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1. Introduction 

During the past few years the SLAC real-space renormalization group 

(RG) technique has been successfully applied to several lattice models 

of field theories and spin systems.lW6 It has been shown to yield accurate 

results for correlation functions and low-lying energy levels, and to 

locate phase transitions reliably. Furthermore, calculations using this 
& 

technique can be systematically improved to provide arbitrary accuracy.4 

This is the first of two papers in which the SLAC RG technique is 

applied to an antiferromagnetic Heisenberg spin system with long-range 

interactions on a one-dimensional lattice at zero temperature: 

Hzz; c C-1) i-j+1 1 
z(i) l s(j) , 

if j 

Ii-jlp 
(1.1) 

where z(i) denotes a spin-& operator acting on the i th lattice site. 

This model is of interest in view of rigorous theorems proved by Dyson 

and Ruelle for the Ising model analogous to (1.1).7 According to these 

theorems the Ising model is disordered at all finite temperatures if p> 2 

while for p< 2 there is order at sufficiently low temperatures. One would 

like to know whether the model (1.1) also has different phases as p is 

varied, even at zero temperature. Further motivation for studying the 

model comes.from the fact that the power-law interaction of (1.1) also 

appears in lattice field theories when the lattice gradient is defined 

according to the SLAC prescripti0n.l In this paper various block-spin 

methods will be tested on the nearest-neighbor Heisenberg model which is 

the p+m limit of (l.l), reserving the case of general p for paper II. 

In particular it will be shown that a three-site blocking procedure is 
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much more suitable for studying the model (1.1) than a two-site 

calculation. 

This paper is organized as follows. In Section II the three-site 

blocking procedure is described and applied to the nearest-neighbor spin 

chain with anisotropy (Heisenberg-Ising model). This is done to facilitate 

comparison with the calculation of Section III: it will be useful to have 

studied the isotropic model of interest as an unstable fixed point (in the 

RG sense) of a more general model. It is shown that the three-site calcu- 

lation correctly reproduces the qualitative physics of the model and gives 

the ground state energy density to within 12%. Section III describes a 

two-site blocking procedure for the isotropic nearest-neighbor model. 

After the first blocking the model has been embedded as an unstable fixed 

point in a more general model of integer spin particles. It is shown that 

a naive application of the blocking procedure leads to entirely incorrect 

physics for the isotropic model and that this is due to the instability 

of the fixed point and the approximate nature of the calculation. Although 

the problem is easily understood in this context, it makes the two-site 

calculation too unreliable to use for general p. The situation is further 

clarified by introducing a duality transformation for the integer spin 

model. It is suggested that such duality transformations may have applica- 

tions beyond this particular model. Section IV describes ways to improve 

the three-site calculation of Section II. In particular, a "quick and 

dirty" approximate calculation on a nine-site block is discussed. 

Section V contains some concluding remarks. 
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11. Nearest-Neighbor Heisenberg-Ising Antiferromagnet 

In this section the three-site blocking algorithm is described and 

applied to the nearest-neighbor model with Hamiltonian 

N-l 
J-JL Sx(i) Sx(i+l) + Sy(i) Sy(i+ 1) + ySz(i) Sz(i+ 1) 1 , 

Y>O , (2.1) 

where the infinite volume limit N +m will generally be assumed. The 

lattice sites may be grouped into blocks of three and labelled by 

ordered pairs (k,a) where k=1,2,..., N/3 specifies the block and a= 1,2,3 

labels sites within that block. Thus the ith lattice site may be 

relabelled (k,a) where i= 3k- 3+a. Three-site blocks are convenient 

because the block states will have half-integer spin as do the original 

degrees of freedom. The Hamiltonian may now be decomposed into two 

pieces, Hin and Hout, where Hin couples sites within a single block 

and Hout couples sites in adjacent blocks: 

H = H in + Hout 
, 

H = in 

+ Sy(k,2)Sy(k,3)+ySZ(k,l)SZ(k,2)fySZ(k,2)SZ(k,3) 1 , 
H = out sy(k,3)sy(k+l,l)+ySZ(k,3)SZ(k+l,l) . 1 

(2.2) 
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To diagonalize Hin, it suffices to consider a single block: 

H = in c 53 lock(k) , 
k 

H block = Z(1) . Z(2) + 32) l $3) + E + sz(2)sz(3) 

= $ 
! 

;(1)+3(2)+x(3) 1’ - p(l)+bo)]2 - t) 

f sz(2)sz(3) 1 (2.3) 

where E=Y - 1. 

