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ABSTRACT 

We consider the contribution of lowest order electromagnetic (or 

weak) corrections to quark masses in quantum chromodynamics. We find 

that each contribution to the running mass is "precociously finite"; 

I.e., calculable from physics well below the grand unified scale, as 

long as the number of quark flavors nf is greater or equal to 11. We 

also derive the renormalization group expression for the running mass 

using Dyson's equation for the self-energy of the quark. 
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In this letter we shall consider the question of the convergence 

of the lowest order electromagnetic (or weak) contributions, to quark 

and hadronic masses 
1 from the perspective of asymptotically-free quantum 

chromodynamics, Using the standard operator product analysis, it is 

clear that the only contributions to the electromagnetic shift of the 

masses of hadrons which are potentially ultraviolet divergent are those 

associated with the perturbative contributions to the quark masses.2 

Surprisingly, we find that if there exists at least 11 quark 

flavors, i.e., 

2112 < nf < 33/2 (1) 

then the lowest order electromagnetic and weak contributions to the 

quark masses are individually finite and in principle calculable from 

physics well below the grand unification scale. The origin of this 

result is the fact that if nf > 21/2, then the running mass of QCD 

decreases asymptotically faster than a logarithm, thus insuring the 

convergence of a self-energy integral. 

From the standpoint of a unified theory of strong, weak and electro- 

magnetic interactions, the consideration of individual perturbative con- 

tributions to the quark masses may in some cases seem irrelevant. For 

example, Weinberg3 has remarked that in models where after spontaneous 

symmetry breaking the zeroth-order contribution to a certain mass 

vanishes, but where the unbroken symmetries still allow the appearance 

of this mass in higher orders, the renormalizability of the theory 

guarantees that the sum of all perturbative contributions is finite 

in every order of the unified coupling constant. 
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In the previous case, however, the cancellations and consequent ultra- 

violet convergence are not expected to occur until momenta of the order of 

the grand unification scale (p-mom10 l5 GeV). In contrast, if there in 

fact does exist 11 quark flavors, then the extra asymptotic convergence 

of QCD renders the lowest order electromagnetic and weak contributions 

to quark masses individually convergent at a momentum-scale of the order 
* 

of the 11th quark flavor threshold, presumably well below the region - 

where grand-unification effects or new dynamical couplings of the quarks 

must be taken into account. We should remark, however, that models with 

dynamical symmetry breaking contain naturally a soft chirality mixing 

insertion, leading to an effective ultraviolet cutoff which can be made 

much smaller than the grand unification scale.4 

The proper self-energy of a quark can be readily computed using the 

Dyson equation illustrated in Fig. 1, which reads 

4 
C(P) = = g2y D'v(k) S(p-k) I',(p-k,p) 

(2*>4 0 lJ 
(2) 

in terms of unrenormalized vertices and propagators. Note 

that the renormalization of this equation has to deal with the problem of 

overlapping divergences. Using the Dyson equation for the vertex one can 

express Zlyu in terms of the renormalized vertex function, and then write 

Z;C(p) in terms of renonnalized quantities inside the integral, with no 

overlapping divergence. 5 

n 

We define the "running" mass m(pL) as the renormalized mass para- 

meter in the off-shell quark propagator, 

” (P) = $ _ m -lx(p)+fc = 
z (P2) 

0 PI- m(p2)+is 
f 2;s' (p) (3) 
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and then use Eq. (2) in the Landau gauge, where the separation of wave 

function and mass renormalizations is simple because the first one is 

trivial (Z; = 1). For QCD we get, for large p2 and in leading log approx- 

imation, the homogeneous equation (C 
F = (n: - 1)/2n C = 4/3) 

ms(p2) = >C 
/ 

dk2 - 
471 F k2 

as (k2> ms (k2) 

P2 

(4) 

where as(k2) 2 4a/(Blogk2/A2), with B = ll- 2 Yf ' is the running coupling 

constant at large k 26 . We can also express this result as an evolution 

equation, 

a 

a1ogp 
2 ms(P2) = - & CF as(p2) ms(p2) 

The solution to Eqs. (4) and (5) is 

ms(p2) = m,(p$ 

(5) 

(6) 

This result, which is valid for lp21 >> rn: (the heaviest quark threshold) 

is conventionally derived using renormalization group methods,7 and is 

valid for general covariant gauges.* Here pi is a normalization point 

which is often chosen at the grand unification scale. 

Let us assume that the running mass ms(p2) for strong interactions 

has been specified, including its normalization. We can then consider 

the lowest order [O(a)] perturbation bm(p2) to the running mass due to 

electromagnetic interactions. Provided the integrals are convergent, we 

have for large p2: 



-5- 

01 

eiams(k2) + CF 6as(k2)ms(k2) + CFas(k2)6m(k2) 1 
(7) 

The three terms can be identified with the Dyson equation contributions 

indicated in Fig. 2a,b,c, respectively. 

