio was found to deviate from unity by a few percent and 

to have little Q2 dependence. As expected the effect is largest for 

the higher moments. If we write 

M;d(i,Q2) = Ki 
C 

My(i,Q2) f My(i,Q2) 1 (5 -6) 

then K 5 Z' 1.04 and Kg 2 1.09. We conclude that Fermi motion uncertain- 

ties are small compared with other uncertainties. 

We have fitted the ratio of anomalous dimensions between various 

pairs of Nachtmann moments for Fy - F;n with a proper accounting of 

the correlation of errors between moments. At each Q2 an analytic 

form normalized to the data (at that Q2) was used to obtain the values 

ep ofF -F 2 y for x bins where no data exist. A 50% error was assigned 

to extrapolated points. The results are shown in Fig. 10 along with 

the results from BEBC-Gargamelle neutrino data 13 for xF3. In this 

figure 

r ij = d./d 
1 j 

(5.7) 

The horizontal lines indicated the predictions of leading-order QCD. 

The shaded areas show a reasonable range for the second order QCD 
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predictions2 which are not precisely defined and which have some Q2 

dependence. 

The Nachtmann moments have been used here. As an example of 

their impact on r.., 
J-J 

we have used the QCD evolution equations to gener- 

ate "data" for 7 I Q2 5 65 GeV 2 but without using the 5 variable. If 

one uses the standard moments (Eq. (5.1)) to analyze these "data", 

then one obtains r 
53 = 1.46 as expected. However, using Nachtmann 

moments one finds r 
53 = 1.23. The opposite is clearly true: If we 

generated data using the 5 formalism (thereby using the iilocal duality" 

argument of De Rtijula-Georgi-Politzer 9 to account for elastic scatter- 

ing and resonance production), we would obtain the correct r 
ij only by 

using Nachtmann moments. 

In Fig. 10 we have also shown the results of combining the xF3 

neutrino data of the CERWDortmund-Heidelberg-Saclay (CDHS) collabora- 

tion13 with the SLAC data for F ed 
2' The SLAC data are used only for 

9 ed x > 0.4 where we assumed -F VN 
52 = xF 3' In bins where both groups had 

data, a weighted average was used. As for the other results on 

Fig. 10 we used an analytic form to extrapolate where no data existed 

and assigned 50% errors to extrapolated points. In this case that 

form was 

*3 = C(Q2> x (1 - x) 3 r12 
(5.8) 

where13 n1 = 0.51 and n2 = 3.03. C(Q 2 ) was fit to available data at 

each Q2. For comparison one could allow nl and n2 to be given by the 

Buras-Gaemers form 22 and therefore Q2 dependent. (The Buras-Gaemers 

forms come from an approximate solution of QCD.) If we obtain C(Q2) 
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from the available data (rather than from the Gross-Llewellyn Smith 

sum rule23), we find that use of BG BG n 1 and n 2 changes r 
53 from 1.35 to 

1.42. Otherparameter'izations we tried lowered r 
53 to 1.15. Also with 

use of Eq. (5.8) but with a 100% error assigned to extrapolated points, 

r53 changes from 1.35 to 1.42 f 0.27. We conclude that it is impor- 

tant to assign large errors (at least 50%) to extrapolated points. 

With our grids there are five points of overlap between the SLAC 

and CDHS data. The average value of the ratio of SLAC to CDHS data is 

1.13 + 0.10 (the error is consistent with the SLAC and CDHS systematic 

errors). If all SLAC data are divided by 1.13 before they are com- 

bined with CDHS data, one obtains d5/d3 = 1.30 instead of 1.35. Part 

of the difference in normalization may be due to different assumptions 

about the relation between 2xF 
1 and F 2( see Eq. 2.2). For the CDHS 

data the Callan-Gross relation 15 , 2xFl 5 F2, was assumed whereas for 

SLAC data R = 0.21 + 2xFl/F2 = (1 + 4M2x2/Q2)/1.21. If one uses the 

Callan-Gross relation for SLAC data, then the relative normalization 

is 1.065 4 0.10 and d5/d3 = 1.40 instead of 1.35. However, we must 

emphasize that SLAC data are not consistent with 2xF 1 = F2> so results 

based on assuming it, are not meaningful. The errors introduced by 

these problems we believe are covered by our quoted error bars. 