For s=O, 77 lock is rotationally invariant and its eigenstates are 

found by combining z(l) and z(3) to give a total spin 0 or 1, which is 

then coupled to z(2). Th ese states form a spin-3/2 multiplet and two 

spin-% doublets and are (notation is lS,Sz>): 

l+,+>l = i (2lN*,- I+++>- I,++>), 

1 energy = + 3 t 

energy = 0 , 

energy = -1 9 (2.4) 

plus the four corresponding states with all spins flipped and negative 

total Sz. 
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For E f 0, Yolock is invariant only under rotations about the z-axis 

(plus the discrete symmetry z -t -z which keeps the energy independent of 

the sign of Sz) so that states of different total spin but equal Sz can 

11 mix. One finds that I$-,+ is still an eigenstate, with energy %y, lz,~>~ 

31 11 is still an eigenstate with energy 0, but that IT,?> and Ir,T>l do mix. 

By diagonalizing a 2x 2 matrix, one finds that the lowest-energy 

eigenstate- is 

I+$> 2 (1+2x2) -+ 
( 

I$& + fix\++ 
) 

, 

energy = -+ (y+@Tz) 3 

X E 2 (y-l) [8+y+3@%)-l . (2.5) 

Thus far the state of the lattice has been described in terms of the 

state-spin up or spin down-of the spin-$ particle at each site. 

Since the eight eigenstates of H,lock form a complete set, an equally 

good description (corresponding to a different basis in the Hilbert 

space of states) is obtained by specifying the eigenstate of each block. 

However, it is physically reasonable to expect the low-lying states of 

the lattice to be predominantly formed from the low-lying eigenstates 

of H 
block' 

I therefore make the approximation of restricting attention 

to the sector of states built from the block states I +I/,> and I -%> only, 

I -3-,> being obtained from I +I$> under z + -z. The next step is to write 

an effective Hamiltonian which has the same matrix elements as the 

original Hamiltonian within this sector of states. 
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More explicitly, the lowest-lying states of 5J lock are 

I.+> = -(I+ 2xy5 1 I+++> (2x+2) + Jw> (2x-l) + I+++> (2x-l) . 
6 1 

(2.6) 

The overall sign difference between the states reflects.Condon-Shortley 

<sxm 

tructed from new phase conventions. The effective Hamiltonian is cons 

spin operators 3' defined by <+~/,Is;(+%>=%, <-%Is~ 

With this definition it is easy to check that in each 

1 -k>= -4, etc. 

block 

> = <sx(3)> = 2(1+x)(1- 2x) 

3(1+2x2) 
y> ? 

<Sy(l)> = <sy(3)> = 2(1+x)($- 2x) 
3(1+2x ) 

<s;> , 

2 
<Sz(l)> = <Sz(3)> = 2(1+x)2 <s;> ? 

3(1+2x ) 
(2.7) 

where the notation < > indicates any one of the four matrix elements 

involving the states 1 +4>, and the equality <z(l)> = <I?(3)> follows 

from the even parity of these states. Using the relations (2.7) to 

eliminate the 3 operators from H out ' and remembering that Hin has been 

diagonalized, the effective Hamiltonian can be written: 

k=l bl Sx(k)S(k+l)+S;(k)S;(k+l)+ylS;(k)S;(k+l) 

k=l 

[ , 1 , 
(2.8) 

al = -+(y+m) , bl= 



Because this Hamiltonian has the same form as the original one, apart 

from the energy shift al and the scale factor bl, the blocks of the 

original lattice may be viewed as sites of a new lattice and an identical 

blocking procedure applied to H (1) . In this way one generates a sequence 

of Hamiltonians H(m) describing the physics of ever larger length scales 

(block sizes) and obeying the following renormalization-group equations: 

N/3m (N/3m)-l 

H(m)= c am+ c bm[ Sx(k)Sx(k+l)+Sy(k)Sy(k+ l)+ymSz(k)SZ(k+l) 1 Y 

k=l k=l 

a 
m+l 

= 3a m-+bm 

2 

b mtl = bm 
2(1+xm)(l- 2xm) 

3(1+2x;) 1 , 

, 

(2.9) 

a0 = 0, b. = 1, y. = y, 

where 

xm f 2(Y, -1)(8fym+3~~)-l . 

(The primes on the block spin operators in H (ml have been dropped for 

simplicity.) Here am is a c-number contribution to the energy which 

after sufficiently many iterations of the blocking procedure becomes 

the dominant contribution. In fact, on the finite lattice of length N, 

after roughly m=log3N iterations the whole lattice has been reduced to 

a single block and a m is the only contribution to the energy. Since at 
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each iteration the number of lattice sites drops by a factor l/3, the 

energy per original lattice site is to be computed as a m I 3m= cFrn. 

Returning to an infinite lattice by letting N-to~ one obtains an energy 

density given by lim Em where & m satisfies 
rn+a 

& nrtl 
=&- 

m 12;3m bm (yrn+dF) Y "o;o- - (2.10) 

Since the whole RG procedure may be viewed as a variational 

calculation in which the set of variational trial states is "thinned out" 

or "truncated" with each iteration, the energy density computed from 

(2.10) will always be an upper bound on the true energy density. 

