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- ABSTRACT 

In this paper we examine a different viewpoint based on a self- 

consistent approach. This means that rather than attempting to identify 

any particular physical mechanism as dominating the QCD vacuum state we 

use the non-perturbative Schwinger-Dyson equations and Slavnov-Taylor 

identities of QCD as well as the renormalization group equation to ob- 

tain the self-consistent behavior of the effective coupling in the infra- 

red region. We show that the infrared effective coupling behavior 

i(q2h2 3 g,(d) = (u2/q2)‘12 gR(p) 2 2 in the infrared limit q /u + 0 where 

u2 is the Euclidean subtraction point; A = (d-2)/2 where d is the space- 

time dimension., is the preferred solution if a sufficient self-consistency - 

condition is satisfied. Finally we briefly discuss the nature of the 

dynamical mass A and the l/N expansion as well as an effective bound state 

equation. 
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1. Introduction 

Some time ago it was discovered that a non-Abelian gauge theory, 

also known as Quantum Chromodynamics (QCD), possessed the unique property 

in four space-time dimensions of controllable short distance behavior 

known as "asymptotic freedom" Cll. More specifically the high momentum or 

equivalently the asymptotic short distance behavior of the effective 

2 coupling g - l/m (q2/u2) ; q2/u2 >> 1 indicated free-like particle be- 

havior of the quark and gluon colored fields. Extrapolating this result 

into the asymptotic infrared region q2/u2 >> 1 indicated that the effective 

coupling might become quite large possibly leading to the permanent 

confinement of these fields and the appearance of the known color singlet 

particle spectrum of hadronic states. Such a conjecture became known as 

"infrared slavery" [21. In the intervening period of time many interesting 

physical mechanisms have been proposed in an attempt to prove the 

"infrared slavery" conjecture from the QCD Lagrangian. Such attempts have 

so far been inconclusive C31. 

QCD is a relativistic renormalizable quantum field theory of colored 

quarks and gluons based on the classical non-Abelian Lagrangian 

Liz= - (1/4)-$F auv+JI,(ipl-m)a8 $@ 0) 

where F a = aVAa- av$+gfabcA~~ and DFr a6 = pfJa 
I.lV lJ 

- i&$X:'/2 where A;(x) is 

a colored gauge field, $,(x) is a quark field (quark flavor indices are 

suppressed) a are color indices, where repeated indices are summed and 

where m is the weak-electromagnetic quark mass; Xa are SU(N) colored 

matrices CXa,Abl= 2ifabciC with fabc the structure constants of SU(N) 

and g the universal coupling constant. 
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In this paper we present and elaborate on results which were 

reported in an earlier letter C4l. Our method is based on a self- 

consistent approach which has also been pursued independently by several 

other theorists and in particular R. Delbourgo, M. Baker, J. Ball and 

F. Zachariasen C5,61. This means that rather than attempting to identify 

any particular physical mechanism as dominating the QCD vacuum state, we 

use the exact non-perturbative Schwinger-Dyson equations and Slavnov- 

Taylor identities of QCD as well as the renormalization group equation 

to obtain the self-consistent behavior of the effective coupling in the 

asymptotic infrared region C-/I. 

Let us briefly recall several non-perturbative infrared properties 

of QCD which set the context of our work. By non-perturbative properties, 

we mean results which are obtained independently of any conjectured 

physical mechanisms such as instanton or monopole gas models of the 

vacuum state C81. 

In 1976, F. Strocchi showed that the proof of cluster decomposition 

of Wightman functions i.e., w(x,,x2)+w(x1)w(x2) where x2=x 1 +X, X+m , 

that follows from local field commutator relations in QED fails for QCD [91. 

What this meant was that it was possible to have a failure of the cluster 

decomposition property in QCD, i.e., a long-range potential, and still 

retain locality. Several years later, G. 't Hooft was able to show 

using an algebra of operators that several types of phases of QCD are 

possible ClOl. He used the gauge invariant operator A(c)=Tr[Pexp igfcdx' 

x AU(x)1 where c is a directed closed path in four-dimensional Euclidean 

space-time whose vacuum expectation value is the Wilson electric order 

parameter and a magnetic operator B(c) which creates a thin magnetic flux 
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tube coinciding with the closed path c. He was then able to show that a 

confinement phase was possible in QCD. In such a phase the expectation 

value of the A(c) operator, <OIA(c)lO>-exp (-area), where the area is 

enclosed by path c, obeys the Wilson area criterion for quark confinement. 

What phase QCD decides to choose is, of course, a matter of dynamics and 

is not answered by this formulation. In our paper using the dynamical 

content of the Green's function equations, we shall show that if QCD is - 

a self-consistent theory in the infrared, then the preferred'solution is 

a confining solution (fig. 1). 

Our paper is organized as follows: In Section 2 we sketch the 

derivation of the Slavnov-Taylor identities which are derived from the 

gauge invariance properties of the QCD Lagrangian. Next we briefly 

review the origin of the Schwinger-Dyson Green's function equations. 

Section 3 is devoted to a discussion of the renormalization group 

equation in QCD and its general solution. Using this result and the 

Slavnov-Taylor identity as well as general constraints such as Boson 

symmetry, Lorentz invariance and the absence of kinematical singularities, 

we construct the most general one particle irreducible (I.P.I.) triple 

gluon vertex. In Section 4 we use the Slavnov-Taylor identity to show 

the transversality of the Schwinger-Dyson vacuum polarization equation. 

