
SLAC-PUB-2397 (Rev.) 
September 1979 
October 1979 (Rev.) 
(T/E) 

DIBARYON PRODUCTION IN ELECTRON-DEUTERON SCATTERING* 

** 
Ivan A. Schmidt 

American University 
Washington, D.C. 20016 

and 

Stanford Linear Accelerator Center 
Stanford University, Stanford, California 94305 

Abstract 
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1. Introduction 

Recent reports about the possible existence of p-p and p-n dibaryon 

resonances have created considerable theoretical and experimental 

interest. 1 If confirmed, they will have a great influence in our 

understanding of nuclear forces. It is therefore important to discuss 

new reactions in which these resonances could be produced, in order to 

get a better knowledge of their properties. In this note we want to 

present some estimates of the cross sections for the production of these 

dibaryon resonances in electron-deuteron scattering (ed -t eD*). 

We will investigate in some detail two possibilities. First we 

will consider D* as an excited state of two nucleons. Then, as a second 

and more interesting possibility, we will consider it as a three-body 

(pion-nucleon-nucleon) bound state. This last case has been in part 

motivated by a simple analysis done by MacGregor. 
2 He found that the 

masses of these resonances follow a straight line, when plotted against 

their angular momentum in the form ~(!?,+l> (see Fig. 1). If we believe 

that this is due to a difference in rotational energy, we can extra- 

polate the straight line and find the R=O and R=l states. The masses 

come out to be 2060 and 2020 MeV respectively. This result is given in 

Fig. 1, and we see that the mass of the R=O resonance is much closer 

to be the sum of the masses of two protons plus a pion than just two 

protons. Furthermore, the analysis of the experimental results for p-p 

scattering gives an elasticity of ~25%) which indicates the presence of 

additional channels. These could turn out to be three-body bound states. 
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In the models presented here the constituents will be considered 

as scalar particles, which for our purposes is a good approximation. 

More detailed calculations should include these spin effects. 

2. Two-Body Bound State 

In this section we will consider D" as a two-body-bound state. 

For low values of \;I ( momentum transfer) we can use a non-relativistic 

approximation and write 3 

dan -= 
dR 

.+ + iq=r 
a +"f $, dV1 . . . dVN 

2 

, 

for the effective inelastic scattering cross section. Here $, and $, 

are the initial and final wave functions for the system under considera- 

tion (in our case the deuteron). Fa(G2) is the nucleon form factor, 

N is the number of nucleons, and g and g1 are the momenta of the 

incident electron before and after the collision. 

The experimentally determined dibaryon resonances are given in 

Fig. 1 (1G4, 3F3, 'D2). Since the spacing is approximately uniform 

we can put the R= 1 state at 2010 (MeV), and the R=O state (deuteron) 

at 1880 (MeV). We will assume a potential of the harmonic oscillator 

type, for which the wave functions are given by 3 

Mw 2 ---II 
= Ane 2 

JI nllm rn YQrn(edp) , (2) 

for n= R (n is the principal quantum number, and R is the angular 

momentum, with projection m). After normalization we get: 
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A2 = 
n 

Here w is a parameter, and M is the reduced mass. 

case m=O for simplicity, the integrations can be 

and we find 

don 4e4 (i:lmj 3 
-----z 
dQ ,~, ,+,4 \Fp(;;2) I2 (2R+1) "'2aa 

k q (2~+ i)! !(~Mu) 

(3) 

If we consider the 

performed explicitly, 

Ali! e -8Mu . (4) 

Then it is possible to identify the resonance production form factor as 

2 

Fi2(q2) = F;(s2) 
(2i+ l)(-q2)" 

(2R+l)! !(8M& 
, (5) 

which for R=O corresponds to the deuteron form factor. Graphs for 

Fi2(q2) are shown in Fig. 2. We have chosen a value of w (~32.5 CMeVl) 

which gives reasonable fits of this expression to the experimental data 

for the deuteron form factor, 4 for -q2 5 0.7 GeV2. It is interesting 

to note that this value of w is not the one that we would get from the 

spectrum of states, the difference coming presumably from spin and 

tensor forces. For larger q2, the short-range nature of the potential 

enters and one expects a power law fall off with q2. 
5 

3. Three-body Bound State 

For this case will use a different approach from the nonrelativistic 

one of the previous section. The method consists in enhancing every 

partial wave amplitude for y *+d -t T+d with a final state interactions 

factor for the production of the particular resonance under considera- 

tion. Actually one should include more than just the deuteron ground 

state in the intermediate (nucleon-nucleon) states. However, in order 
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to estimate the magnitude of the transition matrix element, only this 

state will be retained. 

We start with the expression for the structure function vW2 in 

terms of the total cross section oT and u L for the photoabsorption of 

transverse and longitudinal photons 

VW = 2 w2 (u,+u,) . 
4TA3 q2-v2 

(6) 

We want to find the contribution to this expression that comes from the 

production of a particular three-body (pion-nucleon-nucleon) resonance. 