The RG equations have three fixed points in the region ~20: y= 0 

(isotropic XY model), y= 1 (isotropic Heisenberg model), and y= 0~ 

(Ising model). I now proceed to discuss them. 

A) y=O. Near this point the RG equations become: 

Ym+l =+ym , 

bm+l = [%+ .,,,] bm 7 

E Ml = &m- ' 
12x3m 

2fi+Ym) l 

(2.11a) 

(2.11b) 

(2.11c) 

Equation (2.11a) implies that if Iyl is small the system will be driven 

to the isotropic XY form: the y= 0 fixed point is stable. According to 

Eq. (2.l.lb), ;5mw bm= 0 which implies that the isotropic XY model is a 

massless theory: after sufficiently many iterations it is possible to 
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construct variational trial states with arbitrarily small excitation 

energy. It is also possible to compute the energy density at the point 

y= 0: (2.11b) and (2.11~) imply Rtil= Em - (fi / 6m+1). This leads to 

a geometric series for gm whose sum is 6" = -fi /5 = -0.2828, to be 

compared with the exact result8 &=-l/r = -0.3183. The error is 11%. 

B) y=l. Near this point y= l+ E with IsI << 1, and the RG 

equations-become: 

5 
'm+l=3sm , (2.12a) 

b m-l-1 = 9 4 bm(l-$- sm) , (2.12b) 

& m-!-l = & m -$(l+'m) 
. (2.12c) 

Equation (2.12a) shows that this fixed point is unstable: however small 

E o may be, after many iterations one will have cm-1 and Eqs. (2.12) will 

cease to hold. According to (2.12b), b,+ 0 at E = 0 so that the isotropic 

Heisenberg model is massless. Finally, using (2.12b,c) to compute the 

energy density at E= 0 gives &*l = grn- (1/3)(4/27)m , a geometric series 

whose sum is Em=-g/23=-0.3913. This differs by 12% from the exact 

result,g E=-0.4432. 

C) y=oJ. In the limit y>> 1 the RG equations become: 

X =- 
m ; 1-t 

c ) 
, 

m 

=A. 3 l-2 
ynrtl 4 ‘m ( ) 

, 
ym 

(2.13a) 

(2.13b) 
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E m+l 
= 8 - --i- bmy 

m 6 x 3m m ' (2.13d) 

Equation (2.13b) demonstrates the stability of the y=a fixed point: 

once y, becomes large, it essentially cubes itself with each iteration. 

Equationsd(2.13b) and (2.13~) imply that for y sufficiently large, 

b mt-l ye1 = bm Y, = b. y. = Y (2.14) 

so that (2.13d) gives the energy density as em= -y = mgo (1/(6x 3m)) = 

= -(y/4). This is the exact result for the Ising model y -t ~0, which is 

easily understood since the block states I i%> become in this limit: 

1 +g> = IN+> - $+++> - +I +++> ? 

I -g> = - I+++> + $cc+> + +to 3 

so that the RG algorithm constructs the exact Ising ground state. 

(2.15) 

The fact that b,+O in this case is not sufficient to give a massless 

theory because y, -t 00. The mass gap for any y> 1 is in fact given by 

bm yco, which is the gap at the stable Ising fixed point. This quantity 

is shown to be nonzero in the discussion of end-to-end order given below. 

The picture that emerges from this analysis is that for 0 my< 1 

the system is driven to the massless isotropic XY form, while for y > 1 

it is driven to the massive Ising form. The unstable fixed point y= 1 
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separates the two regimes. This is precisely the known behavior of this 

model.lO One might ask how this approximate calculation is able to locate 

the correct phase transition exactly, at y= 1. This is guaranteed by a 

symmetry: at y= 1 the system becomes rotationally invariant, and the RG 

transformation has been defined so as to preserve rotational invariance 

if it is initially present. This point will be important in Section III. 

It is also possible to calculate the end-to-end -order in the ground * 

state, defined as l<$(l) l Z(N)>~. This is done, in direct analogy to 

the treatment of H, by replacing the operator &l) l h-J) with an effective 

operator having the same matrix elements in the sector of states retained 

at each iteration. Since the first and last spins on the lattice are also 

the first spin in the first block and the third spin in the last block, 

Eqs. (2.7) and (2.9) show that after m iterations the appropriate 

effective operator is: 

p(l) l z($i;; = bm[;(Wx(~)+ syWsy($)] +~bm~mSz(l)Sz($-). (2.16) 