The change in the QCD running coupling constant $as(k2) due to 

lowest order electromagnetic interactions corresponding to Fig. 2(b) is 

of order aas(k2). The 6as(k2)ms(k) term thus can be neglected at large 

k2 compared to the eiams(k2) term in Eq. (7) * 

The central question is the ultraviolet convergence of the integral 

equation (7) for 6m(p2). We note that if 3CF/B > 1, i.e., nf > 21/2, then 

(log k2)ms(k2) + 0 for k2 + m (see Eq. (6)) and the integral of the first 

term of Eq. (7) is convergent. In fact if 3CF/B > 1, the solution to 

Eq. (7) which is proportional to a is9 

6m(p2) = - -& aei ms(p2) log p2/A2 

i.e., 
2 

6m(p2) = _ 3 aeq 

ms(p2) B as (p2) 

‘.. 

(8) 

(9) 

Equation (8) is valid for lp21 >> m i, where m 2 
f is the threshold for the 

eleventh flavor threshold. Thus if there are at least eleven (but not 

more than sixteen) quark flavors, 10 the the lowest order electromagnetic 

and weak interaction contributions to the running quark mass are each 

finite and in principle calculable in QCD. In particular, the order a 

contribution to the "bare" mass of the total Lagrangian lim 6m(p2) vanishes. 
P2+= 
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Note that the complete electromagnetic contribution to the quark mass 

tz order a at the hadronic mass scale requires a detailed calculation of 

the small lk*l integration region. The result of Eq. (9) shows that the 

region of integration, large lk'l where 6 < 4, gives a negative contribution 

to the quark mass; i.e., this contribution tends to make the u-quark 

lighter than the d-quark: 6mU(p2) < dmd(p2). However, we emphasize that 

the calculation of mu-md (or m - 
P 

mn) still requires knowledge of the low 

momentum region as well as the weak interaction contributions. Further- 

more it is not clear that the u and d quark masses are degenerate in the 

absence of electromagnetic or weak interaction contributions (mz(pi) 2 

mu). 
It is interesting to compare the result of Eq. (9) with the corre- 

sponding renormalization group result for the running mass. 7 Ifwe 

consider only QCD and electromagnetic interactions, then for large p 2 

hn(P*) = 
a10gp2 

- -& CF crs(p2) + et a(P*> 
C 3 dp*) (10) 

l.e., the normalized running mass is (using the one-loop approximation to 

the renormalization group B-functions for a and as), 

m(p2> = mo[~~:n;:l"'ll::r~~~~/4)e~ 

where m 0 = m(pi) and a(~*) is the QED running coupling constant: 

a(P*) 

1 _ _ z 
a(pg) 

1 
ii 

a(pi) 
2 

1% 
3-J 

5 
PO 1 

(11) 

(12) 
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Thus 

6m(p2) = m(p2) - m,(p2) 

= m,(p2) [b$$~‘ge”“KT.! l] + “i: m(p2) ,513) 

where, in general, we expect m'(pi) # m(pi) (even at the-grand unification 

scale). If 0 < B < 4, then we can use Eq. (9) and 

m. - m,s = 
2 

-2 --fTL- 
moS B 

a,(pi) 
(14) 

to specify Eq. (13) to lowest order in a = a(pi). Although these results 

cannot be trusted quantitatively when as(p2) is of order a, we see that 

6m(p2) /m(p2) b ecomes of order 1 as one approaches the grand unification 

scale. 

In conclusion, we have found that the strong asymptotic freedom 

convergence of QCD with 16 2 nf _ 1 11 quark flavors is sufficient to render 

the lowest order and electromagnetic contributions to quark masses 

"precociously finite", i.e., calculable from integrals involving the 

QCD and quark mass scales alone. In general, perturbative terms of order 

2 a,a ,...,a n are all calculable if B < 4/n; i.e., nf > 3/2 (11 - 4/n) 

(e.g., the order a,a2,...,a 11 terms are calculable if n f = 16). The higher 

order terms involve contributions of order a n+lclog n~lm2)n+1-4/B where 

Ai is an ultraviolet cutoff. Assuming this convergence is set by a grand 

unification scale where log hi/m2 -1 <<a , then the higher order terms are 

still relatively small. 

We are grateful for valuable discussions with M. Dine, G. P. Lepage, 

K. Johnson, L. McLerran, C. Litwin and H. Quinn. 
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FIGURE CAPTIONS 

Fig. 1. Dyson equation for the self-energy. Double shaded blocks 

indicate irreducible self-energy and vertex insertions. 

Fig. 2. Dyson equation for computing order-a corrections to quark 

masses in QCD. 
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