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ABSTRACT 

A critical discussion is given of analyses of scaling violation in 

deep-inelastic scattering in the context of QCD. Several possible 

approaches are examined. Higher-twist contributions are defined, and 

it is shown that they can have a crucial impact on tests of QCD. 

Higher-twist terms can dramatically affect R = uL/crT. QCD may be harder 

to test than previously realized. 
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Since Quantum Chromodynamics (QCD) was proposed as the theory of 

the strong interactions, there have been a number of claims about tests 

of QCD using deep-inelastic scattering data. It has been suggested that 

QCD has been proven by certain data. It has also been suggested that 

some data present serious problems for QCD. It has been suggested that 

particular tests can distinguish QCD from other theories (though no 

other theories have been proposed). 

I believe that most of these claims are at best naive. Almost all 

analyses of scaling violations in deep-inelastic scattering ignore the 

critical role of higher-twist (order 1/Q2) corrections. Some analyses 

follow procedures which bias the results, and others use or weight very 

low Q2 data. Still others use procedures which do not take full advantage 

of the available data. In this talk I discuss the impact of such problems 

on tests of QCD. 

I will also discuss an analysis v,3 by Larry Abbott, Bill Atwood 

and myself 192 of data from experiments for eN + eX, uN + uX and vN + uN 

(X s anything). The electron data4 includes all high Q2 data ever taken 

at SIG by the SLAGMIT collaboration. The muon data5 is from Fermilab 

and was taken by Anderson et al. The neutrino data used were taken at -- 

CERN by the BEBC6 and CDHS7 collaborations. 

Let me begin with a brief review. For neutrino scattering in the 

lab frame the cross section is given by 

d20 
dE' da' = %[(t sin2 ;)Fl + (t cos2 $)F2 F(* sin2 ;)F3] 

where (-) and (+) refer to neutrinos and antineutrinos respectively and 
. 

v 5 E-E' (E' is the outgoing lepton energy). The structure functions 

Fi are functions of Q2 and x = Q2/2mv. F3 arises from VA interference 

terms (it is a parity-violating piece) and therefore is not present in 

eN or pN scattering. 
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The structure functions can be written in terms of the distributions 

of u,d,c and s quarks as shown in Tables I and II (for electron, muon and 

neutrino scattering). The symbols u,d,... are to be read as u(x),d(x),... 

in the tables. Note that u and d refer to the distributions of u and d 

quarks in the proton, but in a neutron u is the distribution of d quarks 

and d is the distribution of u quarks. 

In QCD the "emission" of gluons and of quark-antiquark pairs during 

the scattering process leads to a scaling violation which is evidenced 

by the presence of inverse powers of !Ln 4*/A*. There are two basic 

approaches l-3 which have been used to study the deep-inelastic scattering 

data to seek evidence for 

Q* dependence of Fi(x,Q2) 

moments of F,(x,Q*) where 

MI@ , Q*) 

the QCD scaling violation: (1) to observe the 

and (2) to observe the Q* dependence of the 

the moments are given at large -Q* by 

- 

= 
/ 

xN-2 
Fib , Q*) dx (2) 

0 

where F i=F2 or Fi=xF3. 

Before discussing the advantages and disadvantages of these two 

approaches, it is important to note that there are different types of 

corrections to the simple, leading order QCD calculations. here I will 

describe three QCD corrections. They are target-mass corrections, higher- 

twist effects and corrections of higher order in as. 

As Fig. 1 shows clearly, when a particle is accelerated at a massive 

target, there are corrections to be made. Fortunately the Nachtmann 5 

formalism8 can account fully for target-mass effects. It does not, of 

course, account for the final-state kinematics; no input requires, for 

example, that the invariant hadron mass W 2 m . One also finds in the 
P 

5 formalism that pi(x,Q2) cannot approach zero at x=1 for all Q* (see 

Fig. 2). This may be acceptable when one considers that the 5 formalism 

seems to account 991 in a "local duality" sense for elastic scattering 

and resonance production (in Fi(x,Q') and in moments). However, local 
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TABLE I 

The quark distribution content of F2(x,Q2) in electron- 

proton and electron-neutron scattering. Each distribution . . 