Since b,+O in all cases, the end-to-end order may be computed as: 

l<;(l) l -8(N)>\ = I<SZ(l)SZ(last))J tb_y_ ( (2.17) 

where the expectation value on the right side is evaluated in the ground 

state of the fixed point Hamiltonian H cm> . Clearly this predicts no 

end-to-end order for Orys 1. The vanishing of the order for y= I may 

also be obtained as a consequence of the rotational symmetry of the 

lirn theory and the cluster property N-toD [<z(l) l s(N)>- <z(l)> l <z(N)>]= 0. 
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For y> 1 the system is driven to the Ising model for which 

l<Sz(l)Sz(last)>l = %. Using Eqs.(2.9) one has for y> 1 

]<$(I) d(N)>] = + 
* (2.18) 

This infinite product is in fact convergent and nonzero. For m 

sufficiently large that y,>> 1 one finds from (2.13a) that (b/9) x 

((l+xm)4 / (1+2x:)2) = l- s(y,2). The product (2.18) is finite and 

nonzero if and only if the sum c n>m log ' [ - @(yi2)] r- nTm @(yi2) converges. 
2 

Since ~~+~wy;( for n>m, the sum is highly convergent. It is important to 

note that the end-to-end order depends not only on which fixed point is 

ultimately reached, but also on the rapidity with which it is approached. 

It is also easy to obtain the limiting behavior of the end-to-end 

order as y+l+ using Eq. (2.18). Set y= l+s with /cl << 1. According 

to Eq. (2.12a) one iteration of the RG equations changes E into (5/3)s. 

Since xn 5 0 for y t 1, it follows from Eq. (2.18) that 

Order(s) = (2.19a) 

a functional equation which is solved by 

1.6 log(4/9) 
Order(s) N c , 0< EC< 1, where 1,6 = . (2.19b) 

log(3/5) 

Figures 1 and 2 show the results of numerical iteration of the RG 

equations. Figure 1 compares the ground state energy density computed 

from (2.10) with the exact solution of Orbach,g while Figure 2 displays 
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the results of the present calculation for the end-to-end order and the 

mass gap. Note that the energy density and mass gap both refer to the 

Hamiltonian used by Orbach, which differs slightly from that used here: 

HOrbach=C((l- [ 
a) Sx(i) Sx(i+l)+Sy(i)Sy(i+l) 1 +Ss(i)Ss(i+ 1) 

i 

1 =- 
CC 

Sx(i)Sx(i+ l)+ Sy(i)Sy(i+ l)+ySz(i)Sz(i+ 1) 1 , 0.20) 

yi 

with 

1 
Y =- 

l-a ? 

so that the region l<yroo corresponds to OS cl2 1. Due to the factor 

l/y in Eq. (2.20), the RG results for the order and the mass gap for 

this Hamiltonian differ only by a factor of 4, as shown in Figure 2. 

The greatest error in the energy density is the 12% error at a= 0, and 

the general shape of the curve is correct. According to Eq. (2.19b) the 

curve in Figure 2 behaves as a 1.6 for a near zero, whereas in fact both 

the gaplo and the orderI are known to vanish exponentially as a + O+. 

This substitution of power-law for exponential behavior is a common 

feature of simple block-spin calculations of this type and can be 

corrected by improving the calculation using variational techniques.4 

Except for this feature, the results of the simple RG calculation given 

here are completely consistent with the known properties of this model. 

III. Two-Site Calculation for the Isotropic Heisenberg Model 

A rule of thumb for block-spin calculations states that theories 

involving half-integral spins or fermionic degrees of freedom should be 
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treated using an odd number of sites per block to preserve these features. 

The consequences of ignoring this good advice will now be examined by 

applying a two-site blocking procedure to the isotropic Heisenberg model: 

N-l 

H = 
c 

Z(i) l Tf(i+ 1) . 

i=l 

(3.1) 

Decomposing the Hamiltonian into pieces which do and do not connect 

different two-site blocks yields: 

H = H 
in 

+ Hout , 

H = in c 
x(k,l) l ;(k,2) 3 

k 

H = out c 
&k,2) l ;(k+l,l) . 

k 

(3.2) 

Anticipating that tensor operators will be useful in the description of 

the integer spin block states, I write the operators appearing here in 

terms of raising and lowering operators: 

~(k,a)~~(k',a')=So(k,a)So(k',a1)-Sl(k,a)S~l(k1,a~)-S~l(k,a)Sl(k~,a~) , 
l 

(3.3) 

where S 0 5 Sz and S+lE r (l/a) (Sx+ iSy). 