We then derive using this equation both necessary and sufficient 

conditions which the effective coupling must satisfy in the infrared 

region. In Section 5 we discuss the nature of the hidden dynamical 

mass A as well as the l/N topological expansion in QCD. Finally, in 

Section 6 we solve for the infrared behavior of the quark propagator in 

QCD using our self-consistency approximation in the covariant Landau 
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gauge. We contrast this result with the unconfined infrared behavior of 

the electron propagator in QED. Using our quark propagator we derive in 

the ladder approximation an effective bound state equation, 

2. QCD Equations 

2.1 Slavnov-Taylor Identities 

In this section we will review the derivation of the Slavnov-Taylor 

identities. Such identities are the non-Abelian gauge theory analog of 

the Ward-Takahashi identities of Quantum Electrodynamics (QED), an 

Abelian gauge theory. In essence these identities are consequences of 

local gauge invariance and relate various Green's functions of the theory 

through algebraic constraint equations. Such identities are exact 

constraints on any solution to QCD. They also imply as in QED where 

z1= 3’ Z1 the electron-photon vertex and Z2 the electron wave-function 

renormalization constants, that all of the ultraviolet renormalization 

constants are not independent. The literature pertaining to the detailed 

derivations of these identities, in general linear covariant gauges, 

is quite considerable and was essential in proving the ultraviolet 

renormalizability of QCD [3,111. 

Our starting point is the path integral for the generating 

functional Z(J,n,f;) of Green's functions 

Z(J,n,!) = (l/z) ICdAlCd$l det MCAI 

x exp i/ d4x (1/2a)FzCAI+ JiAi+ ;ii~i+ nisi] 

(2.1) 



where l/N is the overall constant normalization factor; Ja is the gauge 

field external source; ni and !i are quark external anticommuting sources, 
. 

F,CAI= FaiA1 is the linear gauge fixing term; det MCAI=($Fa/GAi) ~i[Al 

the Faddeev-Popov determinant and where all fields have spatial and group 

indices which are suppressed. In our paper we shall choose the Landau 

covariant gauge 2 =- (J/W (a,$) 2, lim a+0 which corresponds to 
Es , 

F4 a = au (Tab . Later in the paper we shall discuss how some technical 

problems which arise in this gauge may be ameliorated by the axial 

w-w gg = 1(1/2a) (n,AL)2, where nV is an arbitrary four-dimensional 
. 

vector which corresponds to the choice Fi=n,,6 ab . 

L? 
QCD 

is a non-Abelian gauge theory which is invariant under the 

infinitesimal gauge transformation 

A +A + + tib Avc Eb w pa I 

5, + Tn + i $, (Ar/2)- ca 

(2.2a) 

(2.2b) 

(2.2c) 

The usual derivation of the Slavnov-Taylor identities begins 

with the observation that the measure CdAIdet MCAI remains invariant 

under the special choice of parameter E a 

a E = M-'CAlh, (2.3) 

where Xb is arbitrary and infinitesimal. 

Under this particular gauge transformation, GCF,(A)I= ha. Next 

varying the variables of integration in Z(J) according to this gauge 
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transformation, we note that Z(J) remains independent of the change of 

variables SZ(J)/&X= 0. This observation may be written out explicitly 

in terms of source derivatives and expresses the content of the 

Slavnov-Taylor identities 

-Fa((l/i>(G/SJ)) + JiDTC (l/i) (6/6J)l - 

* 
x M-l((l/i)(S/SJ))ba Z(J,n,$ = 0 

3 
(2.4) 

Repeated differentiation of this equation with respect to external sources 

J,n,G will then give the Slavnov-Taylor identities of QCD. However, it 

is usually more convenient to examine proper one-particle irreducible 

vertices. One therefore introduces the Legendre transform 

r(A ? ‘4) = W(J,rl,$ - Ji Ai - Gi $ - $ ni (2.5) 
NNN N 

where the new variables (classical fields) are defined as follows 

(2.6) 

and where W(J,n,t)=iRnZ(J,n,6) is the generating functional of one- 

particle irreducible (I.P.I.) vertices. One can therefore derive 

Slavnov-Taylor identities in terms of I.P.I. vertices, where the I.P.I. 

triple gluon and gluon-quark-antiquark vertex in the Landau gauge a= 0 

is in momentum space Cl11 

(l+b(q& r abc 
q 'lu2u3 

(q1yq2'q3) = gR fabc (q,) 
I 

+ A abc 
I(91 A-p 

-'2"3 
&3(q3) - Aabc, (ql 9q2)D-S 

-'3u2 u2p2 
(q2) (2.7a) 
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(l+b(q;))ql $q1,q2,q3)=gR Aa/ 
P 

- s--Qq2) 1 (2.7b) 

0 
+ ha(ql,q2) s -1 

(43) - qacql rq2) &q2) 

abc 0 
and where A and Aa are ghost scattering-like kernels as shown in 

figure 2(a,b) and where b(qt) is the ghost self energy. Now one observes 

that in the Landau gauge, ghost-gluon and ghost-quark scattering-like 

kernels which appear in the Slavnov-Taylor identities for the one- 

particle irreducible triple gluon and gluon-quark-antiquark vertices 

have been shown to vanish for incoming ghost momentum going to zero. 

This result follows from the observation that in the Landau gauge, the 

gluon propagator is transverse (J,'-ql)DXu(&ql) = 0 and therefore as 

lim qlFi + 0 the function A N ~ ql,A vanishes C3l. 