(u,i,d,z,s,S,c,C) is a function of x. F2(x,Q2) is exactly 

same for muon scattering. NS and S refer to non-singlet and 

singlet. eN refers to scattering on an isoscalar target. 

u and d refer to scattering off u and d quarks in protons. 

In neutrons u refers to scattering off d quarks aird vice versa. 

Fep = x 
2 f (u+l) + $ (d+;) +$ (c+;) +$ (s+s) 1 

Fy = x $ (u+;) + + (d+a) +$ (c+c) + $ (s+s) 1 
= & F; - $ F;” + + x[(c+C) - (5+&j 

en F;P-F2 = 3 x[(u+;) - (a+&] 

t 3 F;' - 3 [ x (c+C) - (s+s>] 

eN = 
F2 x 

[ 
& (u+U) +A (d+;) + $(c+:) + $ (s+s) 1 

=&F;+ & x[(c+C) - (s+S)] 

S F2 E x[(u+;)+(d+&+(c+;)+(s+;)] 

FNS = 
2 - x[(u+;)- (d+z) + (c+:) - (s+:)] 
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TABLE II 

The quark distribution contents of F2(x,Q2) and xF3(x,Q2) 

in neutrino-proton and neutrino-neutron scattering. Each dis- 

tribution is a function of x. vN refers to scattering on an 

isoscalar target. u and d refer to scattering off u and d 

quarks in protons. In neutrons u refers to scattering off d 

quarks and vice versa. 

FVP = 
2 2x[ii + d + ; + s] 

FVn 2 
= *x[u + z + 'c + s] 

Fb = 
2 *x[u + Ti + c + ii] 

3n F2 = 2x[u + d + c + :] 

Using c ='c and s = s: 

FPP I F; F; 3P = F2 
vN 

F2 
= Fj 

vN F2 = x[(u+;) + (d+$) + (c+c) + (s+:)] 

FVP, Fvn = 
2 2 

= -2x[(u-;) - (d-a)] 

xF VP = 
3 *x[- ;+d- c + s] 

XF; = *x[u - a - 'c + s] 

3P 
XF3 = *x[u-z+c-4 

Jn xF = 3 *xc- ;+d+c - S-J 

XF VN = 
3 x[(u-;) + (d-z) - (c+c) + (s+<)] 

3N xF3 = x[(u-;) + (d-a) + (c+:) - (s+:)] 

"p _ Fvn = 
( 

3P 3n 
xF 3 3 - xF3 -xF3 = ) -2x[(u+;) - (d+&] 

F;P - Fy) = - +, (xFrP - xFy) 
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Target - Mass Corrections 

\ ! 

7-n 

'Fig. 1. When a particle is accelerated at a massive target, there are 
( corrections to be made (artist, Sylvia A. Harris). 
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6-79 X 364106 

Fig. 2. F2(x,Q*) for the proton. Elastics are shown in extra bins from 
x = 1 to 1.04 where the areas under the data points in these bins are 
equal to the area under the elastic spike at x= 1 in the original data. 
The solid (dashed) curve is the x(t) scaling prediction of QCD. All data 
are from SLAC-MIT (Ref. 4). The square points have W > 2 GeV and are a 
compilation of all SLAC data. The dots indicate some of the data in the 
resonance region. 
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duality is a separate assumption and strict tests or QCD should probably 

avoid that assumption (by using large Q* and W). 