The block Hamiltonian is introduced by 

H = 
in c 

H 
block (k) 

k 

% lock 
= 3(l) l Z(2) (3.4) 
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The eigenstates of Hblock form the familiar singlet and triplet which 

will be labelled as follows: 

I+> = l-t+> 
IO > = -L 1 , 

4-F c IN> + I+4> ) 
I -. 

energy = + F 

I- > = I++> 
* 

I x> = +- (I4+> - I#>) , 3 energy =-‘z; . (3.5) 

The Hamiltonian must now be rewritten in terms of block spin 

operators which act on the states (3.5). To keep rotational invariance 

explicit, it is useful to define spherical tensor operators of rank 1, 

Qi and Ti, i--l, 0, +l, by: 

Qo = %' Q,, = n F L (Sx t iSy) , (3.6) 

<OjTo]x> = 1, <x(TojO> = 1 , 

<+jT+> = 1, <xjTl[-> = -1 , 

<-/T-1/~> = 1, <xIT-~I+> = -1 , 

all other matrix elements of Ti=O , (3.7) 

where Sx, S S are the usual spin operators for a spin-l particle 
Y' = 

whose states are j +>, IO >, I - >; these operators annihilate the 

spinless state 1 X >. Qi thus acts only within the spin-l subspace while 

Ti connects the spin-0 state to the spin-l states. It is easy to check 
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that the following relations between matrix elements of the spin-$ 

operators appearing in 

and (3.7) hold between 

5J lock and of the operators introduced in (3.6) 

any pair of the states I+>, IO>, I->, IX> : 

<?(I) > = $ <Qi+Ti> , ~~(2)) = $ <Q~-T~> . (3.8) 

These relations may be inverted: 

<Qi> = <S,(1)+ Si(2)> , <Ti> = <S,(l)- Si(2)> . (3.9) 

Thus, for example, z(k,2)*z(k+l,l) may be replaced by the scalar 

operator 

k 
c 

(-l)i~Qi(k)-Ti(k)]CQ-i(k+l)+T-i(k+l)l Z %CQ(k)-T(k)l[Q(k+l)+T(k+l)l. 

i 

It is also possible to record the diagonalization of Hllock in the form: 

<-&k,l) l &k,2)> = - ;+ ;<Q2(k)> , (3.10) 

since Q 
2 = 2 in the spin-l subspace and Q2= 0 in the spin-0 subspace. 

Using (3.8) and (3.10), the effective Hamiltonian after the first blocking 

may be written: 

N/2 (N/2)-1 H(O)=’ c CEo+coAoQ2(k) I+ c c,CQ(k)-goT(k)lCQ(k+l)+goT(k+l)l,(3.11) 

k=l k=l 

where Eo=-3/4, co =1/4, Ao= 2, go= 1. It is important to realize that 

no approximation has been made yet because I+ >, IO >, I - > and I X > 

form a complete set of block states. A new basis in Hilbert space has 
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simply been chosen, so that the Hamiltonian (3.11) now describes a 

lattice of length N/2 with a spin-l triplet state and a spin-0 singlet 

state at each site. The change of basis and its inverse are described 

by Eqs. (3.8)- (3.10). 

Since the sum of two integer spins is again an integer, it will be 

possible to implement a two-site RG transformation under which (3.11) 

retains its form. In fact, restricting H (0) to a particular two-site 

block produces a block Hamiltonian: 

(0) 
% lock = 2Eo'cOAOCQ 2 (1)-+-Q 2 (2)1+ coCQW - goT(l) lcQ(2) + gOT(2) 1. (3.12) 

According to the general rules for combining spins, Hblock will have 

sixteen eigenstates: two spin-0 singlets, three spin-l triplets, and 

a spin-2 quintet. In order to preserve the form of (3.11) an effective 

Hamiltonian will be written for the subspace of states built from the 

lowest-lying singlet and triplet eigenstates of (3.12). These states 

are readily found to be: 

lO,O> =(3+rij+ (rOIW> + lOO> - I+-> - I-+>), energy=El , (3.13a) 

ll,l> =(2+2s; -% 
)V 

so 1+x> -I- Ix+>)+ (lo+> - +o I 41 , 

Il,O> = (2+24 j~[so(~ox, + lxO>)+ (I-+> - i4] ' 

I l,-l>=(2+2s$7s*(~-x> + Ix->)+ (I-o> - lo->)] , 

energy=Ei , (3.13b) 



-19- 

where: 

-t 
2Ao- 1 

2 
80 

* 

El = 2EO+ co 

Ei = 2EO+ co 1- 2sogo 
> 

(3.13d) 

(3.13e) 

. (3.13f) 

The next step is to define new tensor operators Qi and Tb which act on 

the states (3.13a,b) exactly as Qi and Ti acted on the states (3.5): 

<O,O]Ti(l,O> = 1, etc. The resulting relationships between matrix 

elements are: 

<Qi(k,a)> = u,<Q;(k)> + va<T;(k)> 

<Ti(k,a)> = w,<Q;(k)> + za<Tf(k)> 

1 
u1 = u2 = 7. , 

v1 = -v2 = 2(2+2sij' (3+ri)-' f 

sO 
w1 = -w2 = 1+ s2 , 

z1 = z2 = so(lI-roj@+2s~)-' (3+ri)-' . (3.14) 
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The Hamiltonian (3.11) has the decomposition as Hin+Hout: 