Using this result as well as an initial approximation of dropping 

the ghost self-energy term ib(q2) in the infrared region, the Slavnov- 

Taylor identities considerably simplify in the infrared region. We 

obtain Abelian-like Ward identities for the one-particle irreducible 

(I.P.I.) triple gluon (figure 3(b)) and gluon-quark-antiquark 

(figure 3(c)) where internal color symmetry is taken to be unbroken 

41 r 
abc 

vl u.1'2'3 (q1'q2'q3)= gRfabc (cl21 1 
ql ‘E(ql’q2’q3)= gR Xa/2 

Fc 
- f1(q2) 1 

(2.8a) 

(2.8b) 
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2.2 Schwinger-Dyson Equations 

The Schwinger-Dyson equations are an infinite coupled system of 

non-linear equations for the Green's functions of QCD. Such equations 

express the full non-perturbative content of the quantum field theory 

equations of motion. In principle they must contain all non-perturbative 

effects of the physical vacuum. Solving such equations is therefore 

equivalent to solving the quantum field theory. 

Two distinct approaches have been used to obtain these equations. 

The Dyson approach sums all possible Feynman perturbation diagrams, thus 

expressing them as sums of an infinite set of graphs, lumped into one 

particle irreducible vertices and propagators, which obey non-linear 

equations. Such an approach although seeming to sum about the free field 

vacuum, finally leads to equations which make no reference to perturbation 

theory. More rigorously, Schwinger obtained these equations using his 

formulation of quantum field theory in the presence of external sources 

as in eq. (2) f or the generating functional Z(J). Such an approach makes 

reference only to the exact physical vacuum and fully interacting fields. 

This derivation is however more difficult and less intuitively obvious 

than the Dyson graphical approach. They have however been obtained by 

Eichten and Feinberg for QCD using Schwinger's method C12,131. One uses the 

Lagrangian equations of motion for the field as well as an action principle. 

The ingredients which go into these equations may be illustrated 

graphically in figure 3(a-f). They are the various one-particle irreducible 

vertices as well as the fully dressed propagators. The Schwinger-Dyson 

equations themselves, which will be of interest to us in this paper, are 

graphically represented in figure 4(a-g), the gluon vacuum polarization 

equation and the equation for the gluon propagator; figure 5, the I.P.I. 
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triple gluon vertex equation; figure 6, the skeleton expansions of 

kernels in figure 5; and figure 7, the quark self-energy and ghost 

self-energy equation. The infrared non-perturbative nature of these 

complicated non-linear equations is almost totally unknown. It is 

exactly this problem which we address in this paper. 

_. 3. QCD Green's Functions 

3.1 Renormalization Group Equation 

QCD has infrared singularities at zero momentum due to the mass- 

lessness of the gluon gauge fields. Therefore in order to avoid this 

infrared problem, renormalization constants as well as renormalized 

I.P.I. Green's functions are defined at a spacelike momentum point 

Pi= U2, where u 2 is an abribrary mass parameter known as the renormali- 

zation point. 

The I.P.I. ultraviolet renormalized Green's function with n exter- 

nal gluons R 6-d n/Zr Cd 
rly,=z3 1-1l...U, can be shown to satisfy a renormalization 

group equation C31. Such an equation is just the statement that before 

renormalization the bare amplitudes are independent of u, the renormali- 

zation point 

v (d/b) I$;' lJ,= 0 (3.1) . . . 

The total derivative u(d/du) can then be written in terms of the renorm- 

alized quantities which depend on u implicitly. (For the purposes of 

this discussion we shall ignore the effect of the quark term in 2 QCD 
and incorporate it self-consistently in a later section) 

dm.4 = da/ad+iQg,(d) (a/33,(d) + 6(gR,4 (a/w (3.2) 
3 

where gR(u)= Z: Zl go I 
is .the renormalized coupling, Z3 is the gluon 
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wavefunction renormalization constant; Zl is the triple gluon renorma- 

lization constant; B (gRh)) =p (agR(u) /all) is the important Callan- 

Symanzik B-function; 6(gR(u),a)=-2ayG(gR,a) where yG(gR,a)=$lJ(a/au)anZ3 

the gluon anomalous dimension, and a=Z -1 
3 a0 the renormalized gauge 

parameter. Choosing a= 0, The Landau gauge s(gR,O)= 0, we find using 

equation (3.1) and equation (3.2) the renormalization group equation 

(3.3) 

The renormalization constants Z3 and Z1 are defined by normalizing 

the gluon propagator and triple gluon vertex at the subtraction point 

to their bare amplitudes (zero-th order perturbation terms). Upon mulit- 

plying both left and right hand sides of equation (2) by the gluon propa- 

gators D u2u3(q2) and Du2u3(q3) and taking the limit a-to, we obtain upon 

substituting the normalized forms, the simple Abelian-like relation 

z1=z3. Using this relation we find the important relation 

6 (g,> = g,v,(gR) (3.4) 

Therefore, only one independent function B(gR) remains in our infrared 

self-consistency scheme. Such a simplification makes it possible to 

obtain self-consistency conditions for the QCD vacuum polarization 

equation. 

The effective coupling <(t,gR) function is next introduced by 

the defining equation 

ah&g) 
= B(E) ; 

at 
g(‘,gR) = gR 

gR 
(3.5) 

where t is a dimensionless variable given implicitly by t=jggddx/S(x)). 
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More specifically if we take t= % !?n(q2/n2), we obtain 

( da/ad + fdgR)(a/agR) ) ii = ' (3.6) 

Using this equation and the relation g,y,(g,)= B(gR), we obtain a 

general solution to equation (3.3) 

n _. 
r * n 

u~“*l-l, = gR c 

Ul"'~i 
F ( ~-2(tlL..~-2(tn)) Ti (3.7) 

i=l 

where T 
lJl..4, 
i are tensors constructed out of tensor elements gu.u., qi, 

iJ 
qi=qj; i,j = l...n where, for example, the gluon propagator solution in 

the Landau gauge is 

lim a+0 . 