There are a large variety of coherent phenomena such as transverse 

moment effects, resonance production, diquark scattering, and elastic 

scattering which are l/Q*, 1/Q4,... corrections to the simple QCD pre- 

dictions. These corrections are called higher-twist corrections where 

"twist" is defined as the dimension minus the spin of operators in the 

operator-product expansion. ' Although higher-twist terms describe coherent 

phenomena, there is no coherent explanation for the use of the word 

"twist". Figure 3 shows an example of a higher-twist effect: on the 

left, there are three independent bicyclists (quarks) which is the 

lowest twist case; on the right, two of the bicyclists (quarks) are on 

a tandem bicycle (diquark) which is a higher-twist contribution. It is 

not possible (at present) to calculate rigorously higher-twist terms in 

QCD. One can attempt to make models for significant higher-twist con- 

tributions and such attempts are in progress. But these models are not 

(necessarily) QCD and should only be considered as giving guidance in 

estimating higher-twist effects. 

Alternatively, one can just parameterize these higher-twist terms. 

It is frequently assumed that these terms take the following forms which 

follow from quark-counting arguments: 10 

2 4 

F2(x , 42) 2 C(l-x)a 1+ ? + 
Q&x) 

u2 + 

4:(1-x)* *** 
I 

(3) 

54 
2 

M3(N, Q*) = 
4 N* 

(!2n Q2/A2)dN 

u3 N + P4 1+- - 
Q2 

,4 + . . . 1 (4) 
Q 

Equations (3) and (4) indicate that higher-twist contributions should 

be largest at large x and large N. It should be emphasized that every 

theory must contain such order l/QL corrections; they are not unique 

to QCD. 
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Higher-Twist Corrections 

lowest-twist higher-twist- 

a-79 3641A.16 

Fig. 3. Three independent bicyclists (quarks) with no transverse momentum 
which is the lowest twist case. Two of the bicyclists (quarks) on a 
tandem bicycle (diquark) which is a higher-twist correction (artist, 
Sylvia A. Harris). 
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Finally, there are corrections to the simple QCD predictions which 

come from terms of higher-order in a . 
S 

Figure 4 shows an experimentalist 

finding more than one gluon in his basket. Such corrections have been 

computed by Floratos, Ross and Sachrajda 11 and by Bardeen, Buras, Duke 

and Muta. 12 For the moments of xF3, they found 

M,(N,Q*) = 
54 

(fn Q2/A2)dN 
1+ 

$ + BN Iln Iln Q*/A* 

!Ln Q*/A* 
+ . . . 1 

(5) 

where BN like dN are known. 

Note, however, that the substitution 

A2 + A* ea 

(where a is any number) is equivalent to a change in the term AN since 

(JLn--&dN Z (Pn$)dN (l+%) 
(7) 

So if one use AZ = A2ea, then < = AN-ad. In particular we see that 

in first-order calculations A can be multiplied by any number, since it 

is compensated by a (neglected) second-order correction. 
13 Therefore, 

A is meaningless in first-order (each specific quantity in a specific 

process can have different A). In second-order, A is meaningful only in 

the context of a specification of AN in a given renormalization scheme. 

a 
S 

is also ambiguous without such specification of scheme and parameters 

in second-order. 

Different choices of s and A leave varying amounts to higher-order 

(3rd, 4th, . ..> corrections. Moshe14 has recently argued that for 

Q2 2 5 GeV*, the 3rd-order term in the moments will be very large (in 

the E scheme) even though the second-order term is small. This is 

another reason why it is best to avoid low Q2 data. 
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Corrections of Higher Order in as 

7 -79 lowest-order higher-order 3t,4lA13 

Fig. 4. An experimentalist finding more than one gluon in his basket 
.(-artist, Sylvia A. -Harris). 
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Let me now return to a discussion of the two approaches to studying 

deep inelastic scattering data. After considering the QCD predictions in 

each approach, the advantages and disadvantages of each approach will be 

discussed. As is well-known QCD predicts that the structure functions 

shrink as Q 2 increases, i.e., they become more sharply peaked at small x. 

