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ABSTRACT 

The Bose form of QCD2 is presented. Weak (m << g) and 

strong (m >> g) coupling regimes are briefly analyzed. The 

former corresponds to the quark phase with bound states 

exhibiting the string picture. Mesons and baryons appear as 

longitudinal modes of strings represented by electric vortex 

lines, The latter describes the Bose phase with a spectrum 

consisting of N colorless scalars and their bound states. 
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In this note I would like to show that SU(N) quantum chromodynamics 

in one space-one time dimension (QCD2) is equivalent to a local quantum 

field theory of N interacting scalar bosons. 

The bosonization of two dimensional fermion-field theories was initia- 

ted by Schwinger Cl] who demonstrated that massless QED2 is equivalent to 

the massive scalar free field theory. Subsequently the massive QED2 was 

also bosonized and extensively studied in refs. [21 to c51. Recently the 

interest in the subject has been revived due to the discovery that seem- 

ingly very different Sine-Gordon and Thirring models are actually equiva- 

lent C6,71. In the context of this equivalence, Coleman made an important 

conjecture that quantum solitons are in fact fermions [61. These results 

have beem amplified and further developed by Dashen, et al., C81 

Mandelstam C9l and others ClOl. 

The present work is an attempt to extend the bosonization program to 

non-Abelian gauge field theories. 

QCD2 is obtained from the classical Hamiltonian density 

Jf'= 2 {g2iEi12 + i&1(6la -iAi)$j+ m6J;4j} 

i,j=l 

where canonical variables bi,Ai} and {;',ei} are constrained by 

Gauss' law 

. 
G; E 83; - J; = 0 , 

. 
J; = iCA,EI; + % $j 1 

(1) 

(24 

(2b) 
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We have adopted the Weyl basis for gauge fields which is related to the 
. 

more standard basis by ES = (Aa); Ea with the Gell-Mann matrices 

Xa , a=l, . . . , N2- 1 being normalized as Tr(AaXb) = % gab. 

The following considerations will motivate our subsequent strategy. 

The maximal Abelian subgroup of SU(N) is a direct product of U(1) compo- 

nents UN(l)-Ul(1) 8 . . . B UNml(l). The UN(l) local gauge theory of 

quarks can be directly obtained from eqs. (1) and (2) after dropping all 

off-diagonal currents j i 
vk 

= viy,,$k, i # k. 
. 

In the Coulomb gauge Ai= 0 

Gauss' law allows us to eliminate gauge fields from the Hamiltonian. 

The quantum version of the resulting Hamiltonian can be easily bosonized 

by identifying the gradient of bose fields with the diagonal currents 

.i 
Jv 

= Siyu$,. In particular various color diagonal quark densities, e.g., 

SiiVi, Jhi, etc., can be expressed in terms of the bose fields as it 

will be explained below. Thus in the case of QCD2 the gauge choice must 

be such that it should lead to an effective Hamiltonian which is a func- 

tion of color diagonal quark densities only. Obviously the Coulomb gauge 

Af = 0, i,j= 1, . . . , N does not belong to this class of gauges since 

the corresponding Hamiltonian contains diagonal as well as off-diagonal 

currents coupled non-locally 

Xc = -$/dxdyjik (x)I~--yl~~i(y) + jdxqi(x)(iula +m)$i(x) l (3) 

The hybrid gauge proves to be best suited for the above purpose Clll: 

A: = 0, i = 1, . . . , N-l (44 

Ek i=(-j , i,k = 1, . . . , N, i#k (4b) 
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Equations (4) reduce Gauss' law (2) to 

(54 

i(ei- ek) A: = & j& , i#k 

For later convenience, the diagonal components of the electric field 

have been-redefined as follows 

2 &Et=-(ei-+ & ek) , i=l, . . . , N (6) 

. 
Equations (4) allow us to eliminate gauge fields Ai from the Hamiltonian 

(1) l The resulting expression can be cast into the desired form. 

Indeed, after a simple rearrangement of quark fields one arrives at the 

Hamiltonian which depends on color diagonal quark densities only: 

w = 3yb + .x1 (7) 

Jvo = i@ylagi) + 5 (Mi + M?) > I (84 
i 

82 
5 = 8nN. c 

(ei-ej)2 + %fi i c M: MA(ei- ej)-l 

i,j i#j 

with 

M; = ii(l+-y5j ai , Y5 = YOYl 

(8b) 

and e i's being given by eq. (5a). The sign of the last term in eq. (8b) 

accounts for the Fermi statistics of quark fields. Thus the problem has 
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been reduced to the quantization of the classical Hamiltonian (7,8). 