N/4 (N/4)-1 
H(O), 

c 
(0) 

% lock(k)+ c 
co [Q(k,2)-goT(k,2)1~Q(k+l,l)+goT(k+l,l)l, 

k=l k=l 

and use of (3.13e,f) and (3.14) leads to a new, approximate, effective 

Hamiltonian of the same form as (3.11). In fact, the general RG 

equations are readily seen to be: 

H(m)=~{Em+~m ( AmQ2(k)+[Q(k)-gmT(k)~~Q(k+l)+gmT(k+l)l)} , (3.15a) 

where 

k 

'm+l= 'rn 

Em+l = 2Em+ cm 4A , 
m - 2- r,gi 

r = 
m 

I I 3 \3 3 

* (3.15b) 

sm = J 1 +(2Amigi+gir + 2Amig:+% , 

3 
E. 7 --i;s 

1 
co =-p A0 = 2, go = 1, J 

As usual, the energy per original lattice site is to be computed as 

lim Em 
I 

2m+1 . 
rn+m 
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Numerical iteration of Eqs. (3.15) leads to a ground state energy 

density of -0.4210, only 5% higher than the exact result -0.4432. Because 

the isotropic Heisenberg model is massless, one would expect to find cm-to. 

In fact, one finds that gm+l, Am+ 0, but cm+ a nonzero constant! This 

limiting theory with A- = 0 can be solved exactly by using Eqs. (3.9) and 

(3.10) to rewrite it on an underlying spin-% lattice (recall that this 

transformation is exact). The condition Am = 0 means that the two sites 

within any one block on the spin-% lattice are uncoupled. The spin-$ 

couplings are therefore as shown in Figure 3. This theory has a four- 

fold degenerate ground state in which each coupled pair of sites has 

total spin 0 while the uncoupled sites at the ends of the lattice have 

total spin 0 or 1. There is a finite mass gap to the highly degenerate 

first excited state in which some pair of coupled spins have total spin 

1, and additional mass gaps separate the higher excited states. Clearly 

this bears no resemblance to the physics of the isotropic Heisenberg 

model with its massless spin wave excitations. What went wrong? 

Recalling the calculation of Section II, suppose that here also the 

Heisenberg model A= 2, g= 1 is an unstable fixed point of the more general 

model of Eqs. (3.15). The RG calculation should find this fixed point, 

but being an approximate calculation it need not locate it precisely at 

A=2, g=l. In such a case the RG equations with Heisenberg model initial 

conditions will iterate away from the unstable fixed point, toward a stable 

fixed point with totally different physics. 

Figure 4 shows the qualitative behavior of the RG trajectories 

resulting from Eqs. (3.15) near the Heisenberg point A= 2, g= 1 and 

supports the picture just sketched. The unstable fixed point is quite 

close, at A= 1.7, g= 0.84, but the Heisenberg model iterates to the stable 
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fixed point A=O. There is also a stable fixed point at A= 01. At the 

unstable fixed point the Hamiltonian just rescales by a factor less than 

1 at each iteration, leading to the correct massless behavior. 

Recalling that the y= 1 unstable fixed point of the three-site 

calculation was located correctly as a consequence of rotational invariance, 

it is natural to ask whether the model (3.15a) possesses some symmetry at 

the Heisenberg point which is not preserved by the RG transformation. 

I now show that such a symmetry can be defined as invariance under a 

duality transformation. 

To define the duality transformation it is convenient to rewrite the 

Hamiltonian (3.15a) in the generic form: 

H= E~Q2(k)+AQ(k)Q(k+l)+BT(k)T(k+l)+D~Q(k)T(k+l)-T(k)Q(k+l)l ,(3.16) 
> 

k 

where G-CA, A=c, B= -cg2, D=cg. 

The change in notation is necessary because the duality transformation 

will not preserve the form of the nearest-neighbor couplings in the 

Hamiltonian (3.15a) except for special values of the parameters. 