It is straightforward to show that solution equation (3.7) satisfies 

equation (3.3) by direct substitution using equation (3.6) and the 

definition f3(gR)= u(agR/au). 

3.2 Construction of the I.P.I. Triple Gluon Green's Function 

The fundamental strategy of our paper is to extract the infrared 

behavior of the effective coupling using the most general I.P.I. triple 

gluon vertex in our gluon vacuum polarization equation. We find that 

such a vertex can be constructed C61. 

In order to construct an infrared effective triple gluon I.P.I. 
L 

abc longitudinal vertex I'U1u2V3 (qp42'43) 9 we impose the following 

constraints: (a) Boson and Lorentz symmetry, (b) renormalization group 
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equation solution, equation (3.7), (c) Abelian-like Ward identity 

equation (2.8a), and (d) absence of kinematical singularities. The 
L 

transverse gluon vertex r lJ;&j(ql 9q2’q3) is similarly determined by 

the homogeneous version of equation (2.8a) ql Labc r,, ,, V (ql,q2,q3)= 0. 
"1 123 

We therefore construct the most general gluon vertex satisfying all 

of these constraints us-ing the kinematically singularity-free elements 

pij G (s-2(q:)-G-2(q:)) / (qz- qi) ; where q: /p2<< 1 

r$$3(q142,q3) = gifabc g 

i [ 
93 

V3 512 
g --2(q$-q1 g -2(q;) 

1 u2 J 

+ o13 91'43 gu1u3-q3 

r 

q1 
u1 u3 I 

(q1- 43)v + cyclic permutations 
2 1 

-Labc 
+ (l/a)r ulu2~3(ql'q2'q3) ; lim a+0 (3.9a) 

where 

L 
r; abc 3 abc 

q1 pl u1'2'3 
(q&+3) = gRf 

i 

42 42 - 43 q3 
p2 F"3 u2 U3 

and 

T 
r abc (9 q 4 > = gifabc alp12+ p23+ pjl] lJ1u2u3 1' 2 3 

i 

+ cyclic permutations (3.9b) 
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where al,a2, a3 are unknown constants. In the limit of any one of the 

incoming momentum q. iUi going to zero with others held fixed (q1+q2+q3 

= 0) we observe I? rT+ 0 and where FL+ 0 

by construction. The differential version of the Slavnov-Taylor identity 
* 

equation (2.8a) is thus satisfied. 

* 
Note also that the total triple gluon vertex is normalized at the 

2 2 Euclidean point qt= q2= q3=u2, only insofar as the Slavnov-Taylor 

identity equation (2.8a) is satisfied. 

In order to understand the general approach to constructing such a 

vertex, let us examine as an example the terms which have just a g UilJj 
tensor structure in the vertex. Writing down the general g 

ViPj 
gluon 

vertex terms, we have: 

r’ = fabc 
3 

- A242p3 

+ cyclic permutations (3.11) 

where Ai,A.. are unknown functions of qi, g - -2 $1 and where similarly 
iJ 

A =A.. ij Jl is symmetric. Substituting this expression into the triple 

gluon Slavnov-Taylor identity equation (2.7) and equating gu3u3 terms on 

both sides, we obtain: 

A2q1*q2 - A3qloq3 + x2, (4 p2 - qp3) = g --2($l; -g - -2(q;)q; (3. 

L J 

12) 

A solution which has no kinematical singularities may be written down: 

A2 = g --2(q;) ; A3 = Ew2(qi) ; A23 = -q2'43 ~23 (3.13) 
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Using this solution, one may verify by tedious inspection that our 

general vertex equation (3.9) may be constructed. Such a solution appears 

to be unique. It is also possible, although very tedious, to construct 

the I.P.I. four gluon vertex figure 2(d) which is needed for the gluon 
-~ 

vacuum polarization terms figure 3(d) and 3(e). We-shall find, however, 

that the essential behavior of the infrared behavior of the effective 

coupling may be extracted from the triple gluon vacuum polarization term. 

4. Infrared Behavior of the Effective Coupling 

4.1 Vacuum Polarization Equation 

The Schwinger-Dyson equation for the gluon vacuum polarization tensor 

,,a) is given in figs. 4(a) to 4(f) and obeys the transversality 
u3r-l; condition q~3~~~u'(q3,a)= 0 where aab (q3,a) = 6ab"(q3'a) - 

Unlike QED the vacuum polarization is gauge dependent. We will consider 

only the terms figures 4(a-b) and discuss the remaining terms, figures 

4(c-f) later. Using equation (2.8a) it is then straightforward to show 

that the terms figures 4(a-b) will obey the transversality condition 

q3u3n 
p3l-G (q3 ,a)= 0. This can be seen by either regulating the denominators 

with a small mass 6 2 -to or by analytically continuing in space-time dimen- 

sion n where integrals of the form /dnk(k2)'= 0 C3l. Such a proof is 

analogous to that given in QED 

2 

43 
71p311; gR 

(q3)=E /ddq T"Td: ,Dcc' 1 ~1~~2u3 RIJ~V~ t (41) f 
abc x Ddd' 

u3 
Ru2u;(92) 

- J$, (q) 1 = 0 (4.1) 
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After replacing unrenormalized coupling, propagators and vertices by 

their renormalized counterparts according to the standard renormalization 

prescription, i.e., go= Z;%gR, D=Z3DR, r= Z3 -1 rR, etc., we obtain a 

vacuum polarization equation 

r Ocda (-91,-q 1 FIiV;!J; 

(4.2) 

where 

aR(4?j.4 =Z;'gl /g --2(qt) -1 and Z;' < 00 

4.2 Self-Consistency Conditions 

Imposing the weak constraint condition q3g 2- -2 (q;) + 0 as qG/u2+0 

one observes that the left-hand side of eq. (4.2) goes to zero as q3+0. 