Our final observation with regard to moments concerns the signif- 

icance of the agreement between the results of theory and experiment 

for r ij l 

We have considered2 for the sake of argument the extreme case 

where almost all scaling violation comes from higher-twist terms (i.e., 

A = 0). There are no unequivocable calculations in QCD of the form of 
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higher-twist terms, but from the quark-counting approach, 19 one can 

argue that the following parameterization of higher-twist terms in 

moments is reasonable: 

Gs(i,Q2) = Ki[l+q+y] (5.9) 

* 

If one obtains an effective r 
ij 

by plotting Rn M2(i,Q2) versus 

Rn M2(j,Q2) and measuring the slope, one finds 
2 

surprisingly that the 

effective r 
ij from Eq. (5.9) is consistent with the data as long as 

0 < a,b < 1 GeV. The Q2 dependence of the moments requires, of course, 

particular choices for a and b. This result occurs because Eq. (5.9) 

gives r.. 
=J 

2 di/dj % i/j which is similar to both the data and QCD. 

6. CONCLUSIONS 

When the logarithmic scaling violation from the strong coupling 

constant and the power-law scaling violation from higher-twist opera- 

tors are considered together, we find that: (1) it is not possible 

with SLAC data alone to obtain an unequivocable test of QCD; (2) the 

value of A could be a factor of two smaller than what is found when 

higher-twist effects are ignored; (3) the values of the ratios of 

anomalous dimensions may reflect the presence of higher-twist terms; 

(4) it is possible that the magnitude of R can be understood in the 

context of QCD when higher-twist terms are included. 

It may be quite useful for muon experiments to combine their data 

with that from SLAC, but only if comparisons are made in overlap 

regions and if the results are not significantly affected by normaliza- 

tion differences. 
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Finally, it should be emphasized that all the SIX data for F2(x,Q2) 

are entirely consistent with the predictions of QCD. 
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1. F;p (x,Q2) - Fy(x,Q2) at various Q2 values. The solid curves are 

the QCD predictions; the dashed curves are described in the text. 

The data are from a compilation of SLAC-MIT data. 5 

2. F;'(x,Q2) at various Q2 values. The solid curves are 

the QCD predictions; the dashed curves are described in the text. 

The fit was done using only SLAC-MIT data5 (solid dots), but the 

CHIC data14 are also shown. The error bars are often smaller 

than the dots. 

3. The value of A obtained when higher-twist contributions have been 

assumed. 20 
% and p 2 indicate the magnitude of the higher twist 

terms where the two forms considered are shown in Eq. (3.20). 

4. F;?(x,Q2) at small W. The solid (dashed) curve is the x (s) 

scaling prediction of QCD. Elastics are shown in extra bins from 

x = 1 to 1.04 where the areas under the data points in these bins 

are equal to the areas under the elastic spikes at x = 1 in the 

original data. All data are from SLAC-MIT (Ref. 5). The square 

points have W > 2 GeV and are a compilation of SLAC-MIT data. 

The,dots indicate some of the data in the resonance region. 

5. R 3 uL/oT versus x. Since the SLAC-MIT data 
12 

show no evidence 

of Q2 dependence, in this figure all data have been combined; the 

error bars are mostly systematic. The solid curves show QCD with 

no higher-twist contributions for the Q2 values covered by the 

data. The dashed curve is QCD plus a diquark model (Ref. 21) of 

higher-twist; the curve reflects the average Q2 of the data 

points through which it is drawn. The square point represents the 

high Q2 data of Anderson et al. 14 
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6. R : CT /o. at various QL 
L T 

values. The data are a compilation of 

all SLAC-MIT data; 
12 the error bars are mostly systematic. The 

curves show the results of QCD when a higher-twist contribution 

from diquark scattering (using the model of Ref. 21) is added. 

7. A comparison of ordinary moments and Nachtmann moments from the 

SLAC-MIT data of Ref. 5. Curves are drawn connecting the data 

points to help guide the eye. Large target-mass effects are 

apparent for Q2 5 4 GeV2. 

8. The fraction of the Nachtmann moments (for i = 2,5,9) which come 

from elastic scattering. The contributions at relatively large 

Q2 are still quite significant. The data are from Ref. 5 with 

error bars not shown. 

9. The fraction of the Nachtmann moments (for i = 2,5,9) which come 

from the resonance region (W < 2 GeV). The contributions at 

relatively large Q2 are still significant. The data are from 

Ref. 5 with error bars not shown. 

10. Values of r ij - q di/dj .for various combinations of i and j from 

the SLAC-MIT data, 5 the BEBC-Gargamelle (BG) data, 13 and a combi- 

nation of the SLAC-MIT data5 and the CDHS data. 13 For SLAC-MIT 

alone we used Fy -FE", whereas in the combined fit, we used 

SLAC-MIT data for F2 ed (with x > 0.4). 
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