I will first postulate equal time anticommutation relations for canonical 

quark fields (cf. ref. 11): 

{ ~%,t), $j(y.t) 
> 

= 6; 6(X-Y) ; (9) 

the remaining anticommutators vanish. Next I should regularize the 

product of operators which appear in eqs. (8). This may be accomplished 

by the standard point splitting method. However, it is much more conven- 

ient to tackle this problem after eq. (8) has been cast in the bose form. 

Therefore I will proceed to bosonization of eq. (8) using algebraic 

properties of.its individual terms. 

Let us complement eqs. (9) by the commutators of diagonal currents 

[ 
. 

jt(x,t), jL(y,t) 1 = 0, p=O,l 

[ 
ji(x,t), j:(y,t) 1 = $ 6ik ax &(x-y) 

(104 

(lob) 

Note that the R.H.S. of eq. (lob) is the canonical Schwinger term 

unaffected by the superrenormalizable interactions of QCD2. By means of 

eqs. (9) one can evaluate commutators of diagonal currents with various 

operators in eqs. (8) 

i$k(t,y)Ylay$k(t'y) 1 = isikj$O) (t 4) a,& (X - Y> (11) 
$(t,Y) = 0 1 (12) 

M:(t,y) = 2 2 sik'Mi(t,x) 6(x-Y) - 1 (13) 
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Now the Bose realization of these operators may be found by a standard 

trick. Equations (10) have a simple realization in terms of N pair of 

canonically conjugate Bose variables c$~, -vi, i=l. ,,, ,N , 

. . . . 
G ji(t,x) = a,&t,x), J;; j;(t,x> = 2(t,x) (14) 

r. $(t,x), $k(t,y) 1 = -i d ik &(x-y) (15) 
+ 

Hence one easily derives the following operator solutions to eqs. (11) 

to (131, 

MS = -Aexp(*2 J;; Oi) . (17) 

Here the constant A is a scale parameter which is independent of the 
. 

color indices because operators Mt belong to the U(N) multiplet 
. 

?"(l ' Y+k' Without loss of generality A may be assumed to be real 

(see below). 

Finally, a comparison of eqs. (5a) and (14) leads to the identifi- 

cation 

e. = 9 
i 

1 
(18) 

In general the electric fields ei in eq. (18) are determined up to 

additive constants ei. However it can be argued that there is no such 

freedom, in the present case c121. 

It remains to substitute eqs. (16), (17) and (18) into eqs. (8) to 

arrive at the Bose representation of the Hamiltonian (7): 

Jyb= $ 7~: + taQ2 + 2mh(l-cos 2 J;;Qli> (194 
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1 c (L& - $,I2 + (Ji; A”) ct l- 1 dycos ZJ;;y$- 0,) (1%) 
i,k i,k 0 

For later convenience the trivial constant terms have been added to X0 1. . 

Observe that eq. (19) is symmetric under permutations of $i's, i.e., it 

possesses ZN symmetry. 

The above expressions are not well defined and need to be regularized. 

All local composite operators O(x) in eq. (13) should be interpreted in 

terms of a finite part of products of Bose fields @(xi) in the limit 

x.+x. 1 For example the monomial On(x) should be interpreted as 

l-l 
i=l 

(20) 

Evidently this definition contains a great deal of ambiguity since an 

arbitrary finite counterterm may be added to its R.H.S. Of course, there 

exist simple regularizations such as those given by one parameter families 

of regulators N ; 
1-I 

these regulators define the Wick normal ordering with 

respect to Hamiltonian of a free Bose field of mass u. However, there is 

no reason within the scheme discussed so far to prefer one form of 

regularization over the other. 

Apparently the theory (3) is equivalent to the regularized form of 

(19) with a given parameter A and particular set of counterterms all being 

fixed in terms of the coupling g and the quark mass m. 

,The correct regularization of X0 is trivial. Indeed the relation 

:+: = cANA(cos2 &$,) obtained in the free Dirac theory C61, remains 

unaffected by gauge interactions. Note that the quark mass term is 

actually independent of A. 
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Here I will not try to identify the counterterms to X'l. Instead 

I will turn to qualitative predictions of the model (19) when the explicit 

knowledge of the counterterms is unnecessary. 

Two extreme cases of the weak (g2 << m2) and strong (g2 >> m2) 

coupling regimes will be analyzed. I will begin with the first case. 

Here the scale parameter A may be taken AR-~ since the interaction energy 

(19b) is expected to be of the order of g2. 

Equation (19a) represents a direct sum of N Sine-Gordon Hamiltonians 

HSBG(B) with the mysterious small parameter f3=26. The spectrum of 

HSmG (2 J;; ) is known to consist of (anti)quarks which in the leading 

order in f3 are described by (anti)solitons C8,131. 