Substituting the limiting forms for the propagator eq. (3.8) and vertices 

eq. (3.9a) and eq. (3.9b) as q3+0 into the right-hand side of eq. (4.2), 

one obtains a self-consistency constraint after contracting indices 

ldnql E2(q;) / 4; - Wdq:) i2(q;) 1 = 0 (4.3) 

This constraint follows from the longitudinal vertex solution eq. (3.9a) 

as the transverse vertex eq. (3.9b) vanishes when any single momentum is 

taken to zero. Next observe that if we rescale variables ql+i'ql, then 

in order for the left-hand side of the equation to remain h independent, 

we must have i2(hq2)=X - ((d-2) /2) g2 tq’5 . This implies that only a 
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polynomial solution is possible 

92(q2/!J2,gR) = (l12/q2A; x = ((d-w21 (4.4) 

Such a solution is strictly only valid for the region q2/P2<<1, 

as we know from the "asymptotic freedom" short distance behavior 

-2 2 g (q )-l/P.n(q2/u2)for q2/p2 >>l. We have assumed implicitly that the -~ 

short distance region is decoupled from the asymptotic long distance 

region and thus U.V. divergencies as expressed as l/(n- 4) singular- 

ities have already been subtracted (see figure 1). 

Integrating the second term in equation (4.3) by parts, we observe 

that a surface term must vanish 

co 
(q;) (d/2)-1i2(q;) = 0 

0 
(4.5) 

Our solution for the effective coupling equation (4.4) satisfies 

this condition. Substituting our solution, equation (4.4), the remaining 

terms which are integrals of the polynomial form may be dimensionally 

regulated to zero as before /dnq,(qt)'= 0 C31. 

Next we substitute our infrared singular solution equation (4.4) into 

the vacuum polarization equation (4.2) using equations (3.9a) and (3.9b) 

in order to ascertain its self-consistency for small but non-vanishing 

values of q3. We find after straightforward although rather tedious 

algebra and after evaluating Feynman type integrals via the standard 

n-dimensional regularization techniques the expression 

(u2/qt) (co / b - 4)+ ch+ alcl) -I-a2c2+a3c3 = -1 (4.6) 
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where co+ 0, ~6, cl, c2 and c3 are dimensionless constants; and where we 

have set d=4, i.e., X= 1 and have already factored out transverse tensor 

(gv3v; 2 1-13 p i q3- q3 q3 ) from both sides, Explanatory comments on eq. (4.6) are 

appropriate here. In obtaining eq. (4.6) we have taken the lim a+0 and 

subtracted out a term with coefficient l/a. The remaining term, i.e., 

the left-hand side of eq. (4.6) which is independent of a can be shown to 
-. 

remain transverse. The term (~2/q~)(co/(n-4)) which arises from the sum 

of infrared divergent integrals of the form ~dnql(l/(q~)a)(1/C(ql+q3)21B); 

a+ 8 > 2 originates from the longitudinal vertex eq. (3.9a) contribution 

to eq. (4.2). It is clear that eq. (4.6) cannot be consistent unless the 

terms in the parenthesis multiplying u2/q: disappear. 

Let us suppose that we are able to eliminate the cO/(n-4) term, which 

leads to an infrared divergent vacuum polarization. It is then possible 

to adjust the underdetermined transverse parameters al,a2 and a3, i.e., 

al=c'/c o 1, a2= 0, a3= -l/c3, etc., so that eq. (4.6) is satisfied. Know- 

ledge of the longitudinal vertex solution eq. (3.9a) is therefore not 

sufficient in order to satisfy the vacuum polarization eq. (4.2) with 

solution eq. (4.4) for S2. Using the vacuum polarization equation fig. 

4(a-f) one can therefore only show that the ansatzed solution eq. (4.4) 

for g2 satisifies a necessary condition eq. (4.5) although not necessarily 

a sufficient condition eq. (4,6). In order to determine ai from QCD itself 

it is necessary to understand the global properties of the total triple 

gluon vertex. Such information however is obtained in the infinite hier- 

archy of coupled Schwinger-Dyson equations for the triple gluon, quadruple 

gluon vertex, et cetera. A truncation procedure for these equations, 

similar to our analysis of the vacuum polarization function may help 
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determine the ai parameters. More specifically one should consider 

substituting our I.P.I. triple gluon vertex into its Schwinger-Dyson 

equation retaining only the one loop skeleton terms on the right-hand 

side of figures 5 and 6. We are presently investigating this possibility. 

To understand the origin of the infrared divergent l/(n-4) term 

le.2 us examine the infrared content of the right-hand side of the vacuum 

polarization eq. (4.2). -This can be done by looking at the small inte- 

gration momentum ql<< q3 region where q3 is also small but finite 

IT I (q3) z 
V3u3 

(l/2!) J"dnq r” 
0 1 PilJGV3 t (0,+q3,--q3)D , (ql)D 

Vl 
1 t-93) 

u2u2 

(4.7) 

where ql<< a<< q3 restricts the integration strictly to the infrared 

region. Thus in order that IT 
U3V3(43) 

contains no infrared divergent 

l/(n-4) term we find the constraint &o dnqlD dq$< m l 

y'! 
Substituting 

the Landau gauge propagator equation(Eq. (3.8)) and g2 equation(Eq. (4.4)) 

we observe that this conditon is not met, giving rise to a l/(n-4) infra- 

red divergent term in our simplified Landau gauge formulation. 