To leading order in l/lln (Q*/A*), this behavior is described by the 

Altarelli-Parisi equations. 15 For xF3 one has 

Q* -?e w* xF3(x,Q2) = $ dw($) wF3(w,Q2) Pq+q (z) (8) 

X 

P X 

q-*9 w ( ) 
is related to the probability for a quark of momentum fraction x 

to arise from a quark of momentum fraction w, when probing with momentum 

Q* (see Fig. 5). This differential equation describes the evolution of 

xF3(x,Q$ to other values of Q*. 

The equation for xF3 is relatively simple since xF3 is a flavor 

non-singlet (see Table II). FFP-F;n is also a flavor non-singlet 

although its quark content is different than that of xF3. It obeys the 

same evolution equation. However, the evolution equations for FiP, F;P, 

NS etc. are more complicated since F2 , F: (the non-singlet and singlet parts 

of Fz> and xG(x,Q*) (the gluon distribution) each obey a different evolu- 

tion equation. Furthermore, the equations for Fi and xG are coupled. 

The shrinkage of the Fi is not a feature unique to QCD. The 

radiation of gluons plus momentum conservation are essentially the source 

of shrinkage in any theory. QCD predicts, however, a particular form of 

shrinkage. 

To leading order in 1/!2n (9*/A*) the expression for the moments, 

M,(N,Q*), of xF3(x,Q2) is quite simple 

M,(N,Q*) = KN 

(en Q2/A2)dN 
(9) 

where KN are free parameters and dN are proportional to the anomalous 
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N 
5-79 3606A3 

Fig. 5. An example of a current striking a quark of momentum fraction x 
which arises from a quark of momentum fraction w after gluon radiation. 
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dimensions y! 

(10) 

$0 = ll- 3 Nf 

(11) 

(12) 

where N f is the effective number of quark flavors. One naively expects 

that in other theories, moments would involve powers of Q* not Rn 4*/A*. 

Let us begin the discussion of the relative advantages and dis- 

advantages of the direct use of Fi(x,Q2) versus the use of moments by 

considering F,(x,Q*). To use the evolution equations one must choose 

the form of Fi(x,Q2) at some Q*=Qi. However, it is not even necessary 

to have any data at that Qi. The evolution equations give the resulting 

Fi(x,Q*) at all Q* and a comparison can be made with the data at all Q*. 

The parameters, such as A and the ki in 

F2(x,Q;) = kl(l-x) k2 
(l+k3x) , (13) 

are adjusted until the best fit is obtained. If necessary, additional 

parameters can be added to the x dependence. Note that Eq. (13) is the 

form of F2 only at Q*=Qg; after evolving to other Q*, this form is 

modified. 

In most experiments, the range in x for which there are statistically 

significant data changes radically as Q* increases. As a result it is 
n 

crucial that the x-dependence be fit at all QL rather than only at some 

2 
Q0* In other words, the determination of A and ki should be done 

simultaneously. This procedure makes the best use of all available data 

and insures that the correct values of A and ki are obtained. 

As an example of the results of this procedure, I show in Fig. 6, 

the predicted shapes of the valence and sea quark distributions with 

parameters determined by fitting CDHS data. 
7 
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0.8 
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x 0.6 

0.2 

0 
0 0.2 0.4 0.6 0.8 I .O 

8 79 X 3641A14 

Fig. 6. The sea distribution cxS(x) = 1/2(F2-xF3)l and the valence 
distribution [xv(x) = 1/2(F2+xFg)-xS(x)l predicted by QCD. The 
parameters (as in Eq. (13)) 
(Ref. 7). 

are determined by fitting the CDHS data 
The valence curves from top to bottom (at x=0.4) and the 

sea curves from bottom to top (at x z 0) refer to Q2=4, 10.5, 25.4, 
56.4, 152.4 GeV2. 
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The direct use of Fi(x,Q2) gives one a clear visual interpretation 

of scaling violation. It also allows examination of the impact of 

exclusive channels, see Fig. 2. Of course, perturbative QCD will never 

reproduce resonances or the elastic peak except in the "local duality" 

sense (discussed above and in Refs. 9 and 1). It is clearly important, 

therefore, when fitting theory for Fi(x,Q2) to data (i.e. - calculating 

x2) to exclude all data with hadron invariant mass W 5 2 GeV. 