Quantum fluctuations about multisoliton solutions of the Hamiltonian 

(19a) define a systematic B-expansion. I will only determine the energy 

of multiquark systems to the leading order in (g/m)2 and B. For simpli- 

city the (anti)soliton will be approximated by 

S:f)(xlxO) = (‘, J;; e(x-X0) (21) 

Then multisolitons may be described by a simple superposition of (21). 

In this approximation a soliton-antisoliton pair becomes 

S2(xI~1,2) = 5 A 0(x2-x) 8(x-x1), m(xl-x2\ >> 1 22) 

Actually, eqs. (21) and (22) are quite accurate; although one expects them 

to fail in the vicinity of the end points x=xi where quark self energies 

are localized. Note that in eq. (22) I have ignored a weak dependence 

on the realtive velocity of the soliton-antisoliton pair. 
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Equation (19b) permits two classes of finite energy configurations 

II . 
1 

p (x) = 
C{ 

s1 WJ + S;(xI%)> , 1, l . . , N 

k=l 

4JL2) (xl = S1(xIxi) + $i"(x), i = l,... , N 

(23d 

(2%) 

where ni 
(> 

is an arbitrary set,of integers. Observe that in these 

configurations the electric field vanishes at x= + 00 [cf. eqs. (6) and 

(18)) and therefore the corresponding states are colorless. This 

immediately follows from Gauss' law (2a) and the definition of the 
. 

global color charge Q:(t) = jJ$x,t)dx. 

The configurations (23a) and (23b) describe mesons (M) and baryons 

(B) respectively. As g << m, lowest energy M and B states are determined 

by the simplest configurations 

M: +iCx> = s2(xIxj, 2) 9 $j+i = 0 . 

B: Ipi(x> = sl(xIxi) , 

(244 

(24b) 

By means of eqs. (19b), (21), (22) and (24) one directly evaluates the 

interaction energy stored in the M and B states 

M: v(xl 2) = ((g2/4N) + 2 J7; A2) (N - 1) Ix1 - x21 (25d 
, 

B: v(xl N) = ((g2/4N) + 2J;; A21 
. . . c 

/xi-x./ 
J 

ifj 

(2%) 

These expressions should not come as a surprise since for A2= g2/8J;; 

they simply reproduce the potential in the color singlet sector of the 
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theory (3). However the result (25) has an important virtue, i.e., it is 

amenable to an elegant interpretation. Indeed, the stringlike field 

configurations (24a) are just electric vortex lines between points xl and 

x2 ' Hence the linear spectrum of the potential (25a) (see, e;g.-,ref.[51) 

representa longitudinal modes of the uniform electric strings labeled by 

a dummy index. Similarly baryons according to (24b) represent N different 

electric strings converging at infinity. This interpretation is analogous 

to that of the Bose form of the massive Schwinger model. It is gratifying 

that one is able to describe QED2 as well as QCD2 in terms of electric 

strings. 

It should be emphasized that the simple string picture has been 

unraveled for g2 << m2 in the leading order in 8, i.e., when quarks are 

being treated semiclassically. 

As one enters the moderate coupling regime g 5 m, the B-expansion 

(1) apparently breaks down since the first term %l in (19b) becomes 

@(1/fi4) formally dominating over "PO= @(1/B2). In the large N-limit, 

when g2N= const Cl41 the B-expansion may be regained since *l (l)+/N)+O 

and *l=B(N') on the basis of the above formula A2=g2/86. Now however 

various configurations (23), that describe in general non-uniform electric 

:strings, should be treated on equal footing with (24). 

Finally I turn to the strong coupling regime. For g2 >> m2 the poten- 

tial Xl + mAC ( l- cos 26$1~) has an absolute minimum at $i= 0. Small 
i .~ 

oscillations about the minimum have N modes given by '$D = x(X"); $i 
i 

where the matrices A D, D= 1, . . . , N are diagonal and orthogonal 

2Tr(XAAB) = gAB. The fields $D 
11 

represent one scalar with a mass square 

Mi~rnh and a multiplet of N- 1 scalars of equal mass M. Note that the 
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former decouples for m= 0. All these particles are colorless since they 

are sources of an electric field which vanishes at infinity as exp(-M/xl). 

It is easy to verify that due to interaction terms the permutation 

symmetry ZN undergoes a complete spontaneous breakdown. Interaction 

couplings being -A can be as large as M. By means of a nonrelativistic 

reasoning-strictly valid in the weak coupling regime .A << M-onemay gain 

an idea about the spectrum of bound states for A 5 M. Repeating Coleman's 

analysis of the massive Schwinger model [51 in this case, one finds 

n-body bound states with unequal masses corresponding to various 

combinations of $D's. 

The above discussion suggests that QCD2 describes two distinct phases: 

the quark (g << m) and Bose (g >> m) phases with very different spectrum 

of excitations and the broken ZN symmetry in the latter case Cl51. 
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