In order to understand this problem, let us examine the axial gauge 

gg=- (1/2a)(nVAz)2 where nV is the gauge direction vector, lim a+0 

as in Baker, et al C6l. In this gauge the Slavnov-Taylor identities 

equations (2.8a) and (2.8b) are exact as Faddeev-Popov ghosts are. 

absent. This is easily seen by observing that det M(A) becomes indepen- 

dent of A and can therefore be integrated out of the path integral. 



-2o- 

The full gluon propagator in the axial gauge is however more 

complicated (ignoring color indices) 

D , (qg,q3*n) = Aren(&34Pv3"+ Bren(q$i3 nk 
T”3”; 

u3u3 

+ aqi3qI' / (n*q3j2, lim a+0 (4.8) 

where * 

(4.9a) 

and 

T 
p3p; = 

( 
p34 

g g - (nV3n")/n2) (4.9b) 

It is straightforward to show that by choosing the solution A=i2(ai)/gi, 

B= 0, the Slavnov-Taylor identity eq. (2.8a) is satisfied with the 

triple gluon vertex eq. (3.9a) and eq. (3.9b) (after dropping the 
4 
r abc term. 
ulu2'-'3 

In terms of the general vacuum polarization term 

+ ((q:)2) / ((n.q,)2) nu'nu' ) (4.10) 

our solution corresponds to ITS= l/A; ITS= 0. Our propagator also obeys 

the same renormalization group eq. (3.3). It can also be shown in the 

axial gauge that all renormalization group functions are independent of 

npC141. 
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Substituting our axial propagator into the infrared convergence criterion 

1; dnqlD !-vi (ql) < m lim n-t4 we observe that this criterion is satisfied 

due to the vanishing of the angular integral jdfiql P I-r34 = 0. This can 

be seen by evaluating the integral C6l 

and 

n2 I dQ 4 q1 lUlqlUi /(n*ql12 = - g 
Vi 

+2n n 
pl pi 

/n2 

(4.11a) 

(4.11b) 

The rest of the arguments leading to our self-consistency condition 

eq. (4.6) can basically be retained in the axial gauge. The right-hand 

side of the vacuum polarization equation however does induce a new IT 2 

term. We conjecture that such an induced term will not give rise to an 

infrared singlular B term propagator which could potentially violate 

our infrared convergence criterion. We also note that (q3*n) type terms 

which are basically kinematic in nature are induced in the vacuum polari- 

zation tensor. Such complications are probably resolvable by assuming 

a better initial ansatz for A and B which involves some kind of (q3*n) 

dependent function, 

The remaining quadruple gluon terms figs. 4(d) and 4(e) may be 

treated in a similar manner to our I.P.I. triple gluon term through the 

use of the I.P.I. quadruple gluon Slavnov-Taylor identity. The transverse 

I.P.I. triple gluon Green's function however already determines a suffi- 

ciency condition. It thus appears pointless to examine the even more 

complicated four gluon vacuum polarization terms until this condition is 
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determined. We expect however, such terms (figures 4(d) and 4(e)] to be 

self-consistent with our solution equation (4.4). Finally returning to 

our q 3 +O consistency condition we find in axial gauge with our propagator 

solution the same surface tei3m self-consistency condition as in the Landau 

gauge, equation (4.5). 

The Schwinger-Dyson equation for the ghost self-energy figure 7(a) 
-. 

may be solved in the infrared region k2+0 by making use of the effective 

coupling's equation (4.4) infrared singular behavior and the Landau gauge's 

simplifying properties for the ghost-ghost gluon vertex [31. Solving we 

obtain bren (k2)~~3(k2,62),limk2+O;~3~ the ghost renormalization constant 

lim 62+0 where z3(k2,62)=z3 Rn k2/S2. One therefore observes that our 

initial approximation of dropping bren(k2) in the Slavnov-Taylor identities 

is inconsistent (due to its infrared divergent behavior as 62+0) confirm- 

ing again the lack of a simple self-consistent infrared scheme in the 

Landau gauge. We conjecture that retaining the ghost propagator self- 

energy in our vertex solution and in the vacuum polarization figure 4(c) 

will ameliorate both this difficulty and the co/ (n- 4) problem. We are 

currently investigating this approach. 

5, Dynamical Mass A and the Nature of the l/N 

Topological Expansion 

The function in the infrared region is obtained by substituting 

g2= [u2/g2)*gi into equation (3.5) to obtain 

f&iR(?J)) = -0j2) g&d (5.1) 

Solving for gR(.u) we observe that the quantity gR(u)u x/2 =gRCpo)$'2 is 

a renormalization group invariant where p. is an arbitrary mass point. 
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In particular for d= 4, gR(po) is dimensionless and A= gi(vo)uo may be 

identified as a dynamical mass. This may also be seen explicitly by 

noting that A= ux exp- IgR (dg/ B W) is the dimensionally transmuted mass 

P(d/du) A = (u(a/au) + fi(gR)(a/agR)j A = 0 (5.2) 

Note also that by-setting u. = A we see that A is defined as the 

scale for which gi(A)=l. Substituting our expression for g,(u) in terms 

-2 of A we may rewrite g as follows 

-2 2 
g(q) = d/q2 ; u_<A , lim q2/u2 << 1 (5.3) 

Note that the choice of the Euclidean subtraction point u is arbitrary 

and does not affect the values of physical quantities such as hadronic 

masses. In consequence with this observation some convenient choices 

for v are u=A or u=A/N. We therefore note that the role of the effec- 

tive coupling in QCD is not that of a physical observable, as it is 

renormalization dependent. Rather, such a function serves to define 

the Green's functions of QCD which in turn themselves must be convoluted 

to determine physically observable quantities such as scattering 

cross-sections or hadronic masses. 