The use of moments to analyze scaling violations provides very clean 

predictions for Q2 dependence which do not depend on any assumptions about 

the x-dependence of Fi(x,Q2). Furthermore, the next-to-leading&order-in-as 

corrections 11,12 have been calculated for moments so that A can be defined 

unambiguously. However, moments have some very serious shortcomings. 

In order to calculate moments, one must have data over the entire x range 

(especially at high x) for each Qz value. Otherwise one must extrapolate 

into unmeasured regions and place an unnecessary uncertainty into the 

results. The moments with N 2 4 are dominated by high x where most 

experiments have the poorest statistics; full advantage is not taken of 

the low x data. Successive moments (N = 5,6,7,8,...) are similar integrals 

over the same data and do not provide much independent information (care 

must be taken with correlations). 

The high x region contains resonance production and elastic scattering 

unless Q2 is large. The big impact of the W < 2 region on moments is 

shown in Fig. 7. It has been argued' that use of the Nachtmann 5 

formalism8 compensates for the presence of such terms. Figure 8 shows 

the difference between Nachtmann moments and ordinary moments as a 

function of Q2. As discussed earlier, other higher twist (order 1/Q2) 

corrections are expected, in general, to be largest at high x. Since 

these corrections cannot be calculated and (also discussed lacer) can 

confuse the analysis, I think it best to require large Q2 (Q2 > 10 or 

20 GeV2) when using moments to test QCD. Alternatively one might attempt 
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Fig. 7. The fraction of the Nachtmann moments (for N=2,5,9) which come 
from the resonance region (W > 2 GeV). The contributions at relatively 
large Q2 are quite significant. The data are from Ref. 4 with error bars 
not shown. 
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Fig. 8. A comparison of ordinary moments and Nachtmann moments from the 
SUC data of Ref. 4. Curves drawn connecting the data points to help 
guide the eye. Target-mass effects appear to be large for Q2 5 3 GeV'. 
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to measure them experimentally; but that could prove quite difficult. 

It is certainly unreasonable to use Q2 5 3 GeV2 and W < 2 GeV. 

I would like to comment on what I think is a very poor way to test 

QCD with moments: the scheme in which h's extracted for each moment are 
I- 

compared (the AN scheme 12'16). When A is extracted from data, the low 

Q2 data are weighted exponentially. Thus the analysis is based on the 

data points for which one trusts QCD the least. Furthermore, moments 

weight high x where higher twist effects will be largest and where there 

are statistically poor (if any) data. Since most moments measure the 

same high x data repeatedly as N increases, the correlations among the 

data points shown are not clear. The scheme should not be used to test 

for Znd-order-in-as effects, since if such effects are large enough to 

measure reliably (and at low Q2 they are large), then perturbation theory 

is breaking down anyway (see especially Ref. 14). I believe that experi- 

mentalists (and others) should not consider the AN scheme. 

For the remainder of my talk I would like to address the problems 

discussed above in the context of five questions: 

(1) Is there scaling violation? 

(2) Is QCD consistent with all data? 

(3) Could higher-twist terms alone account for all data? 

(4) Are hypothetical alternative theories ruled out? 

(5) Can A and other parameters be determined with present data? 

The first question is easy to answer. With the'BEBC6 and CDHS' data 

the probability for perfect scaling is about 10 -3 for Q2 > 3 GeV'. For 

the SIAC data the probability is less than 10 
-10 for Q2 > 5 GeV2 and 

W > 2 GeV (systematic errors included). There is scaling violation. 

