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ABSTRACT 

The possibility of naturally suppressing strong CP-violation in the 

grand unified SU(5) model is examined. We show that a recent solution 

to the quark-lepton mass ratio problem by Georgi and Jarlskog can be 

extended in such a way as to yield a zero strong CP violating parameter 

0 at the tree level and a small value for it coming from higher order 

effects, along with reasonable mass ratios and mixing angles. Several 

phenomenological implications of the model are noted. 
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With the discovery of instantons Cl1 the possibility arose that the 

strong interactions may violate CP-invariance [21, thereby possibly 

giving rise to large CP violating effects which have not been observed. 

The best bound on such strong CP violation, characterized by a parameter 

8, comes from limits on the electric dipole moment of the neutron C3I 

which yields 0 < 10 -8 c41. The problem is then to find a reason for the 

occurrence of such a small number. One possibility is to eliminate 0 

completely from the theory by requiring an additional symmetry [51 which 

allows 0 to be "rotated" away. However, it was shown that the realiza- 

tion of this symmetry leads to phenomenologically unacceptable consequences: 

either there should exist a very light particle C61 which has not been 

observed [71, or a massless quark which is in conflict with the present 

view of chiral symmetry of hadrons L-81. A second alternative is to use 

the fact that in a theory with spontaneous CP breakdown (due to the Higgs 

mechanism) the value of 8 is given by 

8 = arg (det M) (1) 

where M is the quark mass matrix, and construct a theory for the electro- 

weak interactions in which arg (det M) = 0 naturally (but with a complex 

mass matrix in order to have some CP violation in the gauge interactions) 

and in which 8 arises only as a small higher order effect. Such a model 

was first discussed in ref. [9] and subsequently by several authors in 

the context of the gauge models based on SU(2)L @ SU(2)R@ U(1) group 

DOI and SU(2)L 0 U(1) group C11,121. 

In recent years, grand unified theories are receiving considerable 

attention: they are attractive because they promise to describe all 

interactions (except gravity) with a single coupling constant. The 
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simplest such model is the SU(5) theory of Georgi and Glashow C131. The 

question then arises whether it is possible to combine the absence of 

strong CP violation with these theories. Since SU(5) contains SU(2)L @ 

U(1) as its electroweak gauge group, one might try to take over the 

results of the papers in ref. r-111. However, a straightforward appli- 

cation of the models of ref. Cl11 requires that only identical (i.e., 

same transformation properties under the*gauge group) Higgs fields give 

mass to the fermions. For SU(5), this means only 5-dimensional Higgs 

fields or only 45-dimensional ones. But this leads to the unsatisfactory 

fermion mass relations 

m e - = % = mT 
md m 

S T 
(2) 

So, other solutions must be sought. 

An answer to the problem of mass ratios is to assume that Higgs 

fields transforming like the 5- as well as 45-dimensional Cl41 repre- 

sentations of SU(5) give masses to fermions. Georgi and Jarlskog Cl51 

have constructed a model in which these Higgs fields enter in such a 

way into the Yukawa coupling as to give the relations 

%=mT ; md=3me ; ms=+mu (3) 

at a mass scale of 10 3.6 GeV, and which are expected to renormalize to 

the currently preferred values at low energies C161. As we now proceed 

to show, the result of ref. Cl51 can be amended in such a way as to 

yield a small, calculable 8. 

To start with, we consider a theory invariant under SU(5) @ CP 0 D, 

where SU(5) is a local symmetry and D is a discrete symmetry whose action 
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will be displayed below. CP invariance requires all coupling constants 

to be real. The fermions come in 5-dimensional representations X, and 

antisymmetric lo-dimensional representation JI,, where a labels the 

"generations" (e.g., a=1 corresponds to u,d,e,V; a= 2 to c,s,II,V', etc.) 

and we take three generations. The latin indices i,j,... will be used 

to denote SU(5) indices. The particle content of x and $ is given by 

x, 5 

nl ' 

n2 

n3 

E+ 

E0 1 I a,R 

O pc3 -pc2 p1 nl 

O pc1 p2 n2 

0 p3 n3 

0 E+ 

(4) 

where the subscripts 1,2,3 are color indices, p, stands for the charge 

conjugate field of p (i.e., p, = CF); p and n correspond to fields with 

electric charge +2/3 and -l/3 respectively. 