We argue heuristically that the choice of p= A/N corresponds to the 

well-known 't Hooft topological expansion of diagrams in the asymptotic 

l/N, N -+= limit, whose leading terms are planar 1151. In order to see 

this as simply as possible, let us draw the parallel for the four- 

dimensional QCD theory when p= A/N is chosen, with the two-dimensional 

QCD of 't Hooft where the coupling parameter g2+ l/N, N-+03 and which has 
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the dimensions M2 . Noting that the propagator factor is (i2(a2)/q2)= 

(A2/N> 1 /q4 in four dimensions we find that when lines are color con- 

tracted internally in diagrams, a factor of N will accompany them. 

A simple table then illustrates our correspondence 

4-d 2-d 

- 
coupling -2 4~ + 

dim LM21 
8 

IA-+ (A2/N) < choice p= A/N b g'+l/N 

i I.R. Propagator + l/Cl2 

(5.4) 

What this brief discussion points out is that in renormalized QCD the 

l/N expansion merely corresponds to a particular renormalization scheme 

which arranges diagrams according to its topological characteristics, i.e., 

planar, one handle graphs, etc. We see however that in the two dimensional 
2 

case, as there is no 1-1 dependency, i.e., the choice g -+ l/N lim N-+00 is in 

fact a specific type of theory and does not correspond to an arbitrary 

renormalization scheme. In contrast to previous speculations, we therefore 

argue that-the l/N expansion is merely a convenient renormalization choice 

and does not give rise to any dynamical origins of the confinement phase 

of QCD cl51. 

6. Quark Propagator and an Effective Bound State Equation 

It is instructive to examine the quark self-energy equation fig. 7(b) 

in our Landau gauge approximation (albeit its technical difficulties) and 
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in the infrared region 

Z(P) = i g; / ddi D~(dr;R(p,P+ Q) SR(p+ q) yv (6.1) 

We can take advantage of the effective coupling's infrared singular 

behavior by making use of the renormalized version of equation (2.8b) 

pz,(p,p+q)= grta (aSi'(p)/ap,,); where S= Z2SR and I'zR=Z;'rg* We Obtain 

in the case of zero weak-E.M. mass quarks the equation 

c(p) “, kC2(R) (as~l/app,(p)u, ,fp22 (i2k12)/q2) CEY - (&iVh2)) 

x (q2)(d'2)-1 dq2 , lim 62+0 (6.2) 

where C,(R)= (N2- 1)/2N, k is an angular integration constant and 62 is 

an infrared cutoff regulator. Substituting the quark propagator 

‘R= i ($AR(P2j+ BR(p2)) , one obtains uncoupled first order differential 

equations if we use the approximation C(p)zS -l(p) = z;ls;l, which ignores 

the kinetic term fi [5(a)]. 

f31 2p2 (dA(p2)/dp2) + S2A(p2) = const. / Rn(P2/ s2) 

(dB(p2)/dp2) =0 ; B1, S2 > 0 

One easily solves these equations obtaining the solutions 

pk(p2d2)= (P/B$ 1% I 1% P2h2 II (P 2 16 2 ) 624 

BR(p2) = constant 

(6.3a) 

(6.3b) 

(6.4a) 

(6.4b) 

where p=(l/(2rj4 X Z,l)/ kC2(R)p2gi and bl,S2> 0 are constants. 
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To understand this result, let us compare the electron propagator's 

infrared behavior in QED Sunren =z2d/ Cp2)1+y; y= a&T+ . . . . One can 

define Z21eR. (P> =z,/(p2~? thus absorbing the soft coherent infrared 

photon cloud into the wave function renormalization, leaving a renormalized 

single particle pole state. By analogy our QCD quark propagator can be 

rewritten as S unren =Z~QCD(P) SR, where SR=Z2QCD -1 (p) 6/p" and where 

z;&D (PI =- P2pk(P2, 62> l One therefore observes that unlike QED the soft 

coherent gluon cloud cannot be renormalizkd away, but in fact confines as 

62+0, leading to no on-shell renormalized quark state. The second impor- 

tant property to note is that the solution BR(p2)= constant, violates Chiral 

smetry Ir,, Swll+# 0 and therefore realizes the PCAC phase. One thus 

obtains a dynamical Goldstone boson in the axial vertex r5 

of our infrared solution [5(a) 1. 
!J 

as a consequence 

Next, using the product SRI?:= -iy,,/$ (lim q-to, 6 z+o), it is straight- 

forward to observe that the quark term fig. 4(f) vanishes in the 13~+0. 

Inserting an explicit bare quark mass, i.e., $+$-m does not alter this 

conclusion. We expect the quark propagator in the axial gauge to behave 

in a similar way to the preceding results. 