The answer to the second question is that QCD is completely consistent 

with all deep-inelastic data with one apparent exception. QCD fits all 

UN VN data for F2 , F;', F;p-F;n and xF3 as shown with solid lines in Figs. 

9, 10, 11 and 12. However, for R where 
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Fig. 9. xF3(x,Q2) at various Q2 values. The solid curves are the QCD 
predictions; the dashed curves are described in the text. The CDHS data 
are from Ref. 7. 
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0.4 Q*= 18.5 - 
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Q*= 21.5 - 

0 0.2 0.4 0.6 0.8 I.0 

Fig. 10. F2(x,Q2) on protons at various Q2 values. The solid curves 
are the QCD predictions; the dashed curves are described In the text. 
The fit was done using only SLAGMIT data,4 but CHIO data' are also 
shown. 
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Fig. 11. The data (Ref. 6) for M3(N,Q2) are plotted versus the data 
for M3(M,Q2) on a log-log scale. The solid curves are the predictions 
of leading order QCD; the dashed curves are described in the text. 
This plot does not indicate the strong correlations between M3(N,Q2) 
and M3(M,Q2). 
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Fig. 12. Values of rNM E dN/dM for various combinations of N and M 
from the SLAC-MIT data4 and the BEBC-Gargamelle data6. 
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R 5 aL/a T (14) 

the data4 are R y .21 + .l with no evident Q2 or x dependence and QCD 

predicts R z 0 at high x and R = .05- .l (for x z 0.3). R will be dis- 

cussed further in a moment. 

To address the question of how well the data are fit by higher- 

twist alone, we used 192 parameterizations (from quark-counting argu- 

ments") such as: 

2 4 

F2(x,Q2) = C(l-x)a(l+bx) l+ u1 

Q2W4 
+ 4 

u2 

Q (l-d2 1 (15) 

(16) 

(one can set u1 or u2 and u3 or u4 equal to zero). The evolution equa- 

tions are, of course, not used. Although higher-twist terms must be 

present in QCD (as in all theories), they have normally been ignored. 

In this case I am (for sake of argument only) ignoring QCD instead. 

Looking again at Figs. 9, 10 and 11, but this time at the dashed lines, 

one sees that higher-twist terms alone can in fact fit the data 

remarkably well. 

What I found to be surprising is that the famous ratio dN/dM of 

anomalous dimensions (Fig. 12) obtained from Rn MN versus Rn MM plots, is 

obtained from higher-twist terms alone almost independent of the values 

of V3 and u4 as long as 

o < v3, v4 5 1 GeV2 (17) 

(the Q2 dependence of the moments is, of course, determined by u3 and u,). 
. 

This result occurs because Eq. 16 gives dN/dM z N/M which is very similar 

to the data and QCD. 

How do higher-twist terms fare in fitting R = aL/oT? It is necessary 

to make a specific model in order to calculate R. Abbott, Berger, 
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Blankenbecler and Kane 17 have made a model assuming diquark scattering 

to be a dominant higher-twist contribution. As seen in Fig. 13 they 

obtained reasonable agreement with the data, certainly better than QCD. 

If both lowest-twist QCD and higher-twist terms alone can fit the 

data separately, then clearly so can a mixture. In fact, we cannot tell 

from present data how much of the observed scaling violation is due to 

each. Neither can we yet calculate higher-twist contributions although 

I expect and hope we will see a considerable theoretical effort at making 

models of these contributions in the next few years. Until we know more, 

any time QCD does not work, we can try to fix it with higher-twist effects. 

For example, Abbott, Atwood and I have, 2 following the model of Ref. 17, 

added higher-twist terms to QCD in R with the results shown in Figs. 14 

and 15 (Fig. 15 shows a comparison with lowest-twist QCD). 