The first step is to use Eqs. (3.9) and (3.10) to write a spin-% 

Hamiltonian equivalent to (3.16). This is the same trick used to solve 

exactly the fixed point Hamiltonian. It yields a spin-& Hamiltonian 

which, if blocked using two-site blocks, would reproduce (3.16). The 

spin-% Hamiltonian is: 

H= 
c-t 

E+SGf2G~(k,l)*~(k,2)+(A+B)~(k,l)=~(k+l,l)+(A+B)~(k,2)*~(k+1,2) 

k 

+ (A-B-2D)~(k,l)*~(k+l,2)+(A-B+2D)&k,2)*S(k+l,l) 
> 

. (3.17) 
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The spin-% lattice is now shifted one unit to the right by letting 

'&, 1) + (k, 2) and (k,2)+ (k+l,l) (p eriodic boundary conditions are useful 

here]. This shift interchanges interblock couplings with intrablock 

couplings. Finally, blocking the Hamiltonian back to the integer spin 

form using Eqs. (3.8) and (3.10) produces the dual Hamiltonian: 

i\i= 
a 

~~Q2(k)+;;iQ(k)Q(k+l)+~T(k)T(k+l)~~CQ(k)T(k+l)-T(k)Q(k+l)l 

k - 

+ %Q(k)-T(k)lcQ(k+2)+T(k+2)1 , 
I 

where 

E = E+$G -; (A-B+2D) 

2 = $ (A-B+2D) > 

;i = + (A+B+G) , 

5 = +(A+B-G) , 

F = $ (A-B-2D) . 

(3.18) 

Notice that the dual gap parameter E depends on the original couplings 

A, B, and D while the original gap parameter contributes to the dual 

couplings. Next-nearest-neighbor couplings have also appeared. H and E 

clearly describe the same system in different ways and have the same 

spectrum and other properties. A system is self-dual in the sense that 

H= E. if its spin -15 form is translationally invariant. The self-duality 

condition reduces to A-B= 2D=G which implies A= 2, g= 1. Only multiples 
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of the Heisenberg Hamiltonian are self-dual. Therefore, a calculation 

which respected translational invariance would lead to the correct physics 

for the Heisenberg model. 

The RG transformation will not preserve self-duality (translational 

invariance). Indeed, RG calculations of this type treat intrablock and 

interblock couplings quite differently. The former are diagonalized and 

contribute to the gap parameter at the next iteration, while the latter 

contribute to the new couplings. In the present calculation the initial 

Hamiltonian was self-dual while the A= 0 fixed point which was finally 

reached was not. This fixed point corresponds to A-B= 2D# 0, G= 0. It 

is dual to the point A= B= 2D= 0, Gf 0 which is the A=- fixed point of 

Figure 4. The A=m fixed point corresponds to Figure 3 with the coupling 

pattern shifted one unit to the right. 

Several remarks should be made regarding the problem with this 

calculation and its resolution as discussed above. 

(1) Although the RG equations, naively applied, lead to the wrong 

fixed point, a glance at the trajectories of Figure 4 is sufficient to 

reveal the problem and indicate the correct physics. Unfortunately, 

models with long-range interactions such as (1.1) involve an infinite ' 

number of different couplings, so that RG.trajectories cannot be mapped 

out. Without the trajectories there is no way to locate unstable fixed 

points. Thus, the two-site calculation of this section cannot be reliably 

used to study the phases of the model (1.1) even though it may well yield 

a good ground state energy density. 

(2) The problem encountered in the two-site calculation is clearly 

very general: it may occur in any theory when the first RG blocking 

embeds the theory at or near an unstable fixed point of a more general 

model. However, the following considerations suggest a rule for 
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determining which of several possible calculations may be most seriously 

affected by the failure of the RG technique to preserve self-duality. 

In the two-site calculation, the ground state in a block was a singlet. 

In order to get the correct massless physics it would have been necessary 

for both the gap parameter G and the couplings A, B, D to iterate to zero. 

This did not happen because the RG calculation treats gaps and couplings 

asymmetrically. In the three-site calculation the ground state in a block 

was a doublet, and the subspace of lattice states formed from these doublet 

block states was isomorphic to the space of states of the original 

Heisenberg model. This would remain true even in a three-site calculation 

using all eight block states. As long as all couplings iterate to zero 

in such a calculation, this subspace contains massless excitations 

yielding the correct spectrum even if nonzero gaps separate the lowest 

doublet from the other states in one block. This suggests the following 

rule of thumb: given a choice, one should prefer that calculation for 

which the ground state in a block has the highest multiplicity. This 

maximizes the number of lattice states that can be constructed from the 

block ground states alone. Physics which depends on this sector of 

lattice states only will be independent of gaps between block states, 

and therefore independent of asymmetrical treatment of gaps and couplings. 

(3) The duality transformation introduced here has applications 

beyond this particular model. Such a transformation can be defined in 

any calculation in which all the block states are kept at the first 

blocking, so that the blocking is "reversible". In a two-site calculation 

the square of the duality transformation is unity; in a calculation using 

m-site blocks the duality transformation generates a Zm symmetry group. 
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(4) In addition to its utility in classifying fixed points, the 

duality tranformation may be used to increase the accuracy of the RG 

calculation itself. Consider the following scheme. Beginning with the 

Hamiltonian H(')of Eq. (3.11) , one blocks as usual to obtain H (1). 