In the low q2 region one can approximate 

(7) 

, 

and then use photoproduction data, which is more readily available to 

normalize the amplitudes. We expect Eq. (7) to hold reasonably well in 

models based on an impulse approximation scheme. 

As was mentioned before, we will enhance every partial wave for 

pion-photoproduction off deuterons with a certain final state inter- 

actions factor. For this purpose we need a parametrization of these 

data,7 and so we write (see Ref. 8): 

M = %F (t) 7 d , 

where (for low t): 

& + 5 l- 20t (8) 

is the form factor for the deuteron. Here s and t are Mandelstam 
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variables for the y-d system. In terms of the amplitude M, the spin- 

averaged cross section for photoproduction of pions off deuterons is 

(in the CM of the y-d system): 

The partial waves corresponding to M are: 

1 
M=+ 

R s 
dz M(s,z) P,(z) 

-1 

(9) 

(10) 
5s 

= 56pp' (Q%(b) - Q,(a)) , 

where 

(s - $1 
2& 

% 
S- (Mdfm,)2)(s- (Md-mn)2) 

S I 
, 

and 

(pn. and Q, are Legendre polynomials of the first and second kind 

respectively). This means that p z p'. Then the Born partial amplitude 

MR has a cut in the real axis of the p2 complex plane, from p2= - & 

to p2 = - & . We can approximate this cut by a pole at p2 x - &, 

which corresponds to a Re(s) E so = 2p2+Mi. This means that a good 

apprOXimatiOn (See Ref. 6) for the enhancement factor is: 
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FE = 
D(so) 
D(s) , (11) 

where 9 

1 D(s) = --s s-sR+ir s ( - (Md+mT)2j)l) 

and 

SR = M; 

% 

SR - (Md+mn)2 
YR = r 1 . SR 

Here s and yR are the mass and full-width at half maximum of the 

resonance under consideration. We have included the requirement that 

D(s) * 1 for s + m. Then the total cross section for the photoproduc- 

tion of a particular resonance is going to be 

Finally: 
2 

v+sT 2 IyJ 2 ( VW2 1 = 
R 2 4na 

d + $s2) 4ns -$- 
q -v 

(12) 

(13) 

where 

S = w2 = M; + 2Mdv + q2 

This result has been plotted in Fig. 3, for different values of q2. 

Compared with experimental data, 10 these estimates are smaller than 

the rest of the inelastic channels that contribute in that region by 

about one or two orders of magnitude. This fact makes the testing of 

this model a rather difficult experimental problem. However, since the 
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width of these resonances is much smaller than the width of the nucleon 

resonances that are present in this q2 range, it may still be possible 

to observe at least the R=2 state (see Ref. 10 ) with very precise data. 

For this three-body model we have computed numerical results for 

the R=2,3,4 resonances only, which are the ones whose existence has 

been experimentally reported. In the case of the R=O and R=l resonances, 

we need to know their masses and widths in order to evaluate the corre- 

sponding cross sections. 

One can also calculate the corresponding transition form factor, 

using 

VW2 = (4 - M; - q2) F$(q2) +J2 - 4) 

or (14) 

/ 
dx vW2 = xR F;3ki2) , 

where 

x = 

and the integration is over the resonance peak. Then for the cases 

given in Fig. 3, we get the results presented in Table I. If we compare 

these values with the calculation for the two-body case fFi2) given in 

Section 2, we see that the present ones are clearly smaller by approxi- 

mately one order of magnitude. 

4. Conclusions 

The results presented in this paper should help to clarify the 

nature of the dibaryon resonances. It is interesting to note that the 

two possibilities presented in Sections 2 and 3 give significantly 
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different predictions, with the pion-nucleon-nucleon model being smaller 

than the nucleon-nucleon case. This difference is bigger than the un- 

certainty in our results due to the approximations we have made, which 

means that experimental measurements should be able to distinguish 

between the two possibilities. We should remark, however, that we expect 

for the three-body model that the actual magnitude is going to be larger 

than our estimate, because we have not included other intermediate states 

(different from the deuteron) that could contribute to the transition 

10 
matrix element. In any event, present experimental results do not 

rule out any of the two models. 

Further theoretical analysis of these resonances and their produc- 

tion in different reactions should especially consider the pion-nucleon- 

nucleon model, which if established will certainly have great importance 

in theories of few body systems in nuclear physics. 
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TABLE I 

-q2(GeV)2 Fi3 (s2) Fi2 (s2) 

0.3 0.146 x 1O-2 0.042 

0.5 0.078~ 1O-2 0.011 

0.7 0.046 ~10-~ 0.002 

0.5 0.051x lo-2 0.009 

0.5 0.080~ 1O-2 0.005 
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Figure Captions 

1. Extrapolation used in ref. 2 in order to find the R=O and R=l 

resonances. 

2. Transition form factors (squared), calculated using a (nucleon- 

nucleon) two-body bound state model for the resonances. 

3. Contribution of the resonances to the structure function vW2 for 

different !2 and q2 values, calculated using a (pion-nucleon-nucleon) 

three-body bound state model. 
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