While there are no alternative theories to QCD, one can ask, for 

example, whether power-law scaling violations are ruled out. The answer 

(at least at present) is no. - As with QCD, one must allow for higher- 

twist terms. An extreme example: if one uses the BEBC data with Q2 > 1 

GeV' and assumes the moments take the form 

cN 
M3(N.Q2) = - 

(4')' 

(18) 

then the probability is 10 
-5 (i.e., it is "ruled out"). But if one 

assumes 

M3(N,Q2) = 1 (19) 

then an excellent fit to the data results when a and b are very small, 

a=.008 and b= .07! Similarly, one may believe that hypothetical theories 

with scalar gluons can fit the data, if higher-twist terms are included. 

Finally, can A (and other parameters) be determined with present 

data? The answer is not very well until we can determine the magnitude 

of higher-twist terms either theoretically or experimentally. One can 
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Fig. 13. R E q/UT at various Q2 values. 
of all SLAC-MIT data4; 

The data are a compilation 
the error bars are mostly systematic. The 

curves are from Ref. 17 and are the result of a model in which scaling 
violation comes from diquark scattering. 
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Fig. 14. R E aL/cT at various Q2 values. 
of all SLAC-MIT data4; 

The data are a compilation 
the error bars are mostly systematic. The 

curves are from Ref. 2 and show the results of QCD when a higher-twist 
contribution from diquark scattering (using the model of Ref. 17) is 
added. 
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Fig. 15. R z oL/oT versus x. Since the SLAC-MIT data4 show no evidence 
of Q2 dependence, in this figure all data have been combined; the errors 
bars are mostly systematic. The solid curves show QCD with no higher- 
twist contributions for the Q 2 values covered by the data. The dashed 

curve is QCD plus diquark model (Ref. 17) of higher-twist; the curve 
reflects the average Q2 of the data points through which it 1s drawn. 
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modify QCD with terms such as 

2 

1+ u1 
-7 (20) 

(1-d QL 

or 2 

1+ u2 

(l-d 'Q4 
(21) 

and then obtain the resulting A1 or A2 from the SLAC F;P data; 4 the 

result are shown in Fig. 16. It is plausible that A may be reduced by 

as much as a factor of 2 or by as little as a few percent when the correct 

higher-twist terms are added. 

In examining F2 it is necessary to make assumptions about the power 

pG , of (l-x) in the gluon distribution; this assumption can affect the 

value of A obtained. Some have suggested that PG can be extracted from 

the present data. We find that if all parameters are allowed to vary 

freely that PG cannot be determined. For example, with the CDHS data7 

for F2 we find (where ki are defined as in Eq. (13)) 

pG x2 x'/d.o.f. A kl k2 

4 37.8 .82 .401 1.36 2.70 1.95 

5 38.4 .83 ,349 1.34 2.81 2.22 

7 39.6 .86 .307 1.34 2.90 2.43 

One can also see that the sensitivity of A to the value of PG is not too 

great. 

My conclusions are: 

(I) QCD has not been contradicted by the data, but neither has it been 

confirmed. 

(2) Higher-twist effects could be crucial in understanding scaling 

violation. A may be smaller than we have previously assumed. 

(3) Those planning new experiments should Monte Carlo their expected 

data assuming say A = .5 GeV and u1 = .5 GeV and see if analysis 
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Fig. 16. The value of A obtained when higher-twist contributions have 
been assumed. ~1 and ~2 indicate the magnitude of the higher-twist 
terms where the two forms considered are shown in Eqs. (20) and (21). 
I thank H. Georgi for suggesting this plot. 
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programs can separate the logarithmic behavior from the l/Q2 

behavior. 

(4) Do not use the AN scheme for testing QCD. 

(5) Regretfully, QCD may be harder to test than we realized. 

I would like to acknowledge the contributions of my collaborators 

Larry Abbott and Bill Atwood. I have also benefitted from discussions 

with A. Benvenuti, R. Blankenbecler, S. Brodsky, A. Buras, J. Ellis, 

H. Georgi, F. Gilman, V. Korbel, M. Mugge, D. Perkins, D. Schlatter and 

w. Scott. 
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