As usual, SU(5) is broken down to SU(3)c 6 SU(2)L 0 U(1) symmetry via 

the Higgs fields transforming as 24-dimensional representation C171. The 

breaking of the remaining symmetry as well as fermion mass generation is 

achieved by the Higgs bosons 'pa (a=1,2,3) belonging to 5-dimensional 

representation and C belonging to 45-dimensional representation. Now, 

we proceed with the construction of the Yukawa couplings which is of 

interest here. (The gauge couplings remain as usual.) The general gauge 

invariant Yukawa couplings of fermions and Higgs bosons in SU(5) are 

given as follows: 
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. . 
Jlx cp coupling : ,? Xlr (PJ 

Jlx C coupling : q;j x; $ 

i&4 coupling : 
-i’ 
‘J’ J C -l JlkR m Cp EijkRm 

. . 
G$ C coupling : TJ C -1 +kg Cmn E 

k ijRmn (5) 

where C is the Dirac charge conjugation matrix; N stands for the trans- 

pose of JI and E ijkRm is the totally antisymmetric tensor of SU(5). 

Henceforth in writing Yukawa couplings, we will drop SU(5) indices and 

will write them symbolically as in the left-hand column of eq. (5). In 

order to restrict the form of the Yukawa couplings and hence the fermion 

mass matrices, we have introduced the following discrete symmetry, D; 

$1 + 
,ir/4 

dJl ; xl -f e 
5ri/4 

Xl ; 'pl +- e 
-3G.14 

'pl 

$2 + 
,ia/2 

$2 ; x2 + x2 ; 'p2 + 
.ia/4 

o2 

+, -+ e 
-in/8 

J1, ; x3 -+ e 
-3ri.18 

x3 ; v3 -f e 
5ri/8 

'p3 

C + iC 

The Yukawa coupling now is given by 

gY 
= LI$~x~‘P~ + A’q1X2’P2 + G$X3’P3 

+ W2x2C + EQ3x3q 

+ B(& + T2+,) q 

+ c(G2+3 + $3$2)'P3 

(6) 

+ F+3$3’~2 +h*c* (7) 
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It is possible to show Fl that, the vacuum expectation value (vev) of C, 

<c45> = 4 -3~ can be made real by an SLJ(5) rotation leaving the vev of cp's 

5 
in general complex: i.e., <(pa> 5 vae 

ia, 
, a=1,2,3. We notice C14,151 

45 i5 
that <Z4 > = -3<Ci > where i=1,2,3 denotes the color index (no sum over 

i) . The resulting fermions mass matrices are 

M+ = 
I1 

Md = 

M lepton = 

0 

Bvle 
ial 

0 

0 

A'v2e 
ia 

Gv3e 
ia 

0 

A'v2e 
ia 

Gv3e 
ia 

Bvle 
ial 

0 

Cv3e 
ia 

Avle 
ial 

DK 

0 

ia 
Avle 1 

--3Dlc 

0 

0 

Cv3e 
ia 

ia 
Fv2e 2 

0 

0 

ia 
Evle 1 

0 

0 

Evle 
ial 

(84 

(8b) 

(84 

Note that eq. (8a) involves ML rather MU. It follows from eqs. (8a) and 

(8b) that 

Arg (Det M) = Arg (Det MU l Det Md) = 0 (9) 

Thus, 8=0 naturally at the tree level, and is finite and computable as 

a result of higher order effects. We will come back to this point later. 

Let us first comment on the fermion masses and mixings in this model. 

Note that, if we drop all the phases a. and set G=O, we get the fermion 
1 
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mass matrices obtained by Georgi and Jarlskog Cl51. As they have dis- 

cussed, this leads to the mass relations given in eq. (3) and also leads 

to interesting mixing angles that we discuss below. We do this in steps: 

first, we show that nontrivial CP-phase survive arbitrary phase redefini- 

tion of the fermions in the theory. Then, we cast the weak charged current 

in terms of the generalized Cabibbo matrix Cl81 to discuss phenomenological 

implications of the model. 