Using again the result SRTE= -iyu(l/#)(lim qu+O, 6 2+ 0) , one may 

derive an effective Bethe- Salpeter bound state equation for the quark- 

antiquark scalar channel in the ladder approximation. Using our result 

for the infrared effective coupling, we obtain the infrared effective 

kernel 

KI.R. 
= N g2(q2)/ g2 w A2/q4 ; lim q2/A2 << 1 (6.5) 

where we have chosen p= A/N. Next using the effective coupling in the 

short distance g2(q2) - l/Rn q2/p2; q2/u2 >> 1, one finds via the 
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renormalization group equation (3.3) 

Dulu2 
(4) - l/s2 (g 'lp2- (qu1qu2/q2>) (M(q2/p2)) c'b 

S(q) N l/d 

N Aa/ y' an(q2/u2) ( > 
(-b/2c)-% 

rv a - 

(6.6a) 

(6.6b) 

(6.6c) 

where b a& c are calculable constants [31. 

Inserting these asymptotic Green's functions into the ladder kernel, 

we obtain the effective short-distance kernel 

Ku.v.= Ng2(q2)/q2, (N/b)(l/q2)(ll~n(q2/A2)), lim q2/A2 >> 1 (6.7) 

Substituting these kernels, we obtain an effective bound-state equation 

lim d2+,0 

(*l - ml) <ms, -m2)Ji(P1,P2) = I$ $+q, p2-q) N(i2 (q2> /s2) d4 q (6.8) 

Using the normalization condition for the Bethe- Salpeter $(pl,p2) 

wavefunction, one can show that an interesting constraint condition on 

the number of flavored quarks np < 9 arises for SU(3) QCD cl5l. Such a 

constraint follows from the short-distance asymptotic l/(Rn p2/u2) 

behavior of the bound-state wavefunction and the demand for an integrable 

wavefunction. Although our equation is constructed in the Landau gauge, 

we expect such a constraint to hold in other covariant gauges. 

This equation also gives rise to a simple interpretation of free-like 

quarks l/(ti- m) interacting through a relativistic linear- or string-like 

confining potential A2/q4 at long-distances q2/A2 << 1 and Coulomb-like 

(l/q2) Rn(q2/A2) at short distances q2/A2 >> 1. This is somewhat 
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surprising, as the quark propagator has no on-shell state, I.e., threshold. 

In some respects this resembles behavior discovered by 't Hooft in his 

two-dimensional l/N theory C153. A similar equation to our meson effective 

equation can also be derived using our triple gluon vertex for the Baryon 

spectrum. 

Clearly, our effective equation also has several problems. The ladder 
- 

approximat3on is not a gauge-invariant approximation, and in a theory of 

infrared singular relativistic propagators, one cannot really ignore higher- 

order terms in the expansion of the Bethe- Salpeter kernel. It is also 

unclear whether a solution exists for the infrared region of such an infra- 

red singular bound-state equation. Despite these difficulties, such an 

effective equation by itself may prove an interesting description of the 

hadronic spectrum. 

7. Conclusions 

We have shown in this paper that if a self-consistency sufficient - 

condition is satisfied, then the preferred solution is an infrared singular 

effective coupling, In obtaining this solution, albeit several technical 

difficulties, we have also been made to realize its renormalization 

dependent presecription. Therefore one should not look upon such a 

function as a classical type of potential as in QED. Rather we view the 

infrared behavior of the effective coupling as a signal of the color 

confining nature of LP 
QCD 

and the possible development of extended spatial 

structures such as strings, bags, etc., in the theory. 

An analogy that one may draw to this situation is the role of 

electron Cooper-pairing in the superconductivity phenomena. It provides 
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a non-perturbative signal for the development of a new condensed phase. 

The extended structure of superconductivity, helium vortices, surface 

waves, etc., however, are not directly attainable from such a mechanism. 

Using the original local B.C.S. superconductivity Lagrangian and the new 

condensed phase, one is able to generate an effective Landau-Ginzburg 

Lagrangian having a long-range order parameter \$I. This prescription is 

then capable of describing the extended structure of superconductivity. 

Perhaps using g2 as a function of F2 where F2 is treated as a long- 

distance order parameter, an effective Lagrangian for 22 
QCD 

's extended 

structure can be generated. Another approach one might consider are 

Schwinger-Dyson equations for path-dependent gauge invariant Green's 

functions, i.e., <O/T$(x)Pexp(-JzA'dxu)$(y)lO> in coordinate space. 

Such an approach may lead more directly both to a space-time picture as 
* 

well as to a gauge invariant description of the spectrum. 

* 
Added in proof: After this paper was completed, we became aware of a 

preprint U.C.B.-PTH-79/8,July 79, S. Mandelstam, "Approximation Scheme 

for Q.C.D." Using a different approach to solving the Schwinger-Dyson 

equations, he obtains the same l/q4 behavior for the gluon propagator 

as well as several other similar results. 
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Figure Captions 

Cl1 Effective coupling g2(q2/V2). 

c21 (a) Ghost-gluon scattering-like kernel. 

(b) Ghost-quark scattering-like kernel. 

(c) Ghost-ghost-g&on vertex. 

c31 (a) Full gluon propagator. 

(b) Triple gluon I.P.I. vertex. 

(c) Gluon-quark-antiquark I.P.I. vertex. 

(d) Four gluon I.P.I. vertex. 

(e) Full ghost propagator. 

(f) Full quark propagator.. 

c41 (a) to (g> S h c winger-Dyson equation for gluon vacuum 

polarization tensor and gluon propagator. 

c51 I.P.I. triple gluon vertex equation. 

C61 Skeleton expansions of kernels in fig. 5. 

c71 (a) Schwinger-Dyson equation for ghost self-energy. 

(b) Schwinger-Dyson equation for quark self-energy. 

C81 Effective Bethe-Salpeter Bound State Equation. 
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