H(‘) is obtained by blocking the dual Hamiltonian H( 7 ) (note that this 

blocking removes the next-nearest-neighbor couplings introduced by the 

duality transformation) and one continues by alternately applying the 

duality transformation and the blocking procedure.' Since the underlying 

spin-& lattice is shifted to the right at each iteration of this scheme, 

one might hope that more translationally invariant states than usual are 

being constructed and that edge effects due to the walls of the blocks 

are being "smeared out". This scheme does in fact improve the energy 

density found in the two-site calculation very slightly. 

IV. Improving the Three-Site Calculation 

One might try to improve the three-site calculation for the isotropic 

Heisenberg model (y=l in the notation of Section II) in a variety of ways. 

One method is to keep more than two of the block states (2.4). One might 

keep both spin-$ doublets, or even all eight states in which case a 

duality transformation could be employed. Alternatively one might try 

to select a better pair of states to keep, which need not be eigenstates 

of H block' In this problem, symmetry considerations make this impossible: 

rotational symmetry forbids mixing spin-3/Z with spin-g states, and parity 

rules out a linear combination of the two spin-g multiplets. A third 

course is to use larger blocks. In this section, I describe a way to 

improve the three-site calculation by using it to approximate a nine-site 

calculation. 
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Consider performing a nine-site calculation by keeping only the 

lowest-lying spin-35 doublet of eigenstates on a block at each iteration. 

Such a calculation can only be done with the aid of a computer. However, 

two iterations of the three-site calculation have the effect of constructing 

a pair of spin-+ states on a nine-site block. The Sz =!i member of this 

pair is (cf., Eq. (2.4)): 

and l$-+>l = $(-2\+++> + I+++> + I+++>) . (4.1) 

If the Hamiltonian on a nine-site block is written in the form: 

%I lock =Ho+V , 

Ho = ~(J)&2)+~(2)&3)+!?(4)&5) -1-~(5)*~(6)+~(7)*~(8)+~(8)*~(9) , 

V= ~(3)&4)+~(6)&7) > (4.2) 

then I+> is an eigenstate of Ho with eigenvalue -3. To the extent that 

V can be regarded as "small", IQ am roximates an exact nine-site 

eigenstate. In actuality V will mix I$> with the additional states 

Vl$>, V21$>, etc., of which the most important will be v($> if V is 

"small". It is then reasonable to do a nine-site blocking calculation 

using as the Sz= 4 state the lower-lying state obtained by diagonalizing 

the matrix of % lock in the subspace spanned by I$> and V\Q> only. This 

is a 2x 2 matrix and the calculation is not difficult. It yields a 
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ground-state energy density in error by 5.4% as compared to 11.7% for the 

three-site and 5.0% for the two-site calculation. Like the three-site 

calculation, it also yields the correct massless spectrum. Although 

perturbative in spirit, this method is not a consistent expansion to some 

particular order in V as is the method of Reference 12. However, it can 

easily be improved further by diagonalizing the matrix of % lock in a 

larger subspace spanned by more of the states I#>, VI+>, v'/IJ>, . . . , 

and choosing the lowest-lying state. Eventually these states will span 

the entire spin-k, Sz=$, even parity subspace on nine sites and one is 

back to the exact nine-site calculation. This technique should also be 

suitable for studying the model (1.1) with long-range interactions. 

V. Concluding Remarks 

In this paper block-spin calculations for the isotropic Heisenberg 

model employing both two-site and three-site blocks have been discussed 

in great detail. The three-site calculation and its nine-site generali- 

zation gave good results and should be suitable for studying the model 

(1.1) with long-range interactions. The two-site calculation is not 

reliable for this purpose. Results of the three- and nine-site calcula- 

tions for the long-range model will be presented in a subsequent paper. 

The duality transformation introduced in Section III can be defined for 

models other than the one studied here, and it is hoped that it will be 

useful in other calculations of this type. 

After this work was completed, I learned from Marvin Weinstein that 

improving the two-site calculation by variational techniques suffices to 

obtain the correct massless spectrum. In such an improved calculation, 
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the block states are allowed to depend on one or more variational 

parameters. These parameters are adjusted to minimize the ground state 

energy computed after many RG iterations, rather than to diagonalize 

the block Hamiltonian. This "feedback" mechanism allows the physics 

at scales much larger than the block size to influence the selection 

of block states. 
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Figure Captrons 

1. Comparison of the exact ground state energy density for HOrbach 

(lower curve) wfth the result of the renormalization group 

calculation (upper curve). 

2. Results of the renormalization group calculation of the end-to-end 

order 1<$(1)*5(N))I and the mass gap for H Orbach' 

3. Couplings for the spin-% theory equivalent to the m-t m 

integer- spin theory (3.15). 

4. Qualitative behavior of RG trajectories in the two-site 

calculation. The point * is the Heisenberg model point 

and + is the unstable fixed point. 
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