To proceed, let us work in the approximation in which G Z 0, A z A' 

and VI z V2 z V 3 . Then, if we make the following phase redefinition of 

the fields: 

ia +a -2a 
PiL = PlL ; PiL = e 

( 12 3 
p2L ; piL = e 

i("Pu3)p3L 

PiL = e 
ia 

plR ; P;R = e 
1 
p2R ; P;R = e '3R 

(10) 
and 

-ia 
niL = nlL ; nhL = e 1 

n2L ; n;L = n3L 

niR = e -i(a1+a4nlR ; n;R = @-ialn2R . niR = Qialn3R (11) , 

the mass matrices Mu and Md become real but the weak charged current in 

terms of the unrotated fields pi and ni looks like 

J = 
( 

-1 'I 
PlL'$L'P3L Y1-l ) 

1 
1-I niL 

ia 

i Irl 

e 5L (12) 

e if3 
%L 

where a = 2al + a2 - 2a3; 6 = al-a3. Now we can diagonalize the real 

symmetric mass matrices by means of the following real orthogonal matrices: 
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co.9 e 1 -sin 8 lo 
= +sin el cos 0 

0 0 

1 +6, -4, 

= ( -0, 1 +92 

0 -0, 1 

lo 

1 

pi 

i 1 

p; 

Pi 

where 
F2 

Cl91 

- I- m 
; dp $l ; 

C 

(13) 

(14) 

and we have ignored terms proportional to higher orders in the small 

quantities oi. The left-handed charged current is then given by 

ia 
e 

-c$2eia 

No further phase redefinition of the physical fields can make this matrix 

totally real. We therefore conclude that CP violation in the gauge 

sector in this model is genuine inspite of the restricted form of the 

mass matrices. 

An immediate phenomenological implication of the mixing matrix in 

eq. (15) that & and is mixings are the same, i.e., 

(b + c + X) 
(t-ts+X) = 

1 (16) 
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Further, within these approximations, one would expect, 

T(b -t c+X) y 2 
I'(b + u+X) * (2-3) x 10 (17) 

where we choose m M 1.5 GeV and m X 5-7 MeV. 
C U 

After these phenomenological remarks, we turn to the one loop 

corrections to the strong CP violating parameter 8. First, we note that 

since the photon and Z-couplings to fermions are diagonal, they do not 

contribute to 0 up to one-loop level. Furthermore, since W' always 

couples to left-handed currents, it too does not contribute to the mass 

matrix up to this order. Let us now consider the effect of the remaining 

superheavy gauge bosons X and Y. A look at their couplings to fermions 

[201 makes it clear that, even though they involve both left as well as 

right handed chirality states of fermions, at the one loop level, they 

also do not contribute to the quark mass matrix. Thus, the only non- 

vanishing contribution at the one loop level comes from graphs with one 

Higgs boson in the intermediate state. These graphs generally involve 

mixing between two Higgs bosons and make contributions to 0 typically of 

order, 8 l-loop 
= h2A2/m.$ where h is the strength of the Yukawa coupling 

(h M gm,/l$) ; A is the mixing parameter between Higgs bosons and mH is 

the Higgs boson mass. If A2 M 10 -1 GeV2 and mH M 100 GeV, one obtains 

In summary, we have considered an SU(5) grand unified model in which 

strong CP violation is naturally absent at the tree level with one-loop 

induced finite effects expected to be small. The model yields an 

acceptable quark-lepton mass spectrum at present energies as well as a 

satisfactory set of quark mixing angles. 
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FOOTNOTES 

Fl. We have verified this statement using the Higgs potential allowed 

by the symmetry group of our theory with the addition of billinear 

terms of the form (pa(pb to it. Some of these latter terms, however, 

give a soft breaking of this discrete symmetry. 

F2. We wish to point out that the approximate relations between mixing 

angles and mass ratios are obtained only in the approximations 

stated in the text (such as G z 0, A z A', v1 z v2 z v3, etc.) and 

are therefore not predictions of the theory. These approximations 

enable us to extract the physics of model in a succinct fashion. 

We also point out that, if we keep a non-zero G, the required 

phase redefinitions required to get a real mass matrix are the 

same as in eqs.' (11) and (12), except that we must have niL = 
i(a3- al- a2) i(a3-a2 - 2al) 

n3Le and niR = n3Re . That would change 

6 in eq. (12) to 6 = 2al- 2a3+a2. 
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Cl1 

c21 

c31 

c41 

c5 1 

C6 1 

II7 1 

iI8 1 

c9 1 

Cl01 

Cl